

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj32gp302-e-mm

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

44-Pin QFN ⁽²⁾	Pins are up to 5V tolerant
AN4/C1IN-/RP2 ⁽¹)/CN6/RB2 AN5/C1IN+/RP3 ⁽¹)/CN7/RB3 AN6/RP16 ⁽¹)/CN8/RC0 AN7/RP17 ⁽¹)/CN9/RC1 C2 AN5/C1IN+/RP3 ⁽¹⁾ /CN9/RC1 C2 AN5/C1IN+/RP3 ⁽¹⁾ /CN9/RC1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	AN11/RP13 ⁽¹⁾ /CN13/PMRD/RB13 AN12/RP12 ⁽¹⁾ /CN14/PMD0/RB12 9 PGEC2/RP11 ⁽¹⁾ /CN15/PMD1/RB11 PGED2/RP10 ⁽¹⁾ /CN15/PMD2/RB10 VCAP ⁽³⁾ VSS P204 5 RP25 ⁽¹⁾ /CN19/PMA6/RC9 RP24 ⁽¹⁾ /CN20/PMA5/RC8 RP23 ⁽¹⁾ /CN17/PMA0/RC7 2 RP22 ⁽¹⁾ /CN18/PMA1/RC6 SDA1/RP9 ⁽¹⁾ /CN21/PMD3/RB9
	I. See Table 1 in this section for the list of available peripherals. ed to any pins and is recommended to be connected to Vss externally. Section (VCAP) " for proper connection to this pin.

6.9 Configuration Mismatch Reset

To maintain the integrity of the peripheral pin select control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occur (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset occurs.

The Configuration Mismatch Flag bit (CM) in the Reset Control register (RCON<9>) is set to indicate the configuration mismatch Reset. Refer to **Section 11.0 "I/O Ports"** for more information on the configuration mismatch Reset.

Note: The configuration mismatch feature and associated reset flag is not available on all devices.

6.10 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- · Security Reset

The Illegal Opcode or Uninitialized W Access Reset Flag bit (IOPUWR) in the Reset Control register (RCON<14>) is set to indicate the illegal condition device Reset.

6.10.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The illegal opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the illegal opcode Reset, use only the lower 16 bits of

each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

6.10.2 UNINITIALIZED W REGISTER RESET

Any attempts to use the uninitialized W register as an address pointer will Reset the device. The W register array (with the exception of W15) is cleared during all resets and is considered uninitialized until written to.

6.10.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (Boot and Secure Segment), that operation will cause a security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a Call, Jump, Computed Jump, Return, Return from Subroutine, or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an Interrupt or Trap vector.

Refer to Section 25.8 "Code Protection and CodeGuard™ Security" for more information on Security Reset.

6.11 Using the RCON Status Bits

The user application can read the Reset Control register (RCON) after any device Reset to determine the cause of the reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 6-3 provides a summary of the reset flag bit operation.

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR, BOR
CM (RCON<9>)	Configuration Mismatch	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	POR, BOR	_
POR (RCON<0>)	POR	—

TABLE 6-3: RESET FLAG BIT OPERATION

Note: All Reset flag bits can be set or cleared by user software.

FIGURE 7-1: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 INTERRUPT VECTOR TABLE

		_	
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~	1	
	~		
	Interrupt Vector 52	0x00007C	l_{1}
	Interrupt Vector 53	0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ity	Interrupt Vector 54	0x000080	
ior	~		
ā	~		
dei	~		
Decreasing Natural Order Priority	Interrupt Vector 116	0x0000FC	
ral	Interrupt Vector 117	0x0000FE	•
atu	Reserved	0x000100	
ž	Reserved	0x000102	
ing	Reserved		
as	Oscillator Fail Trap Vector		
cre	Address Error Trap Vector		
De	Stack Error Trap Vector	-	
	Math Error Trap Vector	_	
	DMA Error Trap Vector	_	
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~	-	
	~		
	~		Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~		
	~		
	Interrupt Vector 116	1 –	-
	Interrupt Vector 117	0x0001FE	
V	Start of Code	0x000200	
		-	
Note 1: S	See Table 7-1 for the list of impleme	ented interrupt v	vectors.

