

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj32gp302-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

PIC2	4HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 Product Families	
1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Microcontrollers	
3.0	СРИ	
4.0	Memory Organization	
5.0	Flash Program Memory	
6.0	Resets	
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	107
9.0	Oscillator Configuration	119
10.0	Power-Saving Features	129
11.0	I/O Ports	135
12.0	Timer1	161
13.0		
14.0	Input Capture	
15.0	Output Compare	175
16.0	Serial Peripheral Interface (SPI)	179
17.0	Inter-Integrated Circuit™ (I ² C™)	185
18.0	Universal Asynchronous Receiver Transmitter (UART)	193
19.0	Enhanced CAN (ECAN™) Module	199
20.0	10-bit/12-bit Analog-to-Digital Converter (ADC1)	
21.0	Comparator Module	
22.0	Real-Time Clock and Calendar (RTCC)	
23.0	Programmable Cyclic Redundancy Check (CRC) Generator	
24.0	Parallel Master Port (PMP)	
	Special Features	
26.0	Instruction Set Summary	
27.0	Development Support	
	Electrical Characteristics	
29.0	High Temperature Electrical Characteristics	
32.0	DC and AC Device Characteristics Graphs	
33.0	Packaging Information	
Appe	endix A: Revision History	
The I	Microchip Web Site	
Custo	omer Change Notification Service	
Custo	omer Support	
Read	ler Response	
Prod	uct Identification System	

TABLE	4-4:	INTER		ONTRO	LLER R	EGISTER	R MAP											
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	—	—	_		_	—	_	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	-	0000
INTCON2	0082	ALTIVT	DISI			_		_	_	_	_			_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	DMA4IF	PMPIF	_	_	_	_	_	_	_	_	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF	0000
IFS3	008A	_	RTCIF	DMA5IF	_	_	_	—	_	_	—	_	_	—	_	_	_	0000
IFS4	008C	_	_	_	_	—	_	—	—	_	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	_	0000
IEC0	0094	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	_	DMA4IE	PMPIE	_	_	_	_	_	_	_	_	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE	0000
IEC3	009A	_	RTCIE	DMA5IE	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IEC4	009C	_	_	_	_	_	_	_	_	_	C1TXIE ⁽¹⁾	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	_	0000
IPC0	00A4	_		T1IP<2:0>		_	(OC1IP<2:0	>	_		IC1IP<2:0>		_	IN	IT0IP<2:0>		4444
IPC1	00A6	—		T2IP<2:0>			(OC2IP<2:0	>	—		IC2IP<2:0>		—	DN	/A0IP<2:0	>	4444
IPC2	00A8	_	U	1RXIP<2:0	>	_	Ş	SPI1IP<2:0	>	_	SPI1EIP<2:0>		_	T3IP<2:0>			4444	
IPC3	00AA	_	_	_	_	_	D	MA1IP<2:)>	_	AD1IP<2:0>			_	U1TXIP<2:0>		>	0444
IPC4	00AC	_	(CNIP<2:0>		_		CMIP<2:0	`	_	I	MI2C1IP<2:0	>	_	SI	2C1IP<2:0	>	4444
IPC5	00AE	_	I	C8IP<2:0>		_		IC7IP<2:0	`	_	_	_	_	_	IN	IT1IP<2:0>		4404
IPC6	00B0	—		T4IP<2:0>			(OC4IP<2:0	>	—		OC3IP<2:0>		—	DN	/A2IP<2:0	>	4444
IPC7	00B2	—	U	2TXIP<2:0>	>		L	J2RXIP<2:()>	—		INT2IP<2:0>	•	—	٦	[5IP<2:0>		4444
IPC8	00B4	—	С	1IP<2:0>(1))		C,	1RXIP<2:0	_{>} (1)	—		SPI2IP<2:0>	•	—	SF	PI2EIP<2:0	>	4444
IPC9	00B6	—	—				—	—		—	—			—	DN	/A3IP<2:0	>	0004
IPC11	00BA	—	—				D	MA4IP<2:)>	—		PMPIP<2:0>	•	—	_	—	_	0440
IPC15	00C2	—	_	—				RTCIP<2:0	>	—		DMA5IP<2:0	>	-	_	_	—	0440
IPC16	00C4	—	С	RCIP<2:0>				U2EIP<2:0	>	—		U1EIP<2:0>		-	_	—	—	4440
IPC17	00C6	—	_	—			C	1TXIP<2:0	(1)	—		DMA7IP<2:0	>	-	— DMA6IP<2:0>		0444	
INTTREG	00E0	—	_	—			ILR<	3:0>		—			VEC	CNUM<6:0>				4444

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Interrupts disabled on devices without ECAN™ modules.

