
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj32gp302-e-sp

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

PIC2	4HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 Product Families	
1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Microcontrollers	
3.0	СРИ	
4.0	Memory Organization	
5.0	Flash Program Memory	
6.0	Resets	
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	107
9.0	Oscillator Configuration	119
10.0	Power-Saving Features	129
11.0	I/O Ports	135
12.0	Timer1	161
13.0		
14.0	Input Capture	
15.0	Output Compare	175
16.0	Serial Peripheral Interface (SPI)	179
17.0	Inter-Integrated Circuit™ (I ² C™)	185
18.0	Universal Asynchronous Receiver Transmitter (UART)	193
19.0	Enhanced CAN (ECAN™) Module	199
20.0	10-bit/12-bit Analog-to-Digital Converter (ADC1)	
21.0	Comparator Module	
22.0	Real-Time Clock and Calendar (RTCC)	
23.0	Programmable Cyclic Redundancy Check (CRC) Generator	
24.0	Parallel Master Port (PMP)	
	Special Features	
26.0	Instruction Set Summary	
27.0	Development Support	
	Electrical Characteristics	
29.0	High Temperature Electrical Characteristics	
32.0	DC and AC Device Characteristics Graphs	
33.0	Packaging Information	
Appe	endix A: Revision History	
The I	Microchip Web Site	
Custo	omer Change Notification Service	
Custo	omer Support	
Read	ler Response	
Prod	uct Identification System	

TABLE 4-7: OUTPUT COMPARE REGISTER MAP

																		-
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Ou	tput Compar	e 1 Seconda	ary Register							xxxx
OC1R	0182								Output Co	ompare 1 Re	gister							XXXX
OC1CON	0184	_	- OCSIDL OCFLT OCTSEL OCM<2:0> 0000															
OC2RS	0186			Output Compare 2 Secondary Register xxxx														
OC2R	0188		Output Compare 2 Register															
OC2CON	018A	_	_	OCSIDL	_	_		_	—	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC3RS	018C							Ou	tput Compar	e 3 Seconda	ary Register							XXXX
OC3R	018E								Output Co	ompare 3 Re	gister							XXXX
OC3CON	0190	_	_	OCSIDL	_	_		_	—	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC4RS	0192							Ou	tput Compar	e 4 Seconda	ary Register							XXXX
OC4R	0194		Output Compare 4 Register									XXXX						
OC4CON	0196	_	- OCSIDL OCFLT OCTSEL OCM<2:0> 0000															
l edend.	v = unk		ue on Reset _ = unimplemented read as '0'. Reset values are shown in havadecimal															

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_	-	_	_	-	-	_	Receive Register							0000	
I2C1TRN	0202	_	_	_	_	_	_	_	_				Transmit	Register				OOFF
I2C1BRG	0204	_	_	_	_	_	_	_		Baud Rate Generator Register							0000	
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_			Address Register 0						0000		
I2C1MSK	020C	_	_	_	_	_	-		Address Mask Register 0							0000		

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: UART1 REGISTER MAP

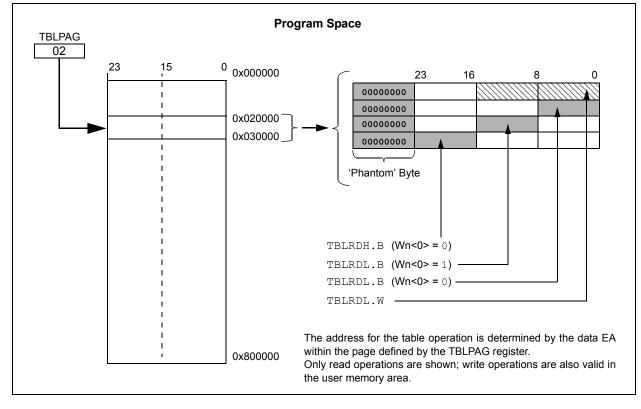
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	-	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	—	_	UTX8			U	ART Transm	nit Register				XXXX
U1RXREG	0226	_	_	_	_	_	_	_	URX8	8 UART Received Register						0000		
U1BRG	0228		Baud Rate Generator Prescaler 0000										0000					

