

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj32gp304-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See defini	tion when V	VIN = x							
C1BUFPNT1	0420		F3BF	P<3:0>			F2BF	P<3:0>			F1BP	<3:0>			F0BP<3:0>			0000
C1BUFPNT2	0422		F7BF	P<3:0>			F6BF	P<3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15B	P<3:0>			F14B	P<3:0>			F13BF	P<3:0>			F12BF	><3:0>		0000
C1RXM0SID	0430				SID<	10:3>					SID<2:0>		—	MIDE	_	EID<	17:16>	XXXX
C1RXM0EID	0432				EID<	15:8>							EID<	:7:0>				XXXX
C1RXM1SID	0434				SID<	10:3>				SID<2:0> — MIDE —				EID<	17:16>	XXXX		
C1RXM1EID	0436		EID<15:8> EID<7:0>					7:0>		_		XXXX						
C1RXM2SID	0438				SID<	10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	XXXX
C1RXM2EID	043A		EID<15:8>									EID<	7:0>				XXXX	
C1RXF0SID	0440		SID<10:3>						SID<2:0> — EXIDE — EID<17:					17:16>	XXXX			
C1RXF0EID	0442		EID<15:8>									EID<	7:0>				XXXX	
C1RXF1SID	0444		SID<10:3>						SID<2:0>		—	EXIDE	—	EID<	17:16>	XXXX		
C1RXF1EID	0446		EID<15:8>							EID<	7:0>	1	1		XXXX			
C1RXF2SID	0448		SID<10:3>						SID<2:0>		—	EXIDE	—	EID<	17:16>	XXXX		
C1RXF2EID	044A				EID<	15:8>				EID<7:0>							XXXX	
C1RXF3SID	044C					10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	XXXX
C1RXF3EID	044E					15:8>				EID<7:0>							XXXX	
C1RXF4SID	0450					10:3>				SID<2:0> — EXIDE — EID<17					17:16>	XXXX		
C1RXF4EID	0452					15:8>						EID<7:0>						XXXX
C1RXF5SID	0454					10:3>				SID<2:0> — EXIDE — EID<17:					17:16>	XXXX		
C1RXF5EID	0456					15:8>							EID<			1		XXXX
C1RXF6SID	0458					10:3>					SID<2:0>			EXIDE	—	EID<	17:16>	XXXX
C1RXF6EID	045A					15:8>							EID<					XXXX
C1RXF7SID	045C					10:3>					SID<2:0>			EXIDE	—	EID<	17:16>	XXXX
C1RXF7EID	045E					15:8>							EID<					XXXX
C1RXF8SID	0460		SID<10:3>							SID<2:0>		-	EXIDE	—	EID<	17:16>	XXXX	
C1RXF8EID	0462					15:8>					010 40-0		EID<	-			17.10	XXXX
C1RXF9SID	0464					10:3>					SID<2:0>			EXIDE	—	EID<	17:16>	XXXX
C1RXF9EID	0466					15:8>					010 40-0		EID<				17.10	XXXX
C1RXF10SID	0468					10:3>					SID<2:0>			EXIDE	—	EID<	17:16>	xxxx xxxx
C1RXF10EID	046A					15:8>							EID<	7:0>				

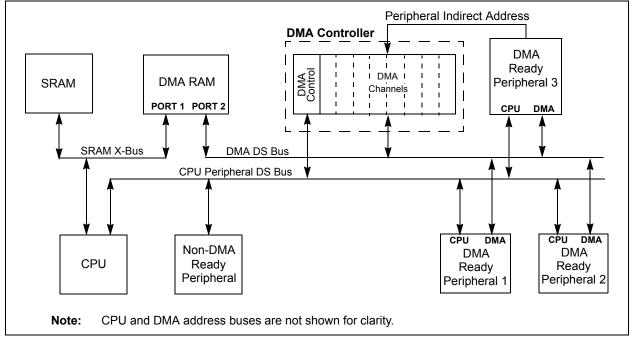
TABLE 4-18: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1 (FOR PIC24HJ128GP502/504 AND PIC24HJ64GP502/504)

DS70293G-page 40

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

The DMA controller features eight identical data transfer channels.


Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- Eight DMA channels
- Register Indirect with Post-increment Addressing mode
- Register Indirect without Post-increment Addressing mode
- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete

- Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or Automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat block transfer modes
- Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source
- · Debug support features

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

FIGURE 8-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS

8.3 DMA Control Registers

D 2 1 1	D *** *	D # • * •	D # • * *	D #14.4							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
CHEN	SIZE	DIR	HALF	NULLW		—					
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
	—	AMOD	E<1:0>			MODE	<1:0>				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own				
bit 15	CHEN: Char	nel Enable bit									
	1 = Channel	enabled									
	0 = Channel	disabled									
bit 14	SIZE: Data T	ransfer Size bit									
	1 = Byte										
		 0 = Word DIR: Transfer Direction bit (source/destination bus select) 									
bit 13					-						
		m DMA RAM ao m peripheral ad									
bit 12		Block Transfer									
51172		lock transfer co	•	•		een moved					
		lock transfer co									
bit 11		I Data Periphera									
	1 = Null data	write to periphe	eral in addition	n to DMA RAM	write (DIR bit r	nust also be clea	ar)				
	0 = Normal c	peration									
bit 10-6	Unimplemer	nted: Read as '	0'								
bit 5-4	AMODE<1:0	>: DMA Chann	el Operating I	Mode Select bi	ts						
		ed (acts as Peri			node)						
		eral Indirect Add									
		r Indirect withou r Indirect with F									
bit 3-2	0	nted: Read as '		it mode							
bit 0 2 bit 1-0		: DMA Channel		ode Select hits							
bit i o						each DMA RAM	buffer)				
		ious, Ping-Pong					building				
	01 = One-Sh	ot, Ping-Pong r	nodes disable	ed							
	00 = Continu	ious, Ping-Pong	modes disat	bled							

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

10.0 POWER-SAVING FEATURES

- **Note 1:** This data sheet summarizes the features the PIC24HJ32GP302/304. of PIC24HJ64GPX02/X04 and of PIC24HJ128GPX02/X04 families devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet. refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices can manage power consumption in four ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake up.

10.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode

11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See **"Pin Diagrams"** for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The AD1PCFGL and TRIS registers control the operation of the analog-to-digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

The AD1PCFGL register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP, as shown in Example 11-1.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the PIC24HJ32GP302/304, PIC24HJ64GPX02/ X04 and PIC24HJ128GPX02/X04 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 21 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-of-state.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

MOV	0xFF00, W0	; Configure PORTB<15:8> as inputs
MOV	WO, TRISBB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
btss	PORTB, #13	; Next Instruction

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

REGISTER 11-7: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		-	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_	OCFAR<4:0>				
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	e at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknowr			nown			
•							

bit 15-5 Unimplemented: Read as '0'

bit 4-0	OCFAR<4:0>: Assign Output Compare A (OCFA) to the corresponding RPn pin
DIL 4 -0	OCIAN 4.0/. Assign Output Compare A (OCIA) to the corresponding IV in pin

11111 = Input tied to Vss 11001 = Input tied to RP25

.

• 00001 = Input tied to RP1 00000 = Input tied to RP0

REGISTER		R19: PERIPHE	_			-			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
—	—	—			U2CTSR<4:)>			
bit 15							bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_	_	_			U2RXR<4:0	>			
bit 7							bit (
Legend:									
R = Readab	le bit	W = Writable b	bit	U = Unimple	mented bit, rea	ad as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared			x = Bit is unknown		
	• • 00001 = Inp	ut tied to RP25							
bit 7-5	•	ut tied to RP0 nted: Read as '0	,						
bit 4-0	•	>: Assign UART2		2RX) to the co	rresponding R	Pn nin			
511 4-0	11111 = Inp	ut tied to Vss ut tied to RP25				i ii piii			
	•								
	•								
	•								
		ut tied to RP1							

