

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj32gp302t-i-mm

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—				
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0			
_	—	—	—	IPL3 ⁽¹⁾	PSV	—	—			
bit 7							bit 0			
Legend:		C = Clear only	/ bit							
R = Readable	e bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set				
0' = Bit is clea	ared	ʻx = Bit is unki	nown	U = Unimpler	nented bit, read	as '0'				
bit 15-4	Unimplemen	ted: Read as '	כי							
bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽¹⁾									
	1 = CPU inter	rupt priority lev	el is greater th	nan 7						
	0 = CPU inter	rupt priority lev	el is 7 or less							
bit 2	PSV: Program	n Space Visibili	ty in Data Spa	ce Enable bit						
	1 = Program s	space visible in	data space							

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

0 = Program space not visible in data space

Unimplemented: Read as '0'

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

bit 1-0

TABLE 4-10: UART2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE	0230	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_	UTX8			L	IART Transn	nit Register				XXXX
U2RXREG	0236	_	_	_	_	_	_	_	URX8			ι	JART Receiv	e Register				0000
U2BRG	0238							Bau	ıd Rate Ger	nerator Presc	aler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	—	—	—	_	_	SPIROV	_	—	—	_	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248	SPI1 Transmit and Receive Buffer Register 00									0000							

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SPI2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	SPIEN	-	SPISIDL	—	—	—		—	_	SPIROV	—	_	_	_	SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI2BUF	0268		SPI2 Transmit and Receive Buffer Register 000									0000						

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
BSRAM	0750	_	_		—	—	_	—	—		—	—	_	-	IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	—	_	—	—	—	—	—	—	—	—	—	—	—	IW_SSR	IR_SSR	RL_SSR	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not present in devices with 32K Flash (PIC24HJ32GP302/304).

TABLE 4-33: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	-	—	—	-	—	-	ERASE	-	-		NVMO	P<3:0>		0000
NVMKEY	0766	_	_	_	_	_	_	_	_				NVMKE	Y<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PMD REGISTER MAP

	-																	
File Na	me Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD		_	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	_	_	_	_	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	RTCCMD	PMPMD	CRCMD			_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-35: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.5.3 MOVE (MOV) INSTRUCTION

Move instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, MOV instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note:	Not	all	instructions	support	all	the
	addr	essir	ng modes give	n above. I	ndivi	dual
	instr	uctio	ns may suppo	ort differen	t sub	sets
	of th	ese a	addressing mo	odes.		

4.5.4 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

REGISTER 7-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—		_		—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	_	_	_		DMA3IP<2:0>	
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable I	oit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)

٠

001 = Interrupt is priority 1

000 = Interrupt source is disabled

REGISTER 8-5:	DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER ⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAE)<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown						nown	

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	—	—	—	—	CNT<	9:8> ⁽²⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unim				U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow			nown				
•							

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
0-0	0-0	U-0	0-0	0-0	U-0	0-0	U-0
_	—			—	—	—	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			SS2R<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	it U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-5 Unimplemented: Read as '0'

bit 4-0

SS2R<4:0>: Assign SPI2 Slave Select Input (SS2) to the corresponding RPn pin
 11111 = Input tied to Vss
 11001 = Input tied to RP25
 .

00001 = Input tied to RP1 00000 = Input tied to RP0

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 _ ____ _ ____ ____ ___ _ _ bit 15 bit 8 U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 C1RXR<4:0> ___ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'0' = Bit is cleared

REGISTER 11-14: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26⁽¹⁾

bit 15-5 Unimplemented: Read as '0'

-n = Value at POR

Note 1: This register is disabled on devices without ECAN™ modules.