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>), is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-7: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

NVMCON: FLASH MEMORY CONTROL REGISTER

5.6 Flash Memory Control Registers

REGISTER 5-1:

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾					
WR	R/W-000	WRERR	U-0	U-0	U-0	U-0	U-0
	WREN	WRERR	—	_	—		
bit 15							bit 8
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	ERASE		_		NVMOP	<3:0> ⁽²⁾	
bit 7	·						bit 0
Legend:		SO = Settal	ole only bit				
R = Readable	bit	W = Writabl	e bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is s	et	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	WR: Write Con	trol bit					
	1 = Initiates a	Flash memor	y program or	erase operation	on. The operatio	on is self-timed	and the bit is
		hardware on					
	0 = Program of	•	tion is comple	ete and inactive	9		
bit 14	WREN: Write E						
	1 = Enable Fla						
h:: 40	0 = Inhibit Flas		-	IS			
bit 13	WRERR: Write	•	•		· · · · · · · · · · · · · · · · · · ·		
		er program or ally on any se			termination has	occurred (bit i	s set
	0 = The progra				/		
bit 12-7	Unimplemente						
bit 6	ERASE: Erase						
2.00		•		bv NVMOP </td <td>3:0> on the next</td> <td>WR command</td> <td></td>	3:0> on the next	WR command	
					><3:0> on the network		
bit 5-4	Unimplemente	d: Read as ')'				
bit 3-0	NVMOP<3:0>:	NVM Operati	on Select bits	_S (2)			
	If ERASE = 1:						
	1111 = Memor	•	operation				
	1110 = Reserv						
	1101 = Erase (•					
	1100 = Erase S 1011 = Reserv		ent				
	0011 = No ope						
	0010 = Memor		operation				
	0001 = No ope						
	0000 = Erase a	a single Confi	guration regis	ster byte			
	If ERASE = 0:						
	1111 = No ope						
	1110 = Reserv						
	1101 = No ope 1100 = No ope						
	1011 = Reserv						
	0011 = Memor	y word progra	m operation				
	0010 = No ope	ration					
	0001 = Memory						
	0000 = Progra r	n a single Co	nfiguration re	gister byte			
Note 1: The	ese bits can only	be reset on a	POR.				
2: All	other combination	ns of NVMOF	<3:0> are un	implemented			

2: All other combinations of NVMOP<3:0> are unimplemented.

FIGURE 7-1: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 INTERRUPT VECTOR TABLE

		_	
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~	1	
	~		
	Interrupt Vector 52	0x00007C	l_{1}
	Interrupt Vector 53	0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ity	Interrupt Vector 54	0x000080	
ior	~		
ā	~		
dei	~		
Decreasing Natural Order Priority	Interrupt Vector 116	0x0000FC	
ral	Interrupt Vector 117	0x0000FE	•
atu	Reserved	0x000100	
ž	Reserved	0x000102	
ing	Reserved		
as	Oscillator Fail Trap Vector		
cre	Address Error Trap Vector		
De	Stack Error Trap Vector	-	
	Math Error Trap Vector	_	
	DMA Error Trap Vector	_	
	Reserved]
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~	-	
	~		
	~		Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~		
	~		
	Interrupt Vector 116	1 –	-
	Interrupt Vector 117	0x0001FE	
V	Start of Code	0x000200	
		-	
Note 1: S	See Table 7-1 for the list of impleme	ented interrupt v	vectors.