TABLE 4-20:PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR PIC24HJ128GP202/502, PIC24HJ64GP202/502 AND
PIC24HJ32GP302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	-	_	—		RP1R<4:0>					—	—	RP0R<4:0>					0000
RPOR1	06C2	_	_	_			RP3R<4:0	_	_	_	RP2R<4:0>					0000		
RPOR2	06C4		—	_			RP5R<4:0>	>		_	—	_	RP4R<4:0>					0000
RPOR3	06C6		_	_			RP7R<4:0>	>		_	_	_			RP6R<4:0>			0000
RPOR4	06C8	-	_	_			RP9R<4:0>	>		—	_	_	RP8R<4:0>				0000	
RPOR5	06CA	_	_	_		RP11R<4:0>					_	_	RP10R<4:0>				0000	
RPOR6	06CC		—	_		RP13R<4:0>					—	—	RP12R<4:0>					0000
RPOR7	06CE	-	_	_		RP15R<4:0>				_	_	_		I	RP14R<4:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

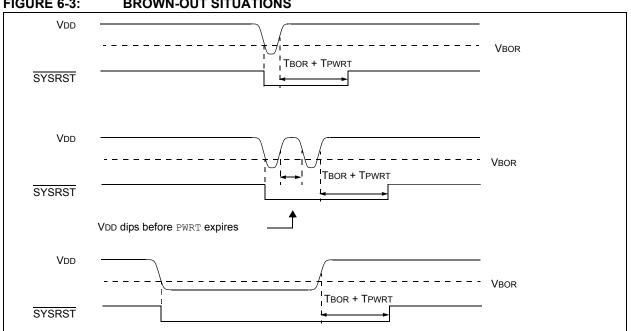
TABLE 4-21:PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR PIC24HJ128GP204/504, PIC24HJ64GP204/504 AND
PIC24HJ32GP304

																-		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	_	_	_			RP1R<4:0>	>		_	—				RP0R<4:0>			0000
RPOR1	06C2	_	_	_		RP3R<4:0>					_	_	RP2R<4:0>				0000	
RPOR2	06C4	_	_	_		RP5R<4:0>					_	_	RP4R<4:0>					0000
RPOR3	06C6	_	_	_		RP7R<4:0>					_	_	RP6R<4:0>					0000
RPOR4	06C8			_		RP9R<4:0>						_	RP8R<4:0>					0000
RPOR5	06CA			_		RP11R<4:0>				_		_	RP10R<4:0>					0000
RPOR6	06CC						RP13R<4:0	>		_			RP12R<4:0>				0000	
RPOR7	06CE	_	_	_			RP15R<4:0	>		_	_	_	RP14R<4:0>					0000
RPOR8	06D0	_	_	_			RP17R<4:0	>		_	_	_	RP16R<4:0>				0000	
RPOR9	06D2						RP19R<4:0	>		_	_				RP18R<4:0>	>		0000
RPOR10	06D4					RP21R<4:0>				_	_		RP20R<4:0>				0000	
RPOR11	06D6				RP23R<4:0> — — — RP22R<4:0>						0000							
RPOR12	06D8		_	_		RP25R<4:0> RP24R<4:0>						0000						

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

NVMCON: FLASH MEMORY CONTROL REGISTER

5.6 Flash Memory Control Registers


REGISTER 5-1:

