

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj32gp304-e-ml

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

Pin Diagrams

TABLE 4-10: UART2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE	0230	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_	UTX8			L	IART Transn	nit Register				XXXX
U2RXREG	0236	_	_	_	_	_	_	_	URX8	UART Receive Register							0000	
U2BRG	0238							Bau	ıd Rate Ger	Generator Prescaler								0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	—	—	—	_	—	SPIROV	_	—	—	_	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248	SPI1 Transmit and Receive Buffer Register										0000						

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SPI2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	SPIEN	-	SPISIDL	—	—	—		—	_	SPIROV	—	_	_	_	SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI2BUF	0268	SPI2 Transmit and Receive Buffer Register										0000						

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

NOTES:

7.3 Interrupt Control and Status Registers

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

7.3.2 IFSx

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user software can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-29.

7.4 Interrupt Resources

Many useful resources related Interrupts are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwprod- ucts/Devices.aspx?dDoc- Name=en534555

7.4.1 KEY RESOURCES

- Section 32. "Interrupts (Part III)" (DS70214)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER	/-/: IFS2:1	NIERRUPI	FLAG STAT	US REGISTI	ER Z								
U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0						
_	DMA4IF	PMPIF				_	_						
bit 15	÷						bit 8						
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
	—	—	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF						
bit 7							bit 0						
Legend:													
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'							
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown						
bit 15	Unimplemen	ted: Read as '	0'										
bit 14	DMA4IF: DM	A Channel 4 D	ata Transfer C	complete Interr	upt Flag Status	bit							
	1 = Interrupt r	equest has oc	curred										
L:1 4 0		equest has no	t occurred	Otatus 1:1									
DIT 13	1 = Interrupt request has occurred												
	1 = Interrupt r 0 = Interrupt r	equest has oc equest has no	t occurred										
bit 12-5	Unimplemen	ted: Read as '	0'										
bit 4	DMA3IF: DM	A Channel 3 D	ata Transfer C	complete Interr	rupt Flag Status I	bit							
	1 = Interrupt r	equest has oc	curred										
	0 = Interrupt r	equest has no	t occurred										
bit 3	C1IF: ECAN1	Event Interru	ot Flag Status	bit ⁽¹⁾									
	1 = Interrupt r	equest has oc	curred										
	0 = Interrupt r	request has no	t occurred		(1)								
bit 2	C1RXIF: ECA	N1 Receive D	ata Ready Inte	errupt Flag Sta	itus bit ⁽¹⁾								
	1 = Interrupt r	equest has oc	curred t occurred										
hit 1	SPI2IE: SPI2	Event Interrun	t Flag Status h	hit									
	1 = Interrupt r	request has oc	curred										
	0 = Interrupt r	equest has no	t occurred										
bit 0	SPI2EIF: SPI	2 Error Interru	pt Flag Status	bit									
	1 = Interrupt r	equest has oc	curred										
	0 = Interrupt r	equest has no	t occurred										

----. _

Note 1: Interrupts disabled on devices without ECAN[™] modules.

11-0	11-0	11-0	11-0	11-0	R/\\/_1	R/W/-0	R/\\/_0
0-0	0-0	0-0	0-0	0-0	D/ VV- I		N/W-U
 bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		DMA5IP<2:0>		_	—	_	—
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as '	0'				
bit 10-8	RTCIP<2:0>:	Real-Time Clo	ck and Caler	ndar Interrupt Fl	lag Status bits		
	111 = Interru	pt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	DMA5IP<2:0	>: DMA Chann	el 5 Data Tra	nsfer Complete	Interrupt Prior	ity bits	
	111 = Interru	pt is priority 7 (highest priorit	ty interrupt)			
	•						
	•						
	001 = Interru	nt is priority 1					
	000 = Interru	pt source is dis	abled				

REGISTER 7-26: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

bit 3-0

Unimplemented: Read as '0'

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304 of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 39. "Oscillator (Part III)" (DS70216) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 oscillator system provides:

- External and internal oscillator options as clock sources
- An on-chip Phase-Locked Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.
- A simplified diagram of the oscillator system is shown in Figure 9-1.

11.6 Peripheral Pin Select

Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

11.6.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 26 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

11.6.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of special function registers: one to map peripheral inputs, and another one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.6.2.1 Input Mapping

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it is mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-14). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 11-2 illustrates remappable pin selection for U1RX input.