7.5 Interrupt Control Registers

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	—	—	—	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С

Ь	:4	7
1)	ш	1

Legend:			
C = Clear only bit	R = Readable bit	U = Unimplemented bit, read as '0'	
S = Set only bit	W = Writable bit	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5

IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0
	—	—	—	IPL3 ⁽²⁾	PSV	—	—
bit 7							bit 0
Legend:		C = Clear only	/ bit				
R = Readable I	oit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is clear	ed	'x = Bit is unkr	nown	U = Unimpler	nented bit, read	as '0'	
				(0)			
bit 3	IPL3: CPU Int	terrupt Priority	Level Status b	it 3 ⁽²⁾			
	1 = CPU inter	rupt priority lev	el is greater th	nan 7			
	0 = CPU inter	rupt priority lev	el is 7 or less				

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

bit 0

REGISTER 8	-7: DMAC	S0: DMA CO	NTROLLER	STATUS RE	GISTER 0							
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0					
PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0					
bit 15							bit 8					
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0					
XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0					
bit 7							bit					
Legend:				C = Clea	ar only bit							
R = Readable	bit	W = Writable	bit		nented bit, rea	d as '0'						
-n = Value at I		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	าดพท					
bit 15	1 = Write colli	nannel 7 Periph ision detected collision detecte		llision Flag bit								
bit 14	1 = Write colli	nannel 6 Periph ision detected collision detecte		llision Flag bit								
bit 13	1 = Write colli	nannel 5 Periph ision detected collision detecte		llision Flag bit								
bit 12	PWCOL4: Ch	PWCOL4: Channel 4 Peripheral Write Collision Flag bit										
		ision detected collision detected	ed									
bit 11	PWCOL3: Ch	nannel 3 Periph	neral Write Col	llision Flag bit								
		ision detected collision detected	ed									
bit 10	1 = Write colli	nannel 2 Periph ision detected collision detecte		llision Flag bit								
bit 9	1 = Write colli	nannel 1 Periph ision detected collision detecte		llision Flag bit								
bit 8	1 = Write colli	nannel 0 Periph ision detected collision detecte		llision Flag bit								
bit 7		nannel 7 DMA I	RAM Write Co	Ilision Flag bit								
		ision detected collision detecte	ed									
bit 6	XWCOL6: Ch	nannel 6 DMA I	RAM Write Co	llision Flag bit								
		ision detected collision detected	ed									
bit 5	XWCOL5: Ch	nannel 5 DMA I	RAM Write Co	Ilision Flag bit								
	1 = Write colli 0 = No write c	ision detected collision detected	ed									
bit 4	XWCOL4: Cr	nannel 4 DMA I	RAM Write Co	Ilision Flag bit								
		ision detected collision detecte	ed	-								

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
0-0	0-0	0-0	0-0	N-1	LSTCH		N-1
 bit 15		_	_		LOTOF	1<3.02	bit
							Dit
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0
pit 7							bit
_egend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12 bit 11-8 bit 7	LSTCH<3:0> 1111 = No DI 1110-1000 = 0111 = Last of 0101 = Last of 0100 = Last of 0010 = Last of 0010 = Last of 0001 = Last of 0000 = Last of PPST7: Chan		annel Active t s occurred sin as by DMA Ch as by DMA Ch	ce system Res nannel 7 nannel 6 nannel 5 nannel 4 nannel 3 nannel 2 nannel 1 nannel 0	et		
oit 6	0 = DMA7STA PPST6: Chan 1 = DMA6STE	A register select Inel 6 Ping-Por 3 register select A register select	eted ng Mode Statu eted	s Flag bit			
pit 5	PPST5: Chan 1 = DMA5STE	inel 5 Ping-Por 3 register selec A register selec	ng Mode Statu cted	s Flag bit			
oit 4	1 = DMA4STE	nnel 4 Ping-Por 3 register selec A register selec	cted	s Flag bit			
pit 3	1 = DMA3STE	nel 3 Ping-Por 3 register selec A register selec	cted	s Flag bit			
bit 2	1 = DMA2STE	nel 2 Ping-Por 3 register selec 4 register selec	cted	s Flag bit			
oit 1	1 = DMA1STE	nel 1 Ping-Por 3 register selec 4 register selec	cted	s Flag bit			
oit O	1 = DMA0STE	nel 0 Ping-Por 3 register selec A register selec	cted	s Flag bit			

11.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24H devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- · Continuous state monitoring
- Configuration bit pin select lock

11.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) the IOLOCK bit as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:								
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)								
See MPLAB Help for more information.									