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	_	—		RTCIP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		DMA5IP<2:0>	1011 0			_	_
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	cleared x = Bit is unknown		
bit 15-11	Unimpleme	ented: Read as ')'				
bit 10-8		Real-Time Clo		•	ag Status bits		
	111 = Interr	upt is priority 7 (I	highest priori	ty interrupt)			
	•						
	•						
		upt is priority 1 upt source is dis	abled				
bit 7	Unimpleme	ented: Read as '	כי				
bit 6-4	DMA5IP<2:	0>: DMA Channe	el 5 Data Tra	nsfer Complete	Interrupt Priori	ty bits	
	111 = Interr	upt is priority 7 (I	highest priori	ty interrupt)			
	•						
	• •						
	• • 001 = Interr	upt is priority 1					

REGISTER 7-26: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

bit 3-0

Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1					
0-0	0-0	0-0	0-0	N-1			N-1					
 bit 15	LSTCH<3:0>						bit					
							DIL					
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0					
pit 7							bit					
_egend:												
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'						
n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15-12 bit 11-8 bit 7	LSTCH<3:0> 1111 = No DI 1110-1000 = 0111 = Last of 0101 = Last of 0100 = Last of 0010 = Last of 0010 = Last of 0001 = Last of 0000 = Last of PPST7: Chan		annel Active t s occurred sin as by DMA Ch as by DMA Ch	ce system Res nannel 7 nannel 6 nannel 5 nannel 4 nannel 3 nannel 2 nannel 1 nannel 0	et							
oit 6	0 = DMA7STA PPST6: Chan 1 = DMA6STE	A register select anel 6 Ping-Por 3 register select	eted ng Mode Statu eted	s Flag bit								
pit 5	 0 = DMA6STA register selected PPST5: Channel 5 Ping-Pong Mode Status Flag bit 1 = DMA5STB register selected 0 = DMA5STA register selected 											
oit 4	 PPST4: Channel 4 Ping-Pong Mode Status Flag bit 1 = DMA4STB register selected 0 = DMA4STA register selected 											
pit 3	PPST3: Channel 3 Ping-Pong Mode Status Flag bit 1 = DMA3STB register selected 0 = DMA3STA register selected											
bit 2	1 = DMA2STE	nel 2 Ping-Por 3 register selec 4 register selec	cted	s Flag bit								
oit 1	1 = DMA1STE	nel 1 Ping-Por 3 register selec 4 register selec	cted	s Flag bit								
oit O	1 = DMA0STE	B register seled	cted	s Flag bit			 a DMATSTB register selected b DMATSTA register selected b PPST0: Channel 0 Ping-Pong Mode Status Flag bit c DMA0STB register selected c DMA0STA register selected 					

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note			
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	XX	111	1, 2			
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	XX	110	1			
Low-Power RC Oscillator (LPRC)	Internal	XX	101	1			
Secondary (Timer1) Oscillator (Sosc)	Secondary	XX	100	1			
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	-			
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	-			
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1			
Primary Oscillator (HS)	Primary	10	010	_			
Primary Oscillator (XT)	Primary	01	010	_			
Primary Oscillator (EC)	Primary	00	010	1			
Fast RC Oscillator with PLL (FRCPLL)	Internal	XX	001	1			
Fast RC Oscillator (FRC)	Internal	XX	000	1			

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.2 Oscillator Resources

Many useful resources related to Oscillators are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

9.2.1 KEY RESOURCES

- Section 39. "Oscillator (Part III)" (DS70216)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

10.0 POWER-SAVING FEATURES

- **Note 1:** This data sheet summarizes the features the PIC24HJ32GP302/304. of PIC24HJ64GPX02/X04 and of PIC24HJ128GPX02/X04 families devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet. refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices can manage power consumption in four ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake up.