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾					
WR	R/W-000	WRERR	U-0	U-0	U-0	U-0	U-0
	WREN	WRERR	—	_	—		
bit 15							bit 8
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	ERASE		_		NVMOP	<3:0> ⁽²⁾	
bit 7	·						bit 0
Legend:		SO = Settal	ole only bit				
R = Readable	bit	W = Writabl	e bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is s	et	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	WR: Write Con	trol bit					
	1 = Initiates a	Flash memor	y program or	erase operation	on. The operatio	on is self-timed	and the bit is
		hardware on					
	0 = Program of	•	tion is comple	ete and inactive	9		
bit 14	WREN: Write E						
	1 = Enable Fla						
h:: 40	0 = Inhibit Flas		-	IS			
bit 13	WRERR: Write	•	•		· · · · · · · · · · · · · · · · · · ·		
		er program or ally on any se			termination has	occurred (bit i	s set
	0 = The progra				/		
bit 12-7	Unimplemente						
bit 6	ERASE: Erase						
2.00		•		bv NVMOP </td <td>3:0> on the next</td> <td>WR command</td> <td></td>	3:0> on the next	WR command	
					><3:0> on the network		
bit 5-4	Unimplemente	d: Read as ')'				
bit 3-0	NVMOP<3:0>:	NVM Operati	on Select bits	_S (2)			
	If ERASE = 1:						
	1111 = Memor	•	operation				
	1110 = Reserv						
	1101 = Erase (•					
	1100 = Erase S 1011 = Reserv		ent				
	0011 = No ope						
	0010 = Memor		operation				
	0001 = No ope						
	0000 = Erase a	a single Confi	guration regis	ster byte			
	If ERASE = 0:						
	1111 = No ope						
	1110 = Reserv						
	1101 = No ope 1100 = No ope						
	1011 = Reserv						
	0011 = Memor	y word progra	m operation				
	0010 = No ope	ration					
	0001 = Memory						
	0000 = Progra r	n a single Co	nfiguration re	gister byte			
Note 1: The	ese bits can only	be reset on a	POR.				
2: All	other combination	ns of NVMOF	<3:0> are un	implemented			

2: All other combinations of NVMOP<3:0> are unimplemented.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1BOR: Brown-out Reset Flag bit1 = A Brown-out Reset has occurred0 = A Brown-out Reset has not occurredbit 0POR: Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

BROWN-OUT SITUATIONS FIGURE 6-3:

6.5 **External Reset (EXTR)**

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to Section 28.0 "Electrical Characteristics" for minimum pulse width specifications. The External Reset (MCLR) Pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset.

6.5.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate reset signals to reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to reset the device when the rest of system is Reset.

6.5.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to reset the device, the external reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

6.6 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not reinitialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle, and the reset vector fetch will commence.

The Software Reset (Instruction) Flag bit (SWR) in the Reset Control register (RCON<6>) is set to indicate the software Reset.

6.7 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out Flag bit (WDTO) in the Reset Control register (RCON<4>) is set to indicate the Watchdog Reset. Refer to Section 25.4 "Watchdog Timer (WDT)" for more information on Watchdog Reset.

6.8 Trap Conflict Reset

If a lower-priority hard trap occurs while a higher-priority trap is being processed, a hard trap conflict Reset occurs. The hard traps include exceptions of priority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset Flag bit (TRAPR) in the Reset Control register (RCON<15>) is set to indicate the Trap Conflict Reset. Refer to Section 7.0 "Interrupt Controller" for more information on trap conflict Resets.