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

11.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset is triggered.

11.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY Configuration bit (FOSC<5>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the peripheral pin select registers.

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	-		—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	—	—			SS2R<4:0>			
bit 7		•					bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown			
-								

bit 15-5 Unimplemented: Read as '0'

bit 4-0

SS2R<4:0>: Assign SPI2 Slave Select Input (SS2) to the corresponding RPn pin
 11111 = Input tied to Vss
 11001 = Input tied to RP25
 .

00001 = Input tied to RP1 00000 = Input tied to RP0

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 _ ____ _ ____ ____ ___ _ _ bit 15 bit 8 U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 C1RXR<4:0> ___ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'0' = Bit is cleared

REGISTER 11-14: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26⁽¹⁾

bit 15-5 Unimplemented: Read as '0'

-n = Value at POR

Note 1: This register is disabled on devices without ECAN™ modules.

'1' = Bit is set

x = Bit is unknown

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0					
—	—	—			FILHIT<4:0>							
oit 15							bit					
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0					
	112-1	14-0	11-0	ICODE<6:0		11-0	11-0					
pit 7				10002 0.0			bit					
		$\Omega = M/rite eble$	hit hut only	(O' con he writt	an to alcor the b	:4						
L egend: R = Readabl	o hit	C = Writable W = Writable	-		en to clear the b mented bit, read							
n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	NOWD					
bit 15-13	Unimplemen	ted: Read as '	0'									
oit 12-8	FILHIT<4:0>:	: Filter Hit Num	ber bits									
		1 = Reserved										
	01111 = Filte	er 15										
	•											
	•											
	• 00001 = Filter 1											
	00001 = Filter 1 00000 = Filter 0											
bit 7	Unimplemented: Read as '0'											
bit 6-0	ICODE<6:0>	: Interrupt Flag	Code bits									
		11111 = Rese										
		IFO almost full Receiver overflo										
		Vake-up interru										
	1000001 = Error interrupt											
	1000000 = No interrupt											
	•											
	•											
	•											
	0010000-0111111 = Reserved 0001111 = RB15 buffer Interrupt											
	•											
	•											
	•											
	0001001 = RB9 buffer interrupt											
	0001000 = RB8 buffer interrupt 0000111 = TRB7 buffer interrupt											
		RB6 buffer inte										
		RB5 buffer inte										
		RB4 buffer inte RB3 buffer inte										
		RB2 buffer inte										
	0000001 = T	RB1 buffer inte	errupt									
	000000 - T	RB0 Buffer inte										

	13-10. 0100					NEOIOTEN			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F15B	P<3:0>			F14BI	P<3:0>			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10,00-0		-	10,00-0	10,00-0		P<3:0>	10,00-0		
F13BP<3:0> bit 7					1 1201	NOP	bit 0		
Legend:		C = Writeable	bit, but only '	0' can be writte	en to clear the b	oit			
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set	I	'0' = Bit is cleared x = Bit is unknown					
bit 15-12	F15BP<3:0	: RX Buffer ma	sk for Filter 15	5					
	1111 = Filte	r hits received in	n RX FIFO but	ffer					
	1110 = Filte	er hits received in	n RX Buffer 14	1					
	•								
	•								
	•								
		er hits received in ar hits received in							
bit 11-8	F14BP<3:0	>: RX Buffer ma	sk for Filter 14	(same values	as bit 15-12)				

REGISTER 19-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

bit 3-0	F12BP<3:0>: RX Buffer mask for Filter 12 (same values as bit 15-12)
---------	--

