

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp504-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4.1 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-5. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.

Note: A PC push during exception processing concatenates the SRL register to the MSb of the PC prior to the push.

The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap does not occur. The stack error trap occurs on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-5: CALL STACK FRAME

4.4.2 DATA RAM PROTECTION FEATURE

The PIC24H product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-35 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2
where:

Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb.

Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-35: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.5.3 MOVE (MOV) INSTRUCTION

Move instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, MOV instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note:	Not	all	instructions	support	all	the		
	addressing modes given above. Individual							
	instructions may support different subsets							
	of th	ese a	addressing mo	odes.				

4.5.4 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

REGISTER 5-	GISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	_	
bit 15							bit 8	
VV-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
			NVMK	EY<7:0>				
bit 7							bit 0	
_								
Legend:								
R = Readable I	bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

REGISTER	7-25: IPC11	: INTERRUP	T PRIORITY	CONTROL F	REGISTER 1	1	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	—	_	_		DMA4IP<2:0>	
bit 15							bit 8
	D 0.01 4	DAMA					
U-0	R/W-1	R/W-0	R/W-0	U-0	0-0	0-0	<u>U-0</u>
		PMPIP<2:0>		—	_	_	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared x = Bit is unknown		
bit 15-11	Unimplemen	ted: Read as '	0'				
bit 10-8	DMA4IP<2:0	>: DMA Chann	el 4 Data Tra	nsfer Complete	e Interrupt Prior	rity bits	
	111 = Interru	pt is priority 7 (highest priorit	ty interrupt)			
	•						
	•						
	•						
	001 = Interru	pt is priority 1	abled				
hit 7		tod. Dood oo '	,				
DIL /	Unimpiemen	neu: Reau as	U				

PMPIP<2:0>: Parallel Master Port Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1 000 = Interrupt source is disabled

Unimplemented: Read as '0'

bit 6-4

bit 3-0

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0					
	_		_	_		C1TXIP<2:0>(1)						
oit 15	·			· ·			bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—		DMA7IP<2:0>		_		DMA6IP<2:0>						
oit 7							bit (
_egend:												
R = Readab	ole bit	W = Writable I	oit	U = Unimpler	nented bit, rea	id as '0'						
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own					
oit 15-11	Unimplemen	ted: Read as '0)'									
oit 10-8	C1TXIP<2:0>	C1TXIP<2:0>: ECAN1 Transmit Data Request Interrupt Priority bits ⁽¹⁾										
	111 = Interru	pt is priority 7 (ł	nighest priori	ty interrupt)								
	•	•										
	•	•										
	• 001 - Intorru	nt io priority 1										
	000 = Interru	pt is priority 1 pt source is disa	abled									
bit 7	Unimplemen	ted: Read as '()'									
oit 6 4			, N 7 Data Tra	unefor Complete	Interrupt Price	rity bite						
511 0-4		DIMA/IF<2:0>: DIMA Grannel / Data Transfer Complete Interrupt Priority bits										
	•	 It = interrupt is priority / (nignest priority interrupt) • 										
	•											
	•	•										
	001 = Interru	001 = Interrupt is priority 1										
	000 = Interru	pt source is disa	abled									
oit 3	Unimplemen	ted: Read as ')'									
oit 2-0	DMA6IP<2:0	>: DMA Channe	el 6 Data Tra	Insfer Complete	Interrupt Prio	rity bits						
	111 = Interru	pt is priority 7 (ł	nighest priori	ty interrupt)								
	•											
	•											
	•											

Note 1: Interrupts disabled on devices without ECAN™ modules.

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	—			INT1R<4:0>			
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	_	—	
bit 7		•				•	bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	it U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
bit 15-13	Unimplemen	ted: Read as ')'					
bit 12-8	INT1R<4:0>:	Assign Externa	al Interrupt 1	(INTR1) to the	corresponding F	RPn pin		

11111 = Input tied to Vss 11001 = Input tied to RP25	
•	
•	
•	
00001 = Input tied to RP1	
00000 = Input tied to RP0	

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	
—	—	—	—			—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	—	—			INT2R<4:0>			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set	t '0' = Bit is cleared			x = Bit is unknown		
bit 15-5	Unimplemen	ted: Read as '	0'					
bit 4-0	INTR2R<4:0>	-: Assign Exter	nal Interrupt 2	2 (INTR2) to the	e corresponding	RPn pin		
	11111 = Inpu	it tied to Vss						
	11001 = Inpu	it tied to RP25						
	•							
	•							
	•							
	00001 = Inpu	It tied to RP1						

00000 = Input tied to RP0

REGISTER 11-11: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	_	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			SS1R<4:0>		
bit 7		•					bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set	et '0' = Bit is cleared x = Bit is unk			nown	
•							

bit 15-5 Unimplemented: Read as '0'

bit 4-0

SS1R<4:0>: Assign SPI1 Slave Select Input (SS1) to the corresponding RPn pin 11111 = Input tied to Vss 11001 = Input tied to RP25