REGISTER 7	-5: IFS0:	INTERRUPT	FLAG STAT	US REGISTE	R U		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF
pit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF
bit 7	00211	10211	Division		00111	10111	bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at P		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own
bit 15	Unimplemer	nted: Read as '	0'				
bit 14	DMA1IF: DM	1A Channel 1 D	ata Transfer C	omplete Interru	upt Flag Status	bit	
	1 = Interrupt	request has oc request has no	curred				
bit 13	AD1IF: ADC	1 Conversion C	complete Interr	upt Flag Status	bit		
		request has oc request has no					
bit 12	•	RT1 Transmitte		s Status hit			
21C 12		request has oc		g olalas bit			
		request has no					
bit 11	U1RXIF: UA	RT1 Receiver I	nterrupt Flag S	Status bit			
	•	request has oc					
	-	request has no					
oit 10		Event Interrup	•	bit			
		request has oc request has no					
bit 9	-	11 Error Interru		bit			
		request has oc					
	0 = Interrupt	request has no	t occurred				
bit 8		Interrupt Flag					
		request has oc					
hit 7		request has no					
bit 7		Interrupt Flag	Status Dit				
		rogulaet hae on					
		request has oc request has no	curred				
bit 6	0 = Interrupt		curred t occurred	upt Flag Status	bit		
bit 6	0 = Interrupt OC2IF: Outp	request has no	curred t occurred nannel 2 Interro	upt Flag Status	bit		
	 0 = Interrupt OC2IF: Outp 1 = Interrupt 0 = Interrupt 	request has no out Compare Ch request has oc request has no	curred t occurred hannel 2 Interru curred t occurred		bit		
	0 = Interrupt OC2IF: Outp 1 = Interrupt 0 = Interrupt IC2IF: Input	request has no out Compare Ch request has oc request has no Capture Chann	curred t occurred nannel 2 Interro curred t occurred el 2 Interrupt F		bit		
	 0 = Interrupt OC2IF: Outp 1 = Interrupt 0 = Interrupt IC2IF: Input 1 = Interrupt 	request has no out Compare Ch request has oc request has no Capture Chann request has oc	curred t occurred hannel 2 Intern curred t occurred el 2 Interrupt F curred		bit		
bit 5	0 = Interrupt OC2IF: Outp 1 = Interrupt 0 = Interrupt IC2IF: Input 0 1 = Interrupt 0 = Interrupt	request has no out Compare Ch request has oc request has no Capture Chann request has oc request has no	curred t occurred hannel 2 Intern curred t occurred el 2 Interrupt F curred t occurred	lag Status bit		bit	
bit 5	0 = Interrupt OC2IF: Outp 1 = Interrupt 0 = Interrupt IC2IF: Input 1 = Interrupt 0 = Interrupt DMA0IF: DM	request has no out Compare Ch request has no Capture Chann request has no request has no IA Channel 0 D	curred t occurred hannel 2 Interru curred t occurred el 2 Interrupt F curred t occurred hata Transfer C	lag Status bit		bit	
bit 6 bit 5 bit 4	0 = Interrupt OC2IF: Outp 1 = Interrupt 0 = Interrupt IC2IF: Input 1 = Interrupt 0 = Interrupt DMA0IF: DM 1 = Interrupt	request has no out Compare Ch request has oc request has no Capture Chann request has oc request has no	curred t occurred hannel 2 Interru curred t occurred el 2 Interrupt F curred t occurred hata Transfer C curred	lag Status bit		bit	
bit 5	0 = Interrupt OC2IF: Outp 1 = Interrupt 0 = Interrupt IC2IF: Input 1 = Interrupt 0 = Interrupt DMA0IF: DM 1 = Interrupt 0 = Interrupt	request has no out Compare Ch request has no Capture Chann request has no request has no IA Channel 0 D request has no	curred t occurred hannel 2 Intern curred t occurred el 2 Interrupt F curred t occurred ata Transfer C curred t occurred	lag Status bit		bit	

IEGA, INTERDURT EL AC STATUS DECISTER A

REGISTER 8	-7: DMAC	S0: DMA CO	NTROLLER	STATUS RE	GISTER 0					
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0			
PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0			
bit 15							bit 8			
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0			
XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0			
bit 7							bit			
Legend:				C = Cle	ar only bit					
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at I		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	าดพท			
bit 15	1 = Write colli	nannel 7 Periph ision detected collision detecte		llision Flag bit						
bit 14	1 = Write colli	nannel 6 Periph ision detected collision detecte		llision Flag bit						
bit 13	1 = Write colli	nannel 5 Periph ision detected collision detecte		llision Flag bit						
bit 12	PWCOL4: Ch	nannel 4 Periph	neral Write Co	llision Flag bit						
		ision detected collision detected	ed							
bit 11	PWCOL3: Ch	nannel 3 Periph	neral Write Col	llision Flag bit						
		ision detected collision detected	ed							
bit 10	1 = Write colli	nannel 2 Periph ision detected collision detecte		llision Flag bit						
bit 9	1 = Write colli	nannel 1 Periph ision detected collision detecte		llision Flag bit						
bit 8	1 = Write colli	nannel 0 Periph ision detected collision detecte		llision Flag bit						
bit 7		nannel 7 DMA I	RAM Write Co	Ilision Flag bit						
		ision detected collision detecte	ed							
bit 6	XWCOL6: Ch	nannel 6 DMA I	RAM Write Co	Ilision Flag bit						
		ision detected collision detected	ed							
bit 5	XWCOL5: Ch	nannel 5 DMA I	RAM Write Co	Ilision Flag bit						
	1 = Write colli 0 = No write c	ision detected collision detected	ed							
bit 4	XWCOL4: Cr	nannel 4 DMA I	RAM Write Co	Ilision Flag bit						
		ision detected collision detecte	ed	-						

