

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj32gp304t-i-ml

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 CPU Resources

Many useful resources related to the CPU are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en534555

3.4.1 KEY RESOURCES

- Section 2. "CPU" (DS70204)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_		_	_	—	_	_	_		
bit 15							bit 8		
				D (0, 0)	5444.0				
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0		
		—	_	IPL3 ⁽¹⁾	PSV	_	—		
bit 7							bit 0		
Legend:		C = Clear onl	y bit						
R = Readab	ole bit	W = Writable	bit	-n = Value at					
0' = Bit is cl	eared	ʻx = Bit is unk	nown	U = Unimple	mented bit, read	l as '0'			
bit 15-4	Unimplem	ented: Read as '	0'						
bit 3	IPL3: CPU	Interrupt Priority	Level Status	bit 3 ⁽¹⁾					
	1 = CPU in	1 = CPU interrupt priority level is greater than 7							
		0 = CPU interrupt priority level is 7 or less							
bit 2	PSV: Prog	PSV: Program Space Visibility in Data Space Enable bit							
	1 = Program space visible in data space								

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

0 = Program space not visible in data space

Unimplemented: Read as '0'

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

bit 1-0

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E		See definition when WIN = x															
C1BUFPNT1	0420		F3BF	P<3:0>			F2BF	P<3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422		F7BF	P<3:0>			F6BF	P<3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15B	P<3:0>			F14B	P<3:0>			F13BF	P<3:0>			F12BF	><3:0>		0000
C1RXM0SID	0430				SID<	10:3>					SID<2:0>		—	MIDE	_	EID<	17:16>	XXXX
C1RXM0EID	0432				EID<	15:8>							EID<	:7:0>				XXXX
C1RXM1SID	0434				SID<	10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	XXXX
C1RXM1EID	0436				EID<	15:8>							EID<	7:0>		_		XXXX
C1RXM2SID	0438				SID<	10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	XXXX
C1RXM2EID	043A				EID<	15:8>							EID<	7:0>				XXXX
C1RXF0SID	0440				SID<	10:3>				SID<2:0> — EXIDE — EID<17:16>					17:16>	XXXX		
C1RXF0EID	0442				EID<	15:8>				EID<7:0>						XXXX		
C1RXF1SID	0444				SID<	10:3>				SID<2:0> — EXIDE — EID<17:16>			17:16>	XXXX				
C1RXF1EID	0446				EID<	15:8>				EID<7:0>					XXXX			
C1RXF2SID	0448				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	XXXX
C1RXF2EID	044A				EID<	15:8>				EID<7:0>					XXXX			
C1RXF3SID	044C					10:3>				SID<2:0> — EXIDE — EID<17:16				17:16>	XXXX			
C1RXF3EID	044E					15:8>				EID<7:0>					XXXX			
C1RXF4SID	0450					10:3>				SID<2:0> — EXIDE — EID<17:16					17:16>	XXXX		
C1RXF4EID	0452					15:8>							EID<			1		XXXX
C1RXF5SID	0454					10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	XXXX
C1RXF5EID	0456					15:8>							EID<			1		XXXX
C1RXF6SID	0458					10:3>					SID<2:0>			EXIDE	—	EID<	17:16>	XXXX
C1RXF6EID	045A					15:8>							EID<					XXXX
C1RXF7SID	045C					10:3>					SID<2:0>			EXIDE	—	EID<	17:16>	XXXX
C1RXF7EID	045E					15:8>							EID<					XXXX
C1RXF8SID	0460					10:3>					SID<2:0>		-	EXIDE	—	EID<	17:16>	XXXX
C1RXF8EID	0462					15:8>					010 40-0		EID<	-			17.10	XXXX
C1RXF9SID	0464					10:3>					SID<2:0>			EXIDE	—	EID<	17:16>	XXXX
C1RXF9EID	0466					15:8>					010 40-0		EID<				17.10	XXXX
C1RXF10SID	0468		SID<10:3>						SID<2:0>			EXIDE	—	EID<	17:16>	XXXX		
C1RXF10EID	046A					15:8>							EID<	7:0>				

TABLE 4-18: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1 (FOR PIC24HJ128GP502/504 AND PIC24HJ64GP502/504)

DS70293G-page 40

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

4.6 Interfacing Program and Data Memory Spaces

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit (MSb) of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the MSb of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-36 and Figure 4-6 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