FIGURE 11-2: REMAPPABLE MUX INPUT FOR U1RX

R/W-0 TXENn bit 15 R/W-0 TXENm bit 7 Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 6 bit 5	R-0 TXABTn R-0 TXABTm ⁽¹⁾	R-0 TXLARBn R-0	R-0 TXERRn	R/W-0 TXREQn	R/W-0 RTRENn	R/W-0	R/W-0						
TXENn bit 15 R/W-0 TXENm bit 7 Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 5	R-0 TXABTm ⁽¹⁾	R-0	TXERRn	TXREQn	RTRFNn								
bit 15 R/W-0 TXENM bit 7 Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 5	R-0 TXABTm ⁽¹⁾	R-0				IXNPF	≀l<1:0>						
R/W-0 TXENm bit 7 Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 6 bit 5	R-0 TXABTm ⁽¹⁾	R-0					bit						
R/W-0 TXENm bit 7 Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 6 bit 6	R-0 TXABTm ⁽¹⁾	R-0											
TXENm bit 7 Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 6 bit 5	TXABTm ⁽¹⁾		R-0	R/W-0	R/W-0	R/W-0	R/W-0						
bit 7 Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 6 bit 5		TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPF	२।<1:0>						
Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 6 bit 5							bit						
R = Readable I <u>-n = Value at P</u> bit 15-8 bit 7 bit 6 bit 5		C = Writeable	hit but only ')' oon ho writto	n to cloar tha h	.i+							
-n = Value at P bit 15-8 bit 7 bit 6 bit 5	hit	C = White a Die	bit, but only t		n to clear the t	1 ac (0)							
bit 15-8 bit 7 bit 6 bit 5		vv = vvritable	DIL	0 = 0	nenieu bil, reau	ias u v – Ditio unkr							
bit 15-8 bit 7 bit 6 bit 5	<u>'UR</u>	I = Bit is set		0 = Bit is clear	areo	x = Bit is unkr	IOWN						
bit 7 bit 6 bit 5	See Definitio	n for Bits 7-0 C	ontrols Ruffer	n									
bit 6 bit 5		RX Buffer Sele	ction bit										
bit 6 bit 5	1 = Buffer TR	Rn is a transm	it huffer										
bit 6 bit 5	0 = Buffer TR	RBn is a receive	buffer										
bit 5	TXABTm: Me	essage Aborted	l bit ⁽¹⁾										
bit 5	1 = Message	was aborted											
bit 5	0 = Message completed transmission successfully												
	TXLARBm: Message Lost Arbitration bit ⁽¹⁾												
	1 = Message lost arbitration while being sent												
	0 = Message	did not lose ar	bitration while	being sent									
bit 4	TXERRm: Er	ror Detected D	uring Transmis	ssion bit ⁽¹⁾									
	1 = A bus err	or occurred wh	ile the messag	e was being s	ent								
	0 = A bus err	or did not occu	while the me	ssage was bei	ng sent								
bit 3	IXREQm: M	essage Send R	equest bit										
	1 = Requests	s that a messag	e be sent. The	e bit automatica	ally clears wher	the message i	s successfull						
	0 = Clearing 1	the bit to '0' wh	ile set request	s a messade a	bort								
bit 2	RTRENm: A	uto-Remote Tra	nsmit Fnable	bit									
	1 = When a r	emote transmit	is received T	XRFQ will be s	set								
	0 = When a r	emote transmit	is received, T	XREQ will be u	inaffected								
bit 1-0	TXmPRI<1:0	>: Message Tra	ansmission Pri	iority bits									
	11 = Highest	message prior	ty	-									
	10 = High inte	ermediate mes	sage priority										
	01 = Low interview	ermediate mess	age priority										
	00 = Lowest	message priori	ty .										
Note 1. This	s hit is cleared	when the TYDI	=0 hit is set										

~ .