10.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

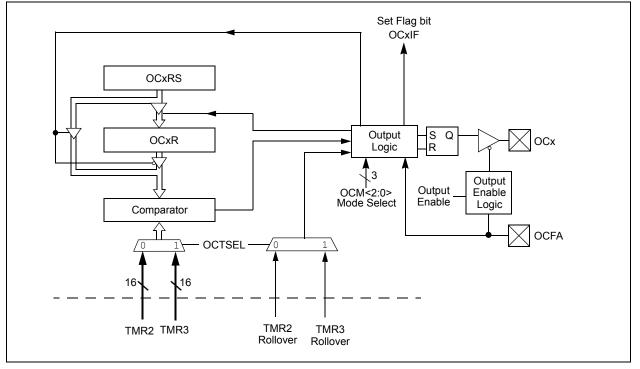
- · Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

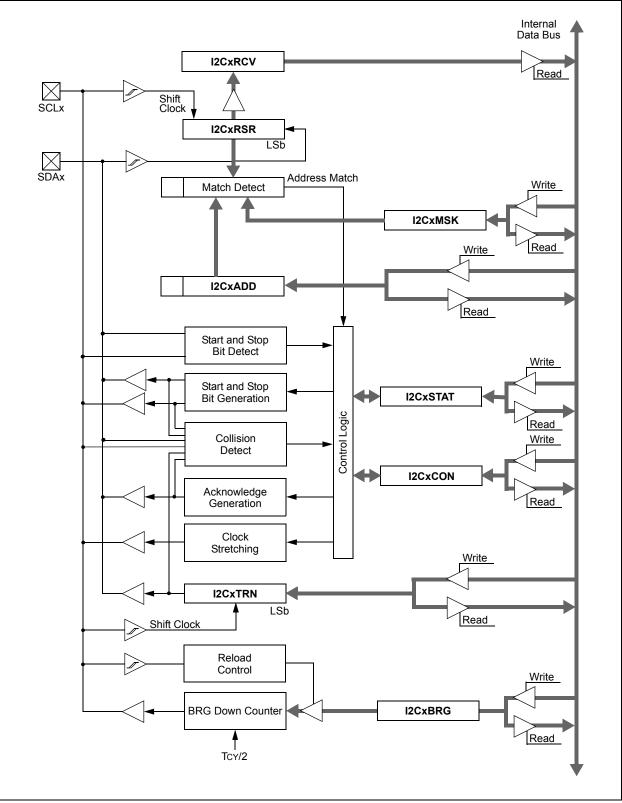
EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode

15.0 OUTPUT COMPARE


- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.


The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- · Continuous Pulse mode
- PWM mode without fault protection
- · PWM mode with fault protection

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit
Legend:		HC = Hardwa		C = Clear on	,		
R = Readable		W = Writable	bit	-	mented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15,13	11 = Reserve 10 = Interrupt transmit 01 = Interrupt operatio 00 = Interrupt	t when a charac buffer become t when the last ons are complet t when a charac	cter is transfe s empty character is s ed cter is transfe	rred to the Trai hifted out of th rred to the Trai	bits nsmit Shift Regi e Transmit Shift nsmit Shift Regi	Register; all tr	ansmit
bit 14		one character c nsmit Polarity Ir	•	insmit buller)			
bit 12	Unimplemented: Read as '0'						
bit 11	 UTXBRK: Transmit Break bit 1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop to cleared by hardware upon completion 0 = Sync Break transmission disabled or completed 						ed by Stop bit
bit 10	UTXEN: Tran	smit Enable bit	(1)				
	 1 = Transmit enabled, UxTX pin controlled by UARTx 0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controller by port 						
bit 9	 UTXBF: Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written 						
bit 8	1 = Transmit		s empty and tr	ansmit buffer is	s empty (the last is in progress o		as completed
bit 7-6	 0 = Transmit Shift Register is not empty, a transmission is in progress or queued URXISEL<1:0>: Receive Interrupt Mode Selection bits 11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters 						ta characters
Note 1: Pot	fer to Section 1		270232) in th	- "deDIC33E/D	IC24H Eamily E	Poforonco Mon	ual" for