20.4 ADC Helpful Tips

- 1. The SMPI<3:0> (AD1CON2<5:2>) control bits:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated if enabled.
 - b) When the CSCNA bit (AD1CON2<10>) is set to '1', determines when the ADC analog scan channel list defined in the AD1CSSL/AD1CSSH registers starts over from the beginning.
 - c) On devices without a DMA peripheral, determines when ADC result buffer pointer to ADC1BUF0-ADC1BUFF, gets reset back to the beginning at ADC1BUF0.
- On devices without a DMA module, the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF regardless of which analog inputs are being used subject to the SMPI<3:0> bits (AD1CON2<5:2>) and the condition described in 1c above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- On devices with a DMA module, the ADC module has only 1 ADC result buffer, (i.e., ADC1BUF0), per ADC peripheral and the ADC conversion result must be read either by the CPU or DMA controller before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in manual sample mode, particularly where the users code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. On devices with two ADC modules, the ADCxPCFG registers for both ADC modules must be set to a logic '1' to configure a target I/O pin as a digital I/O pin. Failure to do so means that any alternate digital input function will always see only a logic '0' as the digital input buffer is held in Disable mode.

20.5 ADC Resources

Many useful resources related to ADC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwprod-
	ucts/Devices.aspx?dDoc-
	Name=en534555

20.5.1 KEY RESOURCES

- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

27.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

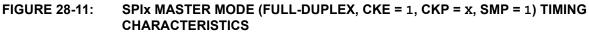
27.8 MPLAB REAL ICE In-Circuit Emulator System

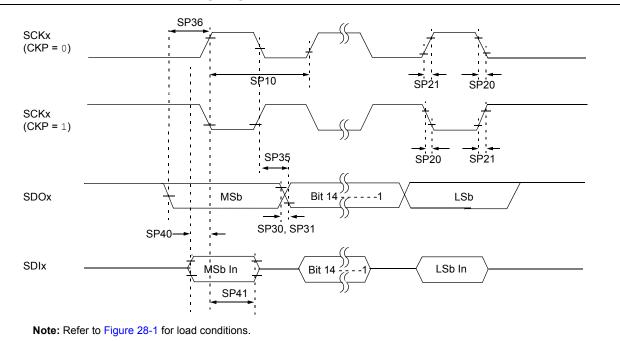
MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

27.9 MPLAB ICD 3 In-Circuit Debugger System


MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).


The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

27.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and of PIC[®] dsPIC® programming and Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

TABLE 28-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

АС СНА	RACTERIST	ICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCK Frequency	_	_	9	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	—	—	ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—	—	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	—	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—	—	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		—	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	—	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 29-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature				
Parameter No.	Typical	Мах	Units	Conditions			
Power-Down 0	Current (IPD)						
HDC60e	250	2000	μA	+150°C	3.3V	Base Power-Down Current ^(1,3)	
HDC61c	3	5	μA	+150°C	3.3V	Watchdog Timer Current: $\Delta IWDT^{(2,4)}$	

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

TABLE 29-5: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

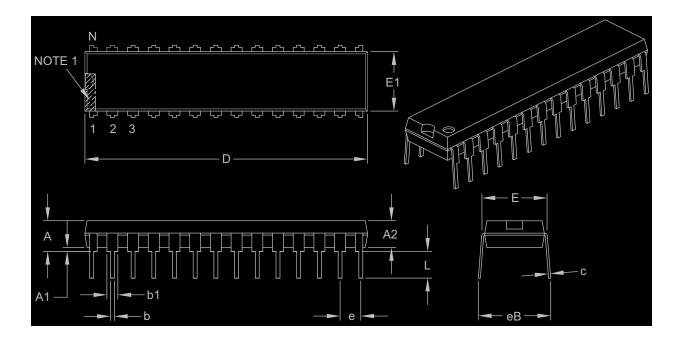
DC CHARACTERISTICS Standard Operating (unless otherwise st Operating temperatur)				tated)			
Parameter No.	Typical ⁽¹⁾	Мах	Doze Ratio	Units	Conditions		
HDC72a	39	45	1:2	mA			
HDC72f	18	25	1:64	mA	+150°C 3.3V 20 MIPS		
HDC72g	18	25	1:128	mA			