00001 = Input tied to RP1 00000 = Input tied to RP0

12.1 Timer Resources

Many useful resources related to Timers are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532315

12.1.1 KEY RESOURCES

- Section 11. "Timers" (DS70205)
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- **Note 1:** This data sheet summarizes the features the PIC24HJ32GP302/304, of PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN 2.0, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8- or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or two stop bits
- Hardware flow control option with UxCTS and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- · 4-deep FIFO Receive Data buffer
- Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive interrupts
- · A separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- Support for sync and break characters
- · Support for automatic baud rate detection
- IrDA[®] encoder and decoder logic
- 16x baud clock output for IrDA[®] support

A simplified block diagram of the UART module is shown in Figure 18-1. The UART module consists of these key hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- · Asynchronous Receiver

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

REGISTER	19-4: CiFCT	RL: ECAN™	FIFO CON	TROL REGIS	TER		
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	DMABS<2:0>		_				
bit 15							bit 8
r							
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—			FSA<4:0>		
bit 7							bit 0
Legend:		C = Writeable	bit, but only	'0' can be writt	en to clear the	bit	
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	id as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13	DMABS<2:03 111 = Reserv 110 = 32 buf 101 = 24 buf 100 = 16 buf 011 = 12 buf 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe	>: DMA Buffer S ved fers in DMA RA fers in DMA RA fers in DMA RA fers in DMA RAM ers in DMA RAM ers in DMA RAM	Size bits M M M M 1 1				
bit 12-5		Ited: Read as ')' With Buffor k	aito			
511 4-0	11111 = Rea 11110 = Rea	RX buffer TRB1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

REGISTER 1	9-17: CiRXF n (n =	nEID: ECAN 0-15)		ANCE FILTE			RREGISTER
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:	C = Writeable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MSK<1:0>		F6MSK<1:0>		F5MSK<1:0>		F4MSK<1:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MSK<1:0>		F2MSł	<<1:0>	F1MS	K<1:0>	FOMS	<<1:0>
bit 7							bit 0

Legend:	C = Writeable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	F7MSK<1:0>: Mask Source for Filter 7 bit
	11 = No mask
	10 = Acceptance Mask 2 registers contain mask
	01 = Acceptance Mask 1 registers contain mask
	00 = Acceptance Mask 0 registers contain mask
bit 13-12	F6MSK<1:0>: Mask Source for Filter 6 bit (same values as bit 15-14)
bit 11-10	F5MSK<1:0>: Mask Source for Filter 5 bit (same values as bit 15-14)
bit 9-8	F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bit 15-14)
bit 7-6	F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bit 15-14)
bit 5-4	F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bit 15-14)
bit 3-2	F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bit 15-14)
bit 1-0	F0MSK<1:0>: Mask Source for Filter 0 bit (same values as bit 15-14)

20.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC1)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits
 - described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices have up to 13 ADC input channels.

The AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

20.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 13 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 13 analog input pins, designated AN0 through AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

Block diagrams of the ADC module are shown in Figure 20-1 and Figure 20-2.

20.2 ADC Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>)
 - d) Determine how many S/H channels are used (AD1CON2<9:8> and AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>)
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>)
 - g) Turn on ADC module (AD1CON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the AD1IF bit
 - b) Select ADC interrupt priority

20.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. ADC1 can trigger a DMA data transfer. If ADC1 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF bit gets set as a result of an ADC1 sample conversion sequence.

The SMPI<3:0> bits (AD1CON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (AD1CON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

20.6 ADC Control Registers

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM	_	AD12B	FORM	<1:0>
bit 15	pit 15				bit 8		
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0
						HC,HS	HC, HS
SSRC<2:0>			—	SIMSAM	ASAM	SAMP	DONE
bit 7 bit 0							

REGISTER 20-1:	AD1CON1: ADC1	CONTROL REGISTER 1
----------------	---------------	---------------------------

Legend:	HC = Cleared by hardware	HS = Set by hardware	C = Clear only bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ADON: ADC Operating Mode bit 1 = ADC module is operating
b :t d d	0 = ADC IS Off
DIL 14	DOUDL A Chan in Julia Marda hit
DIT 13	ADSIDL: Stop in Idle Mode bit
	 Discontinue module operation when device enters idle mode Continue module operation in Idle mode
bit 12	ADDMABM: DMA Buffer Build Mode bit
	 1 = DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer
bit 11	Unimplemented: Read as '0'
bit 10	AD12B: 10-bit or 12-bit Operation Mode bit
	1 = 12-bit, 1-channel ADC operation
	0 = 10-bit, 4-channel ADC operation
bit 9-8	FORM<1:0>: Data Output Format bits
	For 10-bit operation:
	10 = Reserved
	01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>)
	00 = Integer (Dout = 0000 00dd dddd dddd)
	For 12-bit operation:
	11 = Reserved
	01 = Signed Integer (DOUT = sass_sddd_dddd_dddd, where s = NOTd<11>)
	00 = Integer (DOUT = 0000 dddd dddd dddd)
bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
	111 = Internal counter ends sampling and starts conversion (auto-convert)
	110 = Reserved
	101 = Reserved 100 = GP timer (Timer 5 for ADC1) compare ends sampling and starts conversion
	011 = Reserved
	010 = GP timer (Timer3 for ADC1) compare ends sampling and starts conversion
	001 = Active transition on INTO pin ends sampling and starts conversion
	000 = Clearing sample bit ends sampling and starts conversion
bit 4	Unimplemented: Read as '0'