Note 1: Refer to **Section 17. "UART"** (DS70232) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI<1:0>			
bit 15						•	bit 8		
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPF	RI<1:0>		
bit 7							bit (
Legend:		C = Writeable	bit but only '()' can be writte	en to clear the b	it			
R = Readab	le bit	W = Writable	-		nented bit, read				
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown		
bit 15-8	See Definitior	n for Bits 7-0, C	Controls Buffer	n					
bit 7		RX Buffer Sele							
	1 = Buffer TR	Bn is a transm	it buffer						
	0 = Buffer TR	Bn is a receive	e buffer						
bit 6	TXABTm: Me	essage Aborted	d bit ⁽¹⁾						
	1 = Message was aborted								
	-	-	nsmission succ	-					
bit 5		0	Arbitration bit ⁽¹⁾						
	 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent 								
1.1.4									
bit 4			uring Transmis						
			ile the messag r while the me						
bit 3		essage Send F		sage was bei	ng sent				
		-	-	bit automatica	ally clears when	the message i	s successfull		
	0 = Clearing t	he bit to '0' wh	ile set request	s a message a	abort				
bit 2	RTRENm: Au	ito-Remote Tra	ansmit Enable I	bit					
	 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected 								
bit 1-0	TXmPRI<1:0	>: Message Tr	ansmission Pri	ority bits					
	11 = Highest	message prior	ity						
	•	ermediate mes	• • •						
	01 = Low intermediate message priority								
		message priori							

~ .

The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM. Note:

20.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC1)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 of families devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits
 - described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices have up to 13 ADC input channels.

The AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

20.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 13 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 13 analog input pins, designated AN0 through AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

Block diagrams of the ADC module are shown in Figure 20-1 and Figure 20-2.

20.2 ADC Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>)
 - d) Determine how many S/H channels are used (AD1CON2<9:8> and AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>)
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>)
 - g) Turn on ADC module (AD1CON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the AD1IF bit
 - b) Select ADC interrupt priority

20.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. ADC1 can trigger a DMA data transfer. If ADC1 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF bit gets set as a result of an ADC1 sample conversion sequence.

The SMPI<3:0> bits (AD1CON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (AD1CON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer. NOTES:

25.4 Watchdog Timer (WDT)

For PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

25.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TwDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

All Device Resets Transition to New Clock Source Exit Sleep or Idle Mode PWRSAV Instruction CLRWDT Instruction Watchdog Timer Sleep/Idle WDTPRE WDTPOST<3:0> SWDTEN WDT Wake-up FWDTEN Prescaler Postscaler WDT LPRC Clock (divide by N2) (divide by N1) Reset WDT Window Select WINDIS CLRWDT Instruction

FIGURE 25-2: WDT BLOCK DIAGRAM

25.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) needs to be cleared in software after the device wakes up.

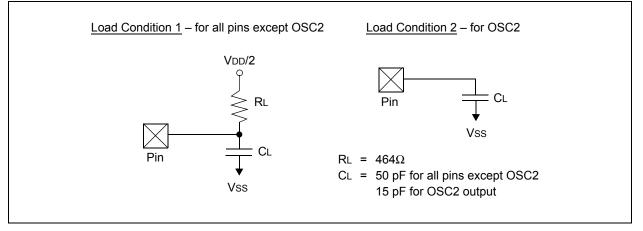
25.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note:	If the WINDIS bit (FWDT<6>) is cleared,
	the CLRWDT instruction should be executed
	by the application software only during the
	last 1/4 of the WDT period. This CLRWDT
	window can be determined by using a timer.
	If a CLRWDT instruction is executed before
	this window, a WDT Reset occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.