Note 1: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions	
		C Accuracy (10-bit Mode)	- Moasu	romonte	with Ex	tornal V		
ADC Accuracy (10-bit Mode) – M HAD20b Nr Resolution ⁽³⁾				10 data bits				
HAD21b	INL	Integral Nonlinearity	-3	_	3	bits LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD22b	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD23b	Gerr	Gain Error	-5	_	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD24b	EOFF	Offset Error	-1	—	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
	AD	C Accuracy (10-bit Mode)	– Measu	irement	s with Int	ernal V	REF+/VREF- ⁽¹⁾	
HAD20b	Nr	Resolution ⁽³⁾	1	0 data bi	ts	bits	—	
HAD21b	INL	Integral Nonlinearity	-2	—	2	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD22b	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD23b	Gerr	Gain Error	-5		15	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD24b	EOFF	Offset Error	-1.5		7	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
		Dynamic Po	erformar	nce (10-l	oit Mode)	(2)		
HAD33b	Fnyq	Input Signal Bandwidth			400	kHz	_	

TABLE 29-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.


2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

33.1 Package Details

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
	Dimension Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	e	.100 BSC					
Top to Seating Plane	A		_	.200			
Molded Package Thickness	A2	.120	.135	.150			
Base to Seating Plane	A1	.015	_				
Shoulder to Shoulder Width	E	.290	.310	.335			
Molded Package Width	E1	.240	.285	.295			
Overall Length	D	1.345	1.365	1.400			
Tip to Seating Plane	L	.110	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.040	.050	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	_	_	.430			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

Revision F (August 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-5: MAJOR SECTION UPDATES

Section Name	Update Description
Section 25.0 "Special Features"	Added Note 3 to the Connections for the On-chip Voltage Regulator diagram (see Figure 25-1).
Section 28.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss from the Absolute Maximum Ratings.
	Removed Note 3 and parameter DC10 (VCORE) from the DC Temperature and Voltage Specifications (see Table 28-4).
	Updated the Characteristics definition and Conditions for parameter BO10 in the Electrical Characteristics: BOR (see Table 28-11).
	Added Note 1 to the Internal Voltage Regulator Specifications (see Table 28-13).

Revision G (April 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

In addition, where applicable, new sections were added to each peripheral chapter that provide information and links to related resources, as well as helpful tips. For examples, see Section 9.2 "Oscillator Resources" and Section 20.4 "ADC Helpful Tips".

All other major changes are referenced by their respective section in the following table.

TABLE A-6: MAJOR SECTION UPDATES

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-bit Microcontrollers"	Added two new tables: • Crystal Recommendations (see Table 2-1) • Resonator Recommendations (see Table 2-2)
Section 28.0 "Electrical Characteristics"	Updated parameters DO10 and DO20 and removed parameters DO16 and DO26 in the DC Characteristics: I/O Pin Output Specifications (see Table 28-10)

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

RE: Reader Response From: Name Company	-				
	-				
Company	-				
	-				
Address City / State / ZIP / Country					
	-				
Telephone: () FAX: () Application (optional):					
Application (optional):					
Would you like a reply? Y N					
Device: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and Literature Number: DS702930 PIC24HJ128GPX02/X04	i				
Questions:					
1. What are the best features of this document?					
2. How does this document meet your hardware and software development needs?					
3. Do you find the organization of this document easy to follow? If not, why?					
What additions to the document do you think would enhance the structure and subject?					
5. What deletions from the document could be made without affecting the overall usefulness?					
6. Is there any incorrect or misleading information (what and where)?					
7. How would you improve this document?					