00000 = Input tied to RP0

REGISTER 11-19: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTERS 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—			RP9R<4:0>	•				
						bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—			RP8R<4:0>	•				
						bit 0			
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown						
			 U-0 U-0 R/W-0 it W = Writable bit	— — — U-0 U-0 R/W-0 — — — it W = Writable bit U = Unimpler	— — RP9R<4:0> U-0 U-0 R/W-0 R/W-0 — — — RP8R<4:0> it W = Writable bit U = Unimplemented bit, real	— — RP9R<4:0> U-0 U-0 R/W-0 R/W-0 R/W-0 — — RP8R<4:0> RP8R<4:0>			

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP9R<4:0>:** Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP8R<4:0>:** Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-20: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTERS 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP11R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP10R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP11R<4:0>:** Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 11-2 for peripheral function numbers)

12.2 Timer1 Control Register

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	—	TSIDL	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
_	TGATE	TCKPS	S<1:0>		TSYNC	TCS	—
bit 7							bit 0

Legend:				
R = Readal	ble bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	TON: Time			
		16-bit Timer1		
bit 11	•	16-bit Timer1		
bit 14	-	nented: Read as '0'		
bit 13		op in Idle Mode bit	on dovice entere Idle mode	
		ue module operation in Idle	en device enters Idle mode	
bit 12-7		nented: Read as '0'		
bit 6	-	imer1 Gated Time Accumul	ation Enable bit	
	When TCS	S = 1:		
	This bit is			
	When TCS			
		time accumulation enabled time accumulation disabled		
bit 5-4				
DIL 3-4	11 = 1:25	:0>: Timer1 Input Clock Pre		
	10 = 1:64			
	01 = 1:8			
	00 = 1:1			
bit 3	-	nented: Read as '0'		
bit 2		ïmer1 External Clock Input	Synchronization Select bit	
	<u>When TCS</u>	<u>S = 1:</u> ronize external clock input		
	•	t synchronize external clock	cinput	
	When TCS	•		
	This bit is			
bit 1	TCS: Time	er1 Clock Source Select bit		
		al clock from pin T1CK (on al clock (FcY)	the rising edge)	
bit 0	Unimplem	nented: Read as '0'		
	-			

NOTES:

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

25.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/PIC24H Family Reference Manual"*. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices include the following features that are intended to maximize application flexibility and reliability, and minimize cost through elimination of external components:

- · Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming™ (ICSP™)
- In-Circuit Emulation

25.1 Configuration Bits

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices provide nonvolatile memory implementation for device configuration bits. Refer to **Section 25. "Device Configuration"** (DS70194), in the *"dsPIC33F/PIC24H Family Reference Manual"* for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 25-1.

Note that address 0xF80000 is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

The Device Configuration register map is shown in Table 25-1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	RBS<	:1:0>		_		BSS<2:0> BW		BWRP
0xF80002	FSS ⁽¹⁾	RSS<	:1:0>	_	_		SSS<2:0>		SWRP
0xF80004	FGS	_	_	_		_	— GSS<1:0> G\		GWRP
0xF80006	FOSCSEL	IESO	_	_	_	_	FNOSC<2:0>		
0xF80008	FOSC	FCKSN	1<1:0>	IOL1WAY	_	_	OSCIOFNC POSCMD<1:0		1D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS	_	WDTPRE		WDTPOST<3:0>		
0xF8000C	FPOR	Reserved ⁽²⁾ ALTI2C — FPWRT<2:			/RT<2:0>				
0xF8000E	FICD	Reserv	/ed ⁽³⁾	JTAGEN	—	_	—	ICS<	<1:0>
0xF80010	FUID0				User Unit ID) Byte 0			
0xF80012	FUID1		User Unit ID Byte 1						
0xF80014	FUID2		User Unit ID Byte 2						
0xF80016	FUID3		User Unit ID Byte 3						

TABLE 25-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, read as '0'.

Note 1: This Configuration register is not available and reads as 0xFF on PIC24HJ32GP302/304 devices.

2: These bits are reserved and always read as '1'.

3: These bits are reserved for use by development tools and must be programmed as '1'.