28.2 AC Characteristics and Timing Parameters

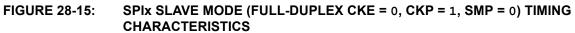
This section defines PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 AC characteristics and timing parameters.

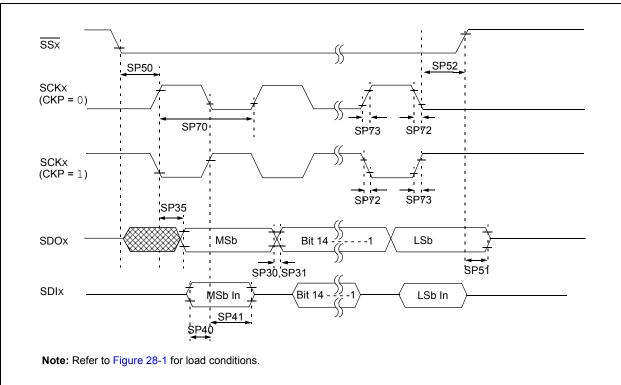
TABLE 28-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

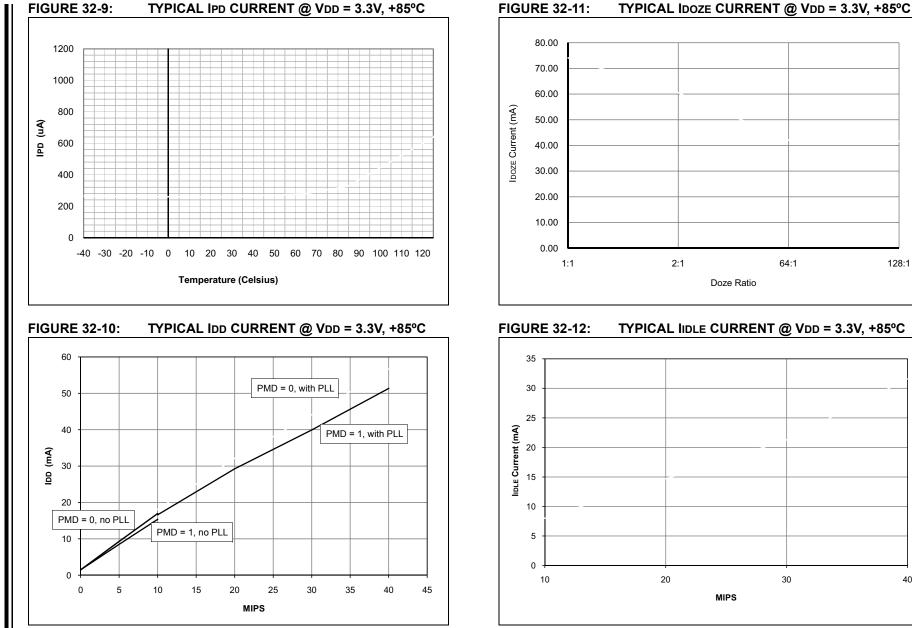
	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)		
AC CHARACTERISTICS	Operating temperature -40°C ≤TA ≤+85°C for Industrial		
	-40°C ≤TA ≤+125°C for Extended		
	Operating voltage VDD range as described in Table 28-1.		

FIGURE 28-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 28-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS


Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 pin	_	_	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	—	400	pF	In l ² C™ mode


TABLE 28-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS


AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
SY10	TMCL	MCLR Pulse Width (low)	2	—	_	μs	-40°C to +85°C
SY11	TPWRT	Power-up Timer Period	_	2 4 16 32 64 128		ms	-40°C to +85°C User programmable
SY12	TPOR	Power-on Reset Delay	3	10	30	μs	-40°C to +85°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs	—
SY20	Twdt1	Watchdog Timer Time-out Period	_	_			See Section 25.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 28-19)
SY30	Tost	Oscillator Start-up Timer Period	—	1024 Tosc	_	—	Tosc = OSC1 period
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μs	-40°C to +85°C

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

128:1

40

Revision F (August 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-5: MAJOR SECTION UPDATES

Section Name	Update Description
Section 25.0 "Special Features"	Added Note 3 to the Connections for the On-chip Voltage Regulator diagram (see Figure 25-1).
Section 28.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss from the Absolute Maximum Ratings.
	Removed Note 3 and parameter DC10 (VCORE) from the DC Temperature and Voltage Specifications (see Table 28-4).
	Updated the Characteristics definition and Conditions for parameter BO10 in the Electrical Characteristics: BOR (see Table 28-11).
	Added Note 1 to the Internal Voltage Regulator Specifications (see Table 28-13).