The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM. Note:

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC		_			SAMC<4:0>	1)	
bit 15							bit
D 444 0		DAMA	D /// 0	D 444 0		DAMO	D 444.0
R/W-0	R/W-0	R/W-0	R/W-U	R/W-U	R/W-0	R/W-0	R/W-0
hit 7			ADC3	~1.0~~~			bit
							Dit
Legend:							
R = Readal	ble bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ADRC: ADC	Conversion Clo	ck Source bit				
	1 = ADC inte	ernal RC clock					
	0 = Clock de	rived from syste	m clock				
bit 14-13	Unimpleme	nted: Read as 'o)'				
bit 12-8	SAMC<4:0>	: Auto Sample T	ïme bits ⁽¹⁾				
	11111 = 31	Tad					
	•						
	•						
	•						
	00001 = 1 T	AD					
	00000 = 0	AD		() (2)			
bit 7-0	ADCS<7:0>	ADC Conversion	on Clock Sele	ct bits(2)			
	11111111 =	Reserved					
	•						
	•						
	•						
	- 0100000 -	Peserved					
	001111111 =	TCY · (ADCS<7	7:0> + 1) = 64	• Tcy = Tad			
	•	- (
	•						
	•						
	00000010 =	TCY · (ADCS<	7:0> + 1) = 3	• Tcy = Tad			
	00000001 =	TCY · (ADCS<7	7:0> + 1) = 2	• TCY = TAD			
	00000000 =	TCY · (ADCS<7	7:0> + 1) = 1	· TCY = TAD			
Note 1.	This bit only used	if AD1CON1<7	5 (SSRC<2.0	>) = 111			
	Sit only used			/			

ADCI CONTROL DECISTER 2 . ~~~

25.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/PIC24H Family Reference Manual"*. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices include the following features that are intended to maximize application flexibility and reliability, and minimize cost through elimination of external components:

- · Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

25.1 Configuration Bits

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices provide nonvolatile memory implementation for device configuration bits. Refer to **Section 25. "Device Configuration"** (DS70194), in the *"dsPIC33F/PIC24H Family Reference Manual"* for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 25-1.

Note that address 0xF80000 is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

The Device Configuration register map is shown in Table 25-1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0xF80000	FBS	RBS<1:0>			_		BSS<2:0>	BWRP		
0xF80002	FSS ⁽¹⁾	RSS<	RSS<1:0>		_		SSS<2:0>		SWRP	
0xF80004	FGS	—	—	_	_	—	GSS<1	GSS<1:0>		
0xF80006	FOSCSEL	IESO	_			-	FNOSC<2:0>			
0xF80008	FOSC	FCKSM	1<1:0>	IOL1WAY	_	_	OSCIOFNC POSCMD<1:			
0xF8000A	FWDT	FWDTEN	WINDIS	_	WDTPRE		WDTPOST«	<3:0>		
0xF8000C	FPOR		Reserved ⁽	(2)	ALTI2C	_	FPW	/RT<2:0>		
0xF8000E	FICD	Reserv	ved ⁽³⁾	JTAGEN	_	_	—	ICS<	:1:0>	
0xF80010	FUID0				User Unit ID) Byte 0				
0xF80012	FUID1		User Unit ID Byte 1							
0xF80014	FUID2	User Unit ID Byte 2								
0xF80016	FUID3				User Unit ID) Byte 3				

TABLE 25-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, read as '0'.

Note 1: This Configuration register is not available and reads as 0xFF on PIC24HJ32GP302/304 devices.

2: These bits are reserved and always read as '1'.

3: These bits are reserved for use by development tools and must be programmed as '1'.

TABLE 26-2.	INSTRUCTION SET OVERVIEW (CONTINUED)	۱
		,

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
35	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
36	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
37	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f.IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
38	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
39	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
40	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
41	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
42	NEG	NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws.Wd	$Wd = \overline{Ws} + 1$	1	1	C.DC.N.OV.Z
43	NOP	NOP	-, -	No Operation	1	1	None
-		NOPR		No Operation	1	1	None
44	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	- Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
45	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH S		Push Shadow Registers	1	1	None
46	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO.Sleep
47	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Vn	Computed Call	1	2	None
L	I			· · · · · · · · · · · · · · · · · · ·	ı .		

TABLE 28-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Min Typ ⁽²⁾ Max Units Conditions				
SY10	TMCL	MCLR Pulse Width (low)	2		_	μs	-40°C to +85°C	
SY11	Tpwrt	Power-up Timer Period	_	2 4 16 32 64 128	_	ms	-40°C to +85°C User programmable	
SY12	TPOR	Power-on Reset Delay	3	10	30	μs	-40°C to +85°C	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs	_	
SY20	Twdt1	Watchdog Timer Time-out Period	_	_	_	_	See Section 25.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 28-19)	
SY30	Tost	Oscillator Start-up Timer Period	_	1024 Tosc	_	_	Tosc = OSC1 period	
SY35	TFSCM	Fail-Safe Clock Monitor Delay		500	900	μs	-40°C to +85°C	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 28-36:	I2Cx BUS DATA	TIMING REQUIREMENTS	(MASTER MODE)
		-	