TABLE 25-2:	PIC24H CONFIGURATION BITS DESCRIPTION					
Bit Field	Register	RTSP Effect	Description			
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment can be written 0 = Boot segment is write-protected			
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment			
			Boot space is 1K Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0007FE 010 = High security; boot program Flash segment ends at 0x0007FE			
			Boot space is 4K Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x001FFE			
			001 = High security; boot program Flash segment ends at 0x001FFE			
			Boot space is 8K Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x003FFE			
			000 = High security; boot program Flash segment ends at 0x003FFE			
RBS<1:0> ⁽¹⁾	FBS	Immediate	Boot Segment RAM Code Protection Size 11 = No Boot RAM defined 10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes 00 = Boot RAM is 1024 bytes			
SWRP ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment Program Flash Write-Protect bit 1 = Secure Segment can bet written 0 = Secure Segment is write-protected			
SSS<2:0> ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment Program Flash Code Protection Size (Secure segment is not implemented on 32K devices) X11 = No Secure program flash segment			
			Secure space is 4K IW less BS 110 = Standard security; secure program flash segment starts at End of BS, ends at 0x001FFE			
			010 = High security; secure program flash segment starts at End of BS, ends at 0x001FFE			
			Secure space is 8K IW less BS 101 = Standard security; secure program flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program flash segment starts at			
			End of BS, ends at 0x003FFE Secure space is 16K IW less BS 100 = Standard security; secure program flash segment starts			
			at End of BS, ends at 007FFEh 000 = High security; secure program flash segment starts at End of BS, ends at 0x007FFE			

TABLE 25-2: PIC24H CONFIGURATION BITS DESCRIPTION

Note 1: This Configuration register is not available on PIC24HJ32GP302/304 devices.

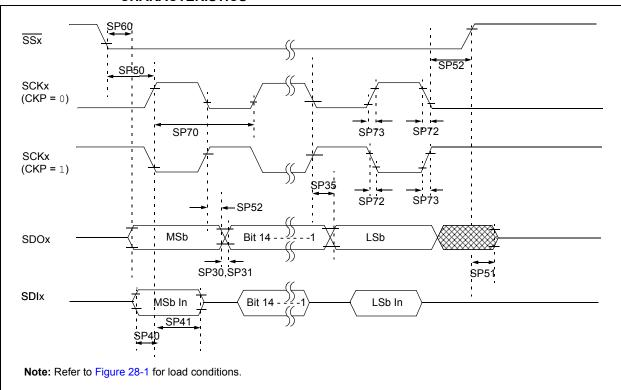


FIGURE 28-14: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 28-35:	SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
	REQUIREMENTS

АС СНА	AC CHARACTERISTICS			erating rwise st nperatur	ated) e -40°	C ≤TA ≤+	V to 3.6V 85°C for Industrial 125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency		_	11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—			ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow to SCKx \uparrow or SCKx Input$	120	_	_	ns	—
SP51	TssH2doZ	SSx	10	_	50	ns	-
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4

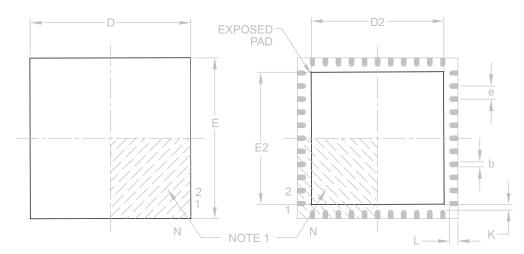
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

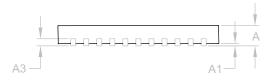
4: Assumes 50 pF load on all SPIx pins.

AC CHA	ARACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Мах	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	_	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	_	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	_	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	_	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	_	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾		300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	_	
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode ⁽²⁾	40	—	ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μs	_	
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽²⁾	0.2	_	μs		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	After this period the	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	_	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μs		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	ns	_	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	—	
		From Clock	400 kHz mode	—	1000	ns	—	
			1 MHz mode ⁽²⁾	—	400	ns	— —	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be	
			400 kHz mode	1.3	—	μs	free before a new	
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start	
IM50	Св	Bus Capacitive L	bading	—	400	pF	— —	
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	See Note 3	


Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70235) in the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual chapters.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.