21.3 Comparator Voltage Reference

21.3.1 CONFIGURING THE COMPARATOR VOLTAGE REFERENCE

The Voltage Reference module is controlled through the CVRCON register (Register 21-2). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR3:CVR0), with one range offering finer resolution. The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 21-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

NOTES:

R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0	
IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F	
bit 15							bit 8	
R-1	R/W-0, HS	U-0	U-0	R-1	R-1	R-1	R-1	
OBE	OBUF	<u> </u>		OB3E	OB2E	OB1E	OB0E	
bit 7							bit 0	
Legend:		HS = Hardwar	e Set bit					
R = Readabl	le bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15 bit 14	 IBF: Input Bu 1 = All writab 0 = Some or IBOV: Input E 1 = A write a 0 = No overfl 	 IBF: Input Buffer Full Status bit 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte register occurred (must be cleared in software) 0 = No overflow occurred 						
bit 13-12	Unimplemen	ted: Read as '0)'					
bit 11-8 bit 7	IB3F:IB0F Inj 1 = Input buf 0 = Input buf OBE: Output 1 = All reada	 IB3F:IB0F Input Buffer x Status Full bits 1 = Input buffer contains data that has not been read (reading buffer will clear this bit) 0 = Input buffer does not contain any unread data OBE: Output Buffer Empty Status bit 1 = All readable output buffer registers are empty 						
	0 = Some or all of the readable output buffer registers are full							
dit 6	OBUF: Outpu 1 = A read or 0 = No under	it Buffer Underf ccurred from an flow occurred	iow Status bil empty outpu	ts it byte register	(must be clear	ed in software)		
bit 5-4	Unimplemen	ted: Read as 'o)'					
bit 3-0	OB3E:OB0E	Output Buffer x	Status Empt	y bit				

REGISTER 24-5: PMSTAT: PARALLEL PORT STATUS REGISTER

- 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

TABLE 26-2.	INSTRUCTION SET OVERVIEW (CONTINUED)	۱
		,

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
35	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
36	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
37	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f.IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
38	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
39	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
40	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
41	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
42	NEG	NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws.Wd	$Wd = \overline{Ws} + 1$	1	1	C.DC.N.OV.Z
43	NOP	NOP	-, -	No Operation	1	1	None
-		NOPR		No Operation	1	1	None
44	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	- Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
45	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH S		Push Shadow Registers	1	1	None
46	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO.Sleep
47	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Vn	Computed Call	1	2	None
L	I			· · · · · · · · · · · · · · · · · · ·	ı .		

NOTES:

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLMETERS		
Dim	ension Limits	MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	1.27 BSC		
Overall Height	A	_	_	2.65
Molded Package Thickness	A2	2.05	_	_
Standoff §	A1	0.10	_	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (optional)	h	0.25	_	0.75
Foot Length	L	0.40	_	1.27
Footprint	L1	1.40 REF		
Foot Angle Top	φ	0°	_	8°
Lead Thickness	С	0.18	_	0.33
Lead Width	b	0.31	_	0.51
Mold Draft Angle Top	α	5°	_	15°
Mold Draft Angle Bottom	β	5°	_	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fla Temperature Ran Package — Pattern —	nark — mily – Size (ag (if a ge —	P KB)	IC 24 HJ 32 GP3 02 T E / SP - XXX	Examples: a) PIC24HJ32GP302-E/SP: General Purpose PIC24H, 32 KB program memory, 28-pin, Extended temperature, SPDIP package.
Architecture:	24	=	16-bit Microcontroller	
Flash Memory Family:	HJ	=	Flash program memory, 3.3V	
Product Group:	GP2 GP3 GP8	= = =	General Purpose family General Purpose family General Purpose family	
Pin Count:	02 04	= =	28-pin 44-pin	
Temperature Range:	I E H	= = =	-40° C to+85° C (Industrial) -40° C to+125° C (Extended) -40° C to+150° C (High)	
Package:	SP SO ML MM PT	= = = =	Skinny Plastic Dual In-Line - 300 mil body (SPDIP) Plastic Small Outline - Wide - 300 mil body (SOIC) Plastic Quad, No Lead Package - 8x8 mm body (QFN) Plastic Quad, No Lead Package - 6x6x0.9 mm body (QFN-S) Plastic Thin Quad Flatpack - 10x10x1 mm body (TQFP)	