	Access	Program Space Address								
Access Type	Space	<23> <22:16> <		<15>	<14:1>	<0>				
Instruction Access	User	0		PC<22:1>						
(Code Execution)			0xx xxxx x	XXX XXXX	x xxxx xxx0					
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>						
(Byte/Word Read/Write)		0	XXX XXXX	xx xxxx xxxx						
	Configuration	TB	LPAG<7:0>	Data EA<15:0>						
		1xxx xxxx		XXXX XXXX XXXX XXXX						
Program Space Visibility	User	0 PSVPAG<7		/:0>	Data EA<14	0>(1)				
(Block Remap/Read)		0	XXXX XXXX	K	XXX XXXX XXXX XXXX					

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T2IP<2:0>		—		OC2IP<2:0>	
oit 15							bi
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		IC2IP<2:0>		—		DMA0IP<2:0>	
pit 7							bi
_egend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
							00011
oit 15	Unimpleme	ented: Read as '	0'				
oit 14-12	T2IP<2:0>:	Timer2 Interrupt	Priority bits				
	111 = Interr	upt is priority 7 (highest prior	ity interrupt)			
	•						
	•						
		upt is priority 1					
		upt source is dis					
oit 11	•	ented: Read as '					
oit 10-8		>: Output Compa		-	rity bits		
	111 = Interr	rupt is priority 7 (nignest prior	ity interrupt)			
	•						
	•						
		upt is priority 1 upt source is dis	abled				
oit 7	Unimpleme	nted: Read as '	0'				
bit 6-4	IC2IP<2:0>	: Input Capture C	Channel 2 Int	errupt Priority b	oits		
	111 = Interr	upt is priority 7 (highest prior	ity interrupt)			
	•						
	•						
		upt is priority 1 upt source is dis	abled				
oit 3	Unimpleme	ented: Read as '	0'				
bit 2-0	DMA0IP<2:	0>: DMA Chann	el 0 Data Tra	ansfer Complete	e Interrupt Prio	rity bits	
		upt is priority 7 (
	•						
	•						
	001 = Interr	upt is priority 1					
		unt source is dis	ahlad				

000 = Interrupt source is disabled

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- bit 3 CF: Clock Fail Detect bit (read/clear by application)
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2 Unimplemented: Read as '0'
- bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to Section 39. "Oscillator (Part III)" (DS70308) in the "dsPIC33F/PIC24H Family Reference Manual" (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - **3:** This register is reset only on a Power-on Reset (POR).

10.5 Power-Saving Resources

Many useful resources related to power-saving modes are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

10.5.1 KEY RESOURCES

- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

11.6.2.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 11-15 through Register 11-27). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 11-2 and Figure 11-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

TABLE 11-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

Function	RPnR<4:0>	Output Name	
NULL	00000	RPn tied to default port pin	
C1OUT	00001	RPn tied to Comparator1 Output	
C2OUT	00010	RPn tied to Comparator2 Output	
U1TX	00011	RPn tied to UART1 Transmit	
U1RTS	00100	RPn tied to UART1 Ready To Send	
U2TX	00101	RPn tied to UART2 Transmit	
U2RTS	00110	RPn tied to UART2 Ready To Send	
SDO1	00111	RPn tied to SPI1 Data Output	
SCK1	01000	RPn tied to SPI1 Clock Output	
SS1	01001	RPn tied to SPI1 Slave Select Output	
SDO2	01010	RPn tied to SPI2 Data Output	
SCK2	01011	RPn tied to SPI2 Clock Output	
SS2	01100	RPn tied to SPI2 Slave Select Output	
C1TX	10000	RPn tied to ECAN1 Transmit	
OC1	10010	RPn tied to Output Compare 1	
OC2	10011	RPn tied to Output Compare 2	
OC3	10100	RPn tied to Output Compare 3	
OC4	10101	RPn tied to Output Compare 4	

12.2 Timer1 Control Register

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	—	TSIDL	—	—	—	_	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
_	TGATE	TCKPS	S<1:0>		TSYNC	TCS	—
bit 7							bit 0