'1' = Bit is set

x = Bit is unknown

REGISTER 11-25: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTERS 10⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	_	RP21R<4:0>					
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—			RP20R<4:0>			
bit 7							bit 0	
Legend:								
R = Readable I	oit	W = Writable I	e bit U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
-								

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP21R<4:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits (see Table 11-2 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP20R<4:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 11-26: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTERS 11⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—	RP23R<4:0>						
bit 15							bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—	RP22R<4:0>						
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown			

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP23R<4:0>:** Peripheral Output Function is Assigned to RP23 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP22R<4:0>:** Peripheral Output Function is Assigned to RP22 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

13.3 Timer Resources

Many useful resources related to Timers are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

13.3.1 KEY RESOURCES

- Section 11. "Timers" (DS70205)
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

14.1 Input Capture Resources

Many useful resources related to Input Capture are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532315

14.1.1 KEY RESOURCES

- Section 12. "Input Capture" (DS70198)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

14.2 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1, 2, 7 OR 8)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	ICSIDL	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI<1:0>		ICOV	ICBNE		ICM<2:0>	
bit 7							bit 0

Legend:	HC = Cleared in Hardware		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture Module Stop in Idle Control bit
	 1 = Input capture module halts in CPU Idle mode 0 = Input capture module continues to operate in CPU Idle mode
bit 12-8	Unimplemented: Read as '0'
bit 7	ICTMR: Input Capture Timer Select bits
	 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits
	 11 = Interrupt on every fourth capture event 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event 00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
	 1 = Input capture overflow occurred 0 = No input capture overflow occurred
bit 3	ICBNE: Input Capture Buffer Empty Status bit (read-only)
	 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture Mode Select bits
	 111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode (Rising edge detect only, all other control bits are not applicable) 110 = Unused (module disabled) 101 = Capture mode, every 16th rising edge 100 = Capture mode, every 4th rising edge 011 = Capture mode, every rising edge 010 = Capture mode, every falling edge 010 = Capture mode, every falling edge 011 = Capture mode, every edge (rising and falling) (ICI<1:0> bits do not control interrupt generation for this mode)
	ooo - mpar captare module turned on

19.4 ECAN Resources

Many useful resources related to ECAN are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

19.4.1 KEY RESOURCES

- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

19.5 ECAN Control Registers

REGISTER 19-1: CiCTRL1: ECAN™ CONTROL REGISTER 1 U-0 U-0 R/W-0 R/W-0 r-0 R/W-1 R/W-0 R/W-0 CSIDL ABAT REQOP<2:0> bit 15 bit 8 R-0 R-0 U-0 R/W-0 U-0 U-0 R/W-0 R-1 OPMODE<2:0> CANCAP WIN bit 7 bit 0 Legend: C = Writable bit, but only '0' can be written to clear the bit r = Bit is Reserved R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 CSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12 ABAT: Abort All Pending Transmissions bit 1 = Signal all transmit buffers to abort transmission 0 = Module will clear this bit when all transmissions are aborted bit 11 Reserved: Do not use bit 10-8 REQOP<2:0>: Request Operation Mode bits 000 = Set Normal Operation mode 001 = Set Disable mode 010 = Set Loopback mode 011 = Set Listen Only Mode 100 = Set Configuration mode 101 = Reserved 110 = Reserved 111 = Set Listen All Messages mode OPMODE<2:0>: Operation Mode bits bit 7-5 000 = Module is in Normal Operation mode 001 = Module is in Disable mode 010 = Module is in Loopback mode 011 = Module is in Listen Only mode 100 = Module is in Configuration mode 101 = Reserved 110 = Reserved 111 = Module is in Listen All Messages mode bit 4 Unimplemented: Read as '0' CANCAP: CAN Message Receive Timer Capture Event Enable bit bit 3 1 = Enable input capture based on CAN message receive 0 = Disable CAN capture bit 2-1 Unimplemented: Read as '0' bit 0 WIN: SFR Map Window Select bit 1 = Use filter window 0 = Use buffer window