Revision G (April 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

In addition, where applicable, new sections were added to each peripheral chapter that provide information and links to related resources, as well as helpful tips. For examples, see Section 9.2 "Oscillator Resources" and Section 20.4 "ADC Helpful Tips".

All other major changes are referenced by their respective section in the following table.

TABLE A-6: MAJOR SECTION UPDATES

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-bit Microcontrollers"	Added two new tables: • Crystal Recommendations (see Table 2-1) • Resonator Recommendations (see Table 2-2)
Section 28.0 "Electrical Characteristics"	Updated parameters DO10 and DO20 and removed parameters DO16 and DO26 in the DC Characteristics: I/O Pin Output Specifications (see Table 28-10)

INDEX

Α

A/D Converter	
DMA	
Initialization	
Key Features	
AC Characteristics	
ADC Module	
ADC Module (10-bit Mode)	
ADC Module (12-bit Mode)	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC11 Register Map	
Alternate Interrupt Vector Table (AIVT)	
Arithmetic Logic Unit (ALU)	
Assembler	
MPASM Assembler	

В

Block Diagrams
16-bit Timer1 Module 161
A/D Module
Connections for On-Chip Voltage Regulator
Device Clock 119, 121
ECAN Module
Input Capture 171
Output Compare 175
PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and
PIC24HJ128GPX02/X0410
PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and
PIC24HJ128GPX02/X04 CPU Core
PLL
Reset System59
Shared Port Structure
SPI 179
Timer2 (16-bit) 165
Timer2/3 (32-bit) 167
UART
Watchdog Timer (WDT)278

С

D

Data Address Space	27
Alignment	
Memory Map for PIC24HJ128GP202/204 and	
PIC24HJ64GP202/204 Devices	
with 8 KB RAM	29
Memory Map for PIC24HJ32GP302/304 Devices	
with 4 KB RAM	28
Near Data Space	
Software Stack	
Width	27
DC and AC Characteristics	
Graphs and Tables	355
DC Characteristics	
Doze Current (IDOZE)	
High Temperature	
I/O Pin Input Specifications	
I/O Pin Output	
I/O Pin Output Specifications	
Idle Current (IDOZE)	
Idle Current (IIDLE)	299
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Power-Down Current (IPD)	
Power-down Current (IPD)	
Program Memory	347
Temperature and Voltage	
Temperature and Voltage Specifications	
Thermal Operating Conditions	346
Development Support	
DMA Module	
DMA Register Map	37
DMAC Registers	
DMAXCNT	109
DMAxCON	109
DMAxPAD	109
DMAxREQ	109
DMAxSTA	109
DMAxSTB	109
Doze Mode	130

Ε

ECAN Module	
CiBUFPNT1 register2	213
CiBUFPNT2 register	214
CiBUFPNT3 register2	214
CiBUFPNT4 register	215
CiCFG1 register	211
CiCFG2 register	212
CiCTRL1 register	204
CiCTRL2 register	
CiEC register	211
CiFCTRL register	207
CiFEN1 register	213
CiFIFO register	208
CiFMSKSEL1 register	217
CiFMSKSEL2 register	218
CiINTE register	210
CiINTF register	209
CiRXFnEID register	217
CiRXFnSID register	216
CiRXFUL1 register	
CiRXFUL2 register	220
CiRXMnEID register	219
CiRXMnSID register	219
CiRXOVF1 register	221

© 2007-2012 Microchip Technology Inc.