Legend:				
R = Readal	ble bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	TON: Time			
		16-bit Timer1		
bit 11	•	16-bit Timer1		
bit 14	-	nented: Read as '0'		
bit 13		op in Idle Mode bit	on dovice entere Idle mode	
		ue module operation in Idle	en device enters Idle mode	
bit 12-7		nented: Read as '0'		
bit 6	-	imer1 Gated Time Accumul	ation Enable bit	
	When TCS	S = 1:		
	This bit is			
	When TCS			
		time accumulation enabled time accumulation disabled		
bit 5-4				
DIL 3-4	11 = 1:25	:0>: Timer1 Input Clock Pre		
	10 = 1:64			
	01 = 1:8			
	00 = 1:1			
bit 3	-	nented: Read as '0'		
bit 2		ïmer1 External Clock Input	Synchronization Select bit	
	<u>When TCS</u>	<u>S = 1:</u> ronize external clock input		
	•	t synchronize external clock	cinput	
	When TCS	•		
	This bit is			
bit 1	TCS: Time	er1 Clock Source Select bit		
		al clock from pin T1CK (on al clock (Fcy)	the rising edge)	
bit 0	Unimplem	nented: Read as '0'		
	-			

REGISTER		N: TIMER CO		•	•						
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽²⁾	—	TSIDL ⁽¹⁾		—		—					
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0				
	TGATE ⁽²⁾ TCKPS<1:0> ⁽²⁾ — — TCS ⁽²⁾										
bit 7							bit				
Legend:											
R = Readabl	le bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ıd as '0'					
-n = Value at	POR	'1' = Bit is set		$(0)^{2}$ = Bit is cleared x = Bit is unknown							
							-				
bit 15	TON: Timery	On bit ⁽²⁾									
	1 = Starts 16-bit Timerx										
	0 = Stops 16-I	bit Timerx									
bit 14	Unimplement	ted: Read as 'o)'								
bit 13	TSIDL: Stop in Idle Mode bit ⁽¹⁾										
	1 = Discontinue timer operation when device enters Idle mode										
	0 = Continue timer operation in Idle mode										
bit 12-7	•	ted: Read as '									
bit 6	TGATE: Timerx Gated Time Accumulation Enable bit ⁽²⁾										
	When TCS = 1: This bit is ignored.										
	When TCS = 0:										
	1 = Gated time accumulation enabled										
	0 = Gated tim	e accumulatior	disabled								
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Presca	ale Select bits ⁽²⁾)						
	11 = 1:256 prescale value										
	10 = 1:64 prescale value 01 = 1:8 prescale value										
	00 = 1:1 pres										
bit 3-2	•	ted: Read as '()'								
bit 1	-	Clock Source S									
-	1 = External clock from TxCK pin										
	0 = Internal cl										
bit 0	Unimplement										

REGISTER 13-2: TxCON: TIMER CONTROL REGISTER (x = 3 OR 5)

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), these bits have no effect.

18.1 UART Helpful Tips

- In multi-node direct-connect UART networks, 1. UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock relative to the incoming UxRX bit timing is no longer synchronized, resulting in the first character being invalid. This is to be expected.

18.2 UART Resources

Many useful resources related to UART are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

```
Note: In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en532315
```

18.2.1 KEY RESOURCES

- Section 17. "UART" (DS70188)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit
Legend:		HC = Hardwa		C = Clear on	ly bit mented bit, read		
R = Readable		W = Writable					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15,13	11 = Reserve 10 = Interrupt transmit 01 = Interrupt operatio 00 = Interrupt	t when a charac buffer become t when the last ons are complet t when a charac	cter is transfe s empty character is s ed cter is transfe	rred to the Trai hifted out of th rred to the Trai	bits nsmit Shift Regi e Transmit Shift nsmit Shift Regi	Register; all tr	ansmit
oit 14		one character c nsmit Polarity Ir	•	insmit buller)			
bit 12	Unimplemen	ted: Read as ')'				
bit 11	1 = Send Syr cleared b	ansmit Break bi nc Break on nex by hardware up eak transmission	kt transmissio on completior	ı	llowed by twelve	e '0' bits, follow	ed by Stop bit
bit 10	UTXEN: Tran	ismit Enable bit	(1)				
		enabled, UxTX disabled, any p			orted and buffer	is reset. UxTX	pin controlled
bit 9	 UTXBF: Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written 						
bit 8	 TRMT: Transmit Shift Register Empty bit (read-only) 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed 0 = Transmit Shift Register is not empty, a transmission is in progress or queued 						
bit 7-6	URXISEL<1: 11 = Interrupt 10 = Interrupt 0x = Interrupt	0>: Receive Int t is set on UxRS t is set on UxRS	errupt Mode S SR transfer m SR transfer m ny character	Selection bits aking the rece aking the recei is received and	ive buffer full (i.e ive buffer 3/4 ful d transferred fro	e., has 4 data c Il (i.e., has 3 da	ta characters
Note 1: Do	for to Section 1	ח) "וואסד " (ח	270222) in th	- "deDIC??E/D	1024H Eamily E	Poforonao Man	ual