REGISTER 1	9-10: CiCFC	G2: ECAN™ I	BAUD RATE		ATION REGI	STER 2					
U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x				
_	WAKFIL	_	_	_		SEG2PH<2:0>					
bit 15							bit 8				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
SEG2PHTS	SAM		SEG1PH<2:0	>		PRSEG<2:0>					
bit 7							bit C				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
hit 15	Unimplomo	ntad: Dood oo '	0'								
bit 14		lect CAN bus I	u ine Filter for V	Nake-un hit							
DIC 14		l bus line filter f	or wake-up	vake-up bit							
	0 = CAN bus	line filter is not	t used for wak	e-up							
bit 13-11	Unimplemer	nted: Read as '	0'								
bit 10-8	SEG2PH<2:0>: Phase Segment 2 bits										
	111 = Length	h is 8 x Tq									
	•										
	•										
	•										
	000 = Length	h is 1 x Tq									
bit 7	SEG2PHTS: Phase Segment 2 Time Select bit										
	1 = Freely pr 0 = Maximun	ogrammable n of SEG1PH b	its or Informa	tion Processing	Time (IPT), w	hichever is grea	ter				
bit 6	SAM: Sampl	le of the CAN b	us Line bit	0		0					
	1 = Bus line is sampled three times at the sample point										
	0 = Bus line is sampled once at the sample point										
bit 5-3	SEG1PH<2:	0>: Phase Seg	ment 1 bits								
	111 = Length is 8 x Tq										
	•										
	•										
	•	. .									
	000 = Lengtr		T 0								
DIT 2-0	PRSEG<2:0		Time Segmer	nt dits							
		ΠISԾXIQ									
	•										
	•										
		h ie 1 v To									
	uuu – Lengu										

BUFFER 19-5: ECAN™ MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			By	te 3			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			By	te 2			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable I	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown

bit 15-8 Byte 3<15:8>: ECAN™ Message Byte 3

bit 7-0 Byte 2<7:0>: ECAN Message Byte 2

BUFFER 19-6: ECAN™ MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x R/W-x		R/W-x	
	Byte 5							
bit 15							bit 8	

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 4			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit		U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	1

bit 15-8 Byte 5<15:8>: ECAN™ Message Byte 5

bit 7-0 Byte 4<7:0>: ECAN Message Byte 4

20.6 ADC Control Registers

R/W-0	U-0	R/W-0	R/W-0	0 U-0 R/W-0		R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM	_	AD12B	FORM<1:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0
						HC,HS	HC, HS
	SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE
bit 7							bit 0

REGISTER 20-1:	AD1CON1: ADC1	CONTROL REGISTER 1
----------------	---------------	---------------------------

Legend:	HC = Cleared by hardware	HS = Set by hardware	C = Clear only bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ADON: ADC Operating Mode bit 1 = ADC module is operating
b :t d d	0 = ADC IS OT
DIL 14	DOIDLE Oten in telle Marke hit
DIT 13	ADSIDL: Stop in Idle Mode bit
	 Discontinue module operation when device enters idle mode Continue module operation in Idle mode
bit 12	ADDMABM: DMA Buffer Build Mode bit
	 1 = DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer
bit 11	Unimplemented: Read as '0'
bit 10	AD12B: 10-bit or 12-bit Operation Mode bit
	1 = 12-bit, 1-channel ADC operation
	0 = 10-bit, 4-channel ADC operation
bit 9-8	FORM<1:0>: Data Output Format bits
	For 10-bit operation:
	10 = Reserved
	01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>)
	00 = Integer (Dout = 0000 00dd dddd dddd)
	For 12-bit operation:
	11 = Reserved
	10 = Reserved 0.1 = Signed Integer (DOUT = sass addd dddd dddd where a = NOT d<11>)
	00 = Integer (DOUT = 0000 dddd dddd dddd)
bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
	111 = Internal counter ends sampling and starts conversion (auto-convert)
	110 = Reserved
	101 = Reserved 100 = GP timer (Timer5 for ADC1) compare ends sampling and starts conversion
	011 = Reserved
	010 = GP timer (Timer3 for ADC1) compare ends sampling and starts conversion
	001 = Active transition on INTO pin ends sampling and starts conversion
	000 = Clearing sample bit ends sampling and starts conversion
bit 4	Unimplemented: Read as '0'