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0							
IC8MD	IC7MD		_	—	_	IC2MD	IC1MD							
bit 15							bit 8							
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0							
	—	—	—	OC4MD	OC3MD	OC2MD	OC1MD							
bit 7							bit							
Legend:														
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'								
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is clea		x = Bit is unkr	nown							
bit 15	IC8MD: Inpu	it Capture 8 Mo	dule Disable bi	it										
		pture 8 module												
	•	pture 8 module												
bit 14														
bit 13-10	•	IC7MD: Input Capture 2 Module Disable bit 1 = Input Capture 7 module is disabled 0 = Input Capture 7 module is enabled Unimplemented: Read as '0'												
bit 9	•	It Capture 2 Mo		t										
bit 9	•	pture 2 module		it.										
		pture 2 module												
bit 8	IC1MD: Input Capture 1 Module Disable bit													
		1 = Input Capture 1 module is disabled												
	0 = Input Ca	pture 1 module	is enabled											
bit 7-4	Unimpleme	nted: Read as	'0'											
bit 3		tput Compare 4		le bit										
		Compare 4 mod Compare 4 mod												
bit 2	•	tput Compare 3		le hit										
		Compare 3 mod												
		Compare 3 mod												
bit 1	OC2MD: Ou	tput Compare 2	2 Module Disab	le bit										
	1 = Output C	Compare 2 mod	ule is disabled											
	0 = Output C	Compare 2 mod	ule is enabled											
bit 0		tput Compare 1		le bit										
		Compare 1 mod	المعا والمعالية الماري											

11.7 I/O Helpful Tips

- 1. In some cases, certain pins as defined in Table 28-9 under "Injection Current", have internal protection diodes to VDD and VSS. The term "Injection Current" is also referred to as "Clamp Current". On designated pins, with sufficient external current limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings with nominal VDD with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts.
- I/O pins that are shared with any analog input pin, 2 (i.e., ANx), are always analog pins by default after any reset. Consequently, any pin(s) configured as an analog input pin, automatically disables the digital input pin buffer. As such, any attempt to read a digital input pin will always return a '0' regardless of the digital logic level on the pin if the analog pin is configured. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the analog pin configuration registers in the ADC module, (i.e., ADxPCFGL, AD1PCFGH), by setting the appropriate bit that corresponds to that I/O port pin to a '1'. On devices with more than one ADC, both analog pin configurations for both ADC modules must be configured as a digital I/O pin for that pin to function as a digital I/O pin.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

Most I/O pins have multiple functions. Referring to the device pin diagrams in the data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.

11.8 I/O Ports Resources

Many useful resources related to I/O Ports are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

11.8.1 KEY RESOURCES

- Section 10. "I/O Ports" (DS70193)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

11.9 Peripheral Pin Select Registers

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 family of devices implement 27 registers for remappable peripheral configuration:

- 14 Input Remappable Peripheral Registers:
 - RPINR0-RPINR1, RPINR3-RPINR4, RPINR7, RPINR10-RPINR11, RPINR18-RPINR23 and PRINR26
- 13 Output Remappable Peripheral Registers:
 - RPOR0-RPOR12

Note: Input and Output Register values can only be changed if the IOLOCK bit (OSCCON<6>) is set to '0'. See Section 11.6.3.1 "Control Register Lock" for a specific command sequence.