				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Max	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)		μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	_	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	_	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	—	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	—	
		Setup Time	400 kHz mode	100	—	ns		
			1 MHz mode ⁽²⁾	40		ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	—	μs	—	
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽²⁾	0.2		μs		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μs	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	condition	
IM31	THD:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 1)		μs	After this period the	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	TCY/2 (BRG + 1)		μs	—	
		Setup Time	400 kHz mode	TCY/2 (BRG + 1)	—	μs		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 1)	—	μs		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	—	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	—	
		From Clock	400 kHz mode	—	1000	ns	—	
			1 MHz mode ⁽²⁾	—	400	ns	—	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be	
			400 kHz mode	1.3		μs	free before a new	
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start	
IM50	Св	Bus Capacitive L	oading	—	400	pF	—	
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	See Note 3	

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70235) in the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual chapters.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

					<u></u>		
AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature					
Param No. Symbol		Characteristic	Min	Тур	Max	Units	Conditions
Clock Parameters							
HAD50 TAD ADC Clock Period ⁽¹⁾		ADC Clock Period ⁽¹⁾	147		_	ns	—
Conversion Rate							
HAD56	FCNV	Throughput Rate ⁽¹⁾			400	Ksps	_

TABLE 29-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 29-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature					
Param No. Symbol		Characteristic	Min	Тур	Max	Units	Conditions
	Clock Parameters						
HAD50	TAD	ADC Clock Period ⁽¹⁾	104	—	—	ns	—
Conversion Rate							
HAD56	FCNV	Throughput Rate ⁽¹⁾	_	_	800	Ksps	

Note 1: These parameters are characterized but not tested in manufacturing.

NOTES:

Section Name	Update Description
Section 28.0 "Electrical Characteristics"	Updated the maximum value for Extended Temperature Devices in the Thermal Operating Conditions (see Table 28-2).
	Removed Note 4 from the DC Temperature and Voltage Specifications (see Table 28-4).
	Updated all typical and maximum Operating Current (IDD) values (see Table 28-5).
	Updated all typical and maximum Idle Current (IIDLE) values (see Table 28-6).
	Updated the maximum Power-Down Current (IPD) values for parameters DC60d, DC60a, and DC60b (see Table 28-7).
	Updated all typical Doze Current (Idoze) values (see Table 28-8).
	Updated the maximum value for parameter DI19 and added parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O Pin Input Specifications (see Table 28-9).
	Added Note 2 to the PLL Clock Timing Specifications (see Table 28- 17)
	Removed Note 2 from the AC Characteristics: Internal RC Accuracy (see Table 28-18).
	Updated the Internal RC Accuracy minimum and maximum values for parameter F21b (see Table 28-19).
	Updated the characteristic description for parameter DI35 in the I/O Timing Requirements (see Table 28-20).
	Updated <i>all</i> SPI specifications (see Table 28-28 through Table 28-35 and Figure 28-10 through Figure 28-16)
	Updated the ADC Module Specification minimum values for parameters AD05 and AD07, and updated the maximum value for parameter AD06 (see Table 28-41).
	Updated the ADC Module Specifications (12-bit Mode) minimum and maximum values for parameter AD21a (see Table 28-42).
	Updated all ADC Module Specifications (10-bit Mode) values, with the exception of Dynamic Performance (see Table 28-43).
	Updated the minimum value for parameter PM6 and the maximum value for parameter PM7 in the Parallel Master Port Read Timing Requirements (see Table 28-49).
	Added DMA Read/Write Timing Requirements (see Table 28-51).

TABLE A-4: MAJOR SECTION UPDATES (CONTINUED)

TABLE A-4:	MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 29.0 "High Temperature Electrical Characteristics"	Updated all ambient temperature end range values to +150°C throughout the chapter.
	Updated the storage temperature end range to +160°C.
	Updated the maximum junction temperature from +145°C to +155°C.
	Updated the maximum values for High Temperature Devices in the Thermal Operating Conditions (see Table 29-2).
	Updated the ADC Module Specifications (12-bit Mode), removing all parameters with the exception of HAD33a (see Table 29-14).
	Updated the ADC Module Specifications (10-bit Mode), removing all parameters with the exception of HAD33b (see Table 29-16).
"Product Identification System"	Updated the end range temperature value for H (High) devices.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- · Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support