44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

BOTTOM VIEW

	Units		MILLIMETERS			
	Dimension Limits			MAX		
Number of Pins	N		44			
Pitch	е		0.65 BSC			
Overall Height	A	0.80 0.90 1.00				
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.30	6.45	6.80		
Overall Length	D	8.00 BSC				
Exposed Pad Length	D2	6.30	6.45	6.80		
Contact Width	b	0.25	0.30	0.38		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	К	0.20	-	-		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

Section Name	Update Description
Section 10.0 "Power-Saving	Added the following registers:
Features"	 PMD1: Peripheral Module Disable Control Register 1 (Register 10-1) PMD2: Peripheral Module Disable Control Register 2 (Register 10-2) PMD3: Peripheral Module Disable Control Register 3 (Register 10-3)
Section 11.0 "I/O Ports"	Removed Table 11-1 and added reference to pin diagrams for I/O pin availability and functionality.
	Added paragraph on ADPCFG register default values to Section 11.3 "Configuring Analog Port Pins".
	Added Note box regarding PPS functionality with input mapping to Section 11.6.2.1 "Input Mapping" .
Section 16.0 "Serial Peripheral Interface (SPI)"	Added Note 2 and 3 to the SPIxCON1 register (see Register 16-2).
Section 18.0 "Universal	Updated the Notes in the UxMode register (see Register 18-1).
Asynchronous Receiver Transmitter (UART)"	Updated the UTXINV bit settings in the UxSTA register (see Register 18-2).
Section 19.0 "Enhanced CAN (ECAN™) Module"	Changed bit 11 in the ECAN Control Register 1 (CiCTRL1) to Reserved (see Register 19-1).
Section 20.0 "10-bit/12-bit Analog-to- Digital Converter (ADC1)"	Replaced the ADC1 Module Block Diagrams with new diagrams (see Figure 20-1 and Figure 20-2).
	Updated bit values for ADCS<7:0> and added Notes 1 and 2 to the ADC1 Control Register 3 (AD1CON3) (see Register 20-3).
	Added Note 2 to the ADC1 Input Scan Select Register Low (AD1CSSL) (see Register 20-7).
	Added Note 2 to the ADC1 Port Configuration Register Low (AD1PCFGL) (see Register 20-8).
Section 21.0 "Comparator Module"	Updated the Comparator Voltage Reference Block Diagram (see Figure 21-2).
Section 22.0 "Real-Time Clock and Calendar (RTCC)"	Updated the minimum positive adjust value for CAL<7:0> in the RTCC Calibration and Configuration (RCFGCAL) Register (see Register 22-1).
Section 25.0 "Special Features"	Added Note 1 to the Device Configuration Register Map (see Table 25-1).
	Updated Note 1 in the PIC24H Configuration Bits Description (see Table 25-2).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