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	_	_			INT1R<4:0>			
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	_	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	oit	U = Unimpler	mented bit, read	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow				
bit 15-13	Unimplemen	ted: Read as ')'					
bit 12-8	INT1R<4:0>:	Assign Externa	al Interrupt 1	(INTR1) to the	corresponding I	RPn pin		
	11111 – I nnu	t tigd to V/00	-		-			

11111 = Input tied to Vss 11001 = Input tied to RP25	,	,	·	
•				
•				
00001 = Input tied to RP1 00000 = Input tied to RP0				
 Unimplemented, Dood oo 'o'				

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—		—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	—	—			INT2R<4:0>			
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable	= Writable bit		U = Unimplemented bit, read as '0'			
-n = Value a	t POR	'1' = Bit is set	(0) = Bit is cleared $x = Bit$			x = Bit is unkn	unknown	
bit 15-5	Unimplemen	ted: Read as '	0'					
bit 4-0	INTR2R<4:0>	. Assign Exter	nal Interrupt 2	2 (INTR2) to the	e corresponding	RPn pin		
	11111 = Inpu							
	11001 = Inpu	t tied to RP25						
	•							
	•							
	•							
	00001 = Inpu	t tied to RP1						

00000 = Input tied to RP0

REGISTER	11-3: RPIN	R3: PERIPHE	RAL PIN SI	ELECT INPU	T REGISTER	83	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			T3CKR<4:0)>	
bit 15	·	·	•				bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—			T2CKR<4:0)>	
bit 7	·	·					bit (
Legend:							
R = Readable bit W = Writable bit				U = Unimple	mented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	eared	x = Bit is unki	nown	
	• • 00001 = Inp	but tied to RP25					
bit 7-5	•	out tied to RP0 nted: Read as '	n '				
bit 4-0	•	>: Assign Timer		ock (T2CK) to t	the correspond	lina RPn nin	
511 4-0	11111 = Inp	out tied to Vss out tied to RP25					
	•						
	•						
	•	ut find to DD1					
		but tied to RP1					

00000 = Input tied to RP0

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	-	_	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—			SS2R<4:0>		
bit 7		·					bit 0
Legend:							
R = Readable b	oit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set	et '0' = Bit is cleared x = Bit is unknown			nown	

bit 15-5 Unimplemented: Read as '0'

bit 4-0

SS2R<4:0>: Assign SPI2 Slave Select Input (SS2) to the corresponding RPn pin
 11111 = Input tied to Vss
 11001 = Input tied to RP25
 .

00001 = Input tied to RP1 00000 = Input tied to RP0

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 _ ____ _ ____ ____ ___ _ _ bit 15 bit 8 U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 C1RXR<4:0> ___ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'0' = Bit is cleared

REGISTER 11-14: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26⁽¹⁾

bit 15-5 Unimplemented: Read as '0'

-n = Value at POR

Note 1: This register is disabled on devices without ECAN[™] modules.

'1' = Bit is set

x = Bit is unknown

16.3 SPI Registers

REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
SPIEN	—	SPISIDL	—	—	—	—	—
bit 15							bit 8

U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0
—	SPIROV	—	_	_	—	SPITBF	SPIRBF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	SPIEN: SPIx Enable bit
	1 = Enables module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables module
bit 14	Unimplemented: Read as '0'
bit 13	SPISIDL: Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12-7	Unimplemented: Read as '0'
bit 6	 SPIROV: Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded. The user software has not read the previous data in the SPIxBUF register 0 = No overflow has occurred.
bit 5-2	Unimplemented: Read as '0'
bit 1	SPITBF: SPIx Transmit Buffer Full Status bit
	 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit
	 1 = Receive complete, SPIxRXB is full 0 = Receive is not complete, SPIxRXB is empty Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.

REGISTER 22-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0		MTHOM	NE<3:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTE	N<1:0>		DAYON	E<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 22-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—			—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN<1:0>					
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9
Mada di	A write to this register is only allowed when $DTCM/DEN = 1$

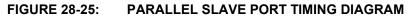
Note 1: A write to this register is only allowed when RTCWREN = 1.