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME		AMAS	SK<3:0>		ALRMP	TR<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10000	1000 0	1010 0	ARP	T<7:0>	1011 0	10000	1011 0
bit 7				-			bit 0
Logond							
R = Readable	hit	W = Writable	hit	LI = Unimplen	nented hit read	1 as '0'	
-n = Value at F	POR	'1' = Bit is set	bit	$0^{\circ} = \text{Bit is clear}$	ared	x = Rit is unkr	างพท
ii valao at i		1 Dit lo oot					
bit 15	ALRMEN: Ala 1 = Alarm is CHIME = 0 = Alarm is	arm Enable bit enabled (cleare : 0) disabled	ed automatica	ally after an ala	rm event when	ever ARPT<7:()> = 0x00 and
bit 14	CHIME: Chim	ne Enable bit					
	1 = Chime is 0 = Chime is	enabled; ARP disabled: ARP	T<7:0> bits ar T<7:0> bits si	re allowed to rol top once they re	ll over from 0x0 each 0x00	00 to 0xFF	
bit 13-10	AMASK<3:0>	Alarm Mask	Configuration	bits			
	1001 = Once 1000 = Once 0111 = Once 0110 = Once 0101 = Every 0100 = Every 0010 = Every 0010 = Every 0001 = Every 0001 = Every	a year (except a month a week a day hour 10 minutes minute 10 seconds second half second	when configu	ured for Februa	ry 29th, once e	very 4 years)	
bit 9-8	ALRMPTR<1	:0>: Alarm Valu	ue Register W	Vindow Pointer	bits		(4) 1
	Points to the c the ALRMPTF ALRMVAL<15 11 = Unimple 10 = ALRMM 01 = ALRMW 00 = ALRMM ALRMVAL<7: 11 = Unimple 10 = ALRMD/ 01 = ALRMHI 00 = ALRMSF	corresponding A R<1:0> value de <u>5:8>:</u> mented NTH D IN <u>0>:</u> mented AY R EC	Narm Value re	gisters when re every read or w	adıng ALRMVA rrite of ALRMVA	ALH and ALRMV	/ALL registers; nes '00'.
bit 7-0	ARPT<7:0>:	Alarm Repeat (Counter Value	e bits			
	11111111 = ,	Alarm will repe Alarm will not re lecrements on a CHIME = 1.	at 255 more t epeat any alarm eve	imes ent. The counte	r is prevented t	from rolling ove	r from 0x00 to

REGISTER 22-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 28-29	—	_	0,1	0,1	0,1	
9 MHz	_	Table 28-30	—	1	0,1	1	
9 MHz	_	Table 28-31	—	0	0,1	1	
15 MHz	_	—	Table 28-32	1	0	0	
11 MHz	_	_	Table 28-33	1	1	0	
15 MHz		_	Table 28-34	0	1	0	
11 MHz		_	Table 28-35	0	0	0	

TABLE 28-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 28-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

FIGURE 28-10: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

TABLE 29-7: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature				
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max		Units	Conditions	
		Program Flash Memory					
HD130	Eр	Cell Endurance	10,000	_		E/W	-40° C to +150° C ⁽²⁾
HD134	TRETD	Characteristic Retention	20	—	_	Year	1000 E/W cycles or less and no other specifications are violated

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to 150°C.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fla Temperature Ran Package — Pattern —	nark — mily – Size (ag (if a ge —	P KB)	IC 24 HJ 32 GP3 02 T E / SP - XXX	Examples: a) PIC24HJ32GP302-E/SP: General Purpose PIC24H, 32 KB program memory, 28-pin, Extended temperature, SPDIP package.
Architecture:	24	=	16-bit Microcontroller	
Flash Memory Family:	HJ	=	Flash program memory, 3.3V	
Product Group:	GP2 GP3 GP8	= = =	General Purpose family General Purpose family General Purpose family	
Pin Count:	02 04	= =	28-pin 44-pin	
Temperature Range:	I E H	= = =	-40° C to+85° C (Industrial) -40° C to+125° C (Extended) -40° C to+150° C (High)	
Package:	SP SO ML MM PT	= = = =	Skinny Plastic Dual In-Line - 300 mil body (SPDIP) Plastic Small Outline - Wide - 300 mil body (SOIC) Plastic Quad, No Lead Package - 8x8 mm body (QFN) Plastic Quad, No Lead Package - 6x6x0.9 mm body (QFN-S) Plastic Thin Quad Flatpack - 10x10x1 mm body (TQFP)	