CiRXOVF2 register	221
CiTRmnCON register	
-	
CiVEC register	
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)	
ECAN1 Register Map (C1CTRL1.WIN = 0)	
ECAN1 Register Map (C1CTRL1.WIN = 1)	.40
Frame Types	
Modes of Operation	
•	
Overview	199
ECAN Registers	
Acceptance Filter Enable Register (CiFEN1)	213
Acceptance Filter Extended Identifier Register n	
(CiRXFnEID)	217
Acceptance Filter Mask Extended Identifier Register	
(CiRXMnEID)	
Acceptance Filter Mask Standard Identifier Register	n
(CiRXMnSID)	219
Acceptance Filter Standard Identifier Register n	
	016
(CiRXFnSID)	
Baud Rate Configuration Register 1 (CiCFG1)	
Baud Rate Configuration Register 2 (CiCFG2)	212
Control Register 1 (CiCTRL1)	204
Control Register 2 (CiCTRL2)	
FIFO Control Register (CiFCTRL)	
FIFO Status Register (CiFIFO)	
Filter 0-3 Buffer Pointer Register (CiBUFPNT1)	213
Filter 12-15 Buffer Pointer Register (CiBUFPNT4)	
Filter 15-8 Mask Selection Register (CiFMSKSEL2).	
Filter 4-7 Buffer Pointer Register (CiBUFPNT2)	
Filter 7-0 Mask Selection Register (CiFMSKSEL1)	
Filter 8-11 Buffer Pointer Register (CiBUFPNT3)	214
Interrupt Code Register (CiVEC)	206
Interrupt Enable Register (CiINTE)	
Interrupt Flag Register (CiINTF)	
	209
Receive Buffer Full Register 1 (CiRXFUL1)	
Receive Buffer Full Register 2 (CiRXFUL2)	220
Receive Buffer Overflow Register 2 (CiRXOVF2)	221
Receive Overflow Register (CiRXOVF1)	
ECAN Transmit/Receive Error Count Register (CiEC)	211
ECAN TRAISING Receive Litor Count Register (CIEC)	211
ECAN TX/RX Buffer m Control Register (CiTRmnCON)	
Electrical Characteristics	295
AC	348
Enhanced CAN Module	199
Equations	
	400
Device Operating Frequency	
Errata	3
r .	
F	
Flash Program Memory	. 53
Control Registers	
5	
Operations	
Programming Algorithm	
RTSP Operation	. 54
Table Instructions	. 53
Flexible Configuration	
	210
Н	
High Temperature Electrical Characteristics	362
1	
1	
I/O Ports	135
Parallel I/O (PIO)	
Write/Read Timing	
	130
I ² C	
Operating Modes	185
Registers	
Registers In-Circuit Debugger	185

In-Circuit Emulation	273
In-Circuit Serial Programming (ICSP)	273, 279
Input Capture	
Registers	173
Input Change Notification	136
Instruction Addressing Modes	
File Register Instructions	47
Fundamental Modes Supported	
MCU Instructions	
Move and Accumulator Instructions	
Other Instructions	
Instruction Set	
Overview	285
Summary	283
Instruction-Based Power-Saving Modes	129
Idle	130
Sleep	129
Internal RC Oscillator	
Use with WDT	278
Internet Address	387
Interrupt Control and Status Registers	
IECx	73
IFSx	73
INTCON1	73
INTCON2	73
IPCx	
Interrupt Setup Procedures	106
Initialization	106
Interrupt Disable	106
Interrupt Service Routine	106
Trap Service Routine	
Interrupt Vector Table (IVT)	
Interrupts Coincident with Power Save Instructions .	130
J	

JTAG Boundary Scan Interface	273
JTAG Interface	279

Μ

Memory Organization	25
Microchip Internet Web Site	. 387
Modes of Operation	
•	000
Disable	. 202
Initialization	. 202
Listen All Messages	. 202
Listen Only	. 202
Loopback	
Normal Operation	. 202
MPLAB ASM30 Assembler, Linker, Librarian	. 292
MPLAB Integrated Development Environment Software.	. 291
MPLAB PM3 Device Programmer	. 294
MPLAB REAL ICE In-Circuit Emulator System	. 293
MPLINK Object Linker/MPLIB Object Librarian	
Multi-Bit Data Shifter	

Ν

NVM Module Register Map	
0	
Open-Drain Configuration	
Output Compare	175
Р	
Packaging	
Details	
Marking	363

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Temperature Ran	amily – v Size (ag (if a ge	KB) ppli		Examples: a) PIC24HJ32GP302-E/SP: General Purpose PIC24H, 32 KB program memory, 28-pin, Extended temperature, SPDIP package.
Architecture:	24	=	16-bit Microcontroller	
Flash Memory Family:	HJ	=	Flash program memory, 3.3V	
Product Group:	GP2 GP3 GP8	= = =		
Pin Count:	02 04	= =		
Temperature Range:	I E H	= = =	-40° C to+85° C (Industrial) -40° C to+125° C (Extended) -40° C to+150° C (High)	
Package:	SP SO ML MM PT	= = = =	Plastic Small Outline - Wide - 300 mil body (SOIC) Plastic Quad, No Lead Package - 8x8 mm body (QFN)	