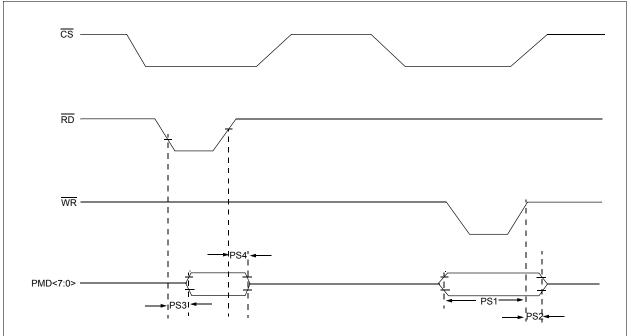
NOTES:

REGISTER	24-5. FIVIST		LFURTS	IATUS REGI	SIER						
R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0				
IBF	IBOV	—	_	IB3F	IB2F	IB1F	IB0F				
bit 15							bit 8				
R-1	R/W-0, HS	U-0	U-0	R-1	R-1	R-1	R-1				
OBE	OBUF	—	OB3E	OB2E	OB1E	OB0E					
bit 7							bit C				
Legend:		HS = Hardwar	e Set bit								
R = Readab	le bit	W = Writable t	oit	U = Unimpler	nented bit, rea	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown					
bit 14 bit 13-12	IBOV: Input E 1 = A write a 0 = No overf	 0 = Some or all of the writable input buffer registers are empty IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte register occurred (must be cleared in software) 0 = No overflow occurred 									
bit 11-8	IB3F:IB0F In 1 = Input buf	Unimplemented: Read as '0' IB3F:IB0F Input Buffer x Status Full bits 1 = Input buffer contains data that has not been read (reading buffer will clear this bit) 0 = Input buffer does not contain any unread data									
bit 7	1 = All reada	 OBE: Output Buffer Empty Status bit 1 = All readable output buffer registers are empty 0 = Some or all of the readable output buffer registers are full 									
bit 6	OBUF: Outpu	BUF: Output Buffer Underflow Status bits									
		ccurred from an rflow occurred	empty outpu	ut byte register	(must be clear	ed in software)					
bit 5-4	Unimplemen	Unimplemented: Read as '0'									
bit 3-0	OB3E:OB0E	OB3E:OB0E Output Buffer x Status Empty bit									

REGISTER 24-5: PMSTAT: PARALLEL PORT STATUS REGISTER

- 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted


TABLE 26-2	INSTRUCTION SET OVERVIEW	(CONTINUED)	


Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
35	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
36	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
37	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
38	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
39	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
40	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
41	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
42	NEG	NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
43	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
44	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to	1	2	None
		101.0	ma	W(nd):W(nd + 1)	•	-	10110
		POP.S		Pop Shadow Registers	1	1	All
45	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
46	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
47	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None

				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol Characteristic			Тур	Max.	Units	Conditions		
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-		
AD20a	Nr	Resolution ⁽¹⁾	1	2 data bi	ts	bits			
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD22a	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD23a	Gerr	Gain Error	_	3.4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD24a	EOFF	Offset Error	-	0.9	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD25a	—	Monotonicity	—	—		_	Guaranteed		
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with i	nternal	VREF+/VREF-		
AD20a	Nr	Resolution ⁽¹⁾	1	2 data bi	ts	bits			
AD21a	INL	Integral Nonlinearity	-2	—	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD22a	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD23a	Gerr	Gain Error	2	10.5	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24a	EOFF	Offset Error	2	3.8	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD25a	—	Monotonicity		—	_		Guaranteed		
		Dynamic	Performa	ince (12	-bit Mod	e)			
AD30a	THD	Total Harmonic Distortion	—	—	-75	dB	—		
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5		dB	_		
AD32a	SFDR	Spurious Free Dynamic Range	80			dB	_		
AD33a	Fnyq	Input Signal Bandwidth		—	250	kHz	_		
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits			

TABLE 28-40: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Injection currents > |0| can affect the ADC results by approximately 4 to 6 counts (i.e., VIH source > (VDD + 0.3V) or VIL source < (Vss – 0.3V).

TABLE 28-48:	SETTING TIME SPECIFICATIONS
---------------------	-----------------------------

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol Characteristic			Тур	Max.	Units	Conditions	
PS1	TdtV2wrH	Data in Valid before WR or CS Inactive (setup time)	20	_	_	ns	—	
PS2	TwrH2dtl	$\overline{\text{WR}}$ or $\overline{\text{CS}}$ Inactive to Data-In Invalid (hold time)	20	—	_	ns	—	
PS3	TrdL2dtV	RD and CS to Active Data-Out	—	—	80	ns	—	
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	10	_	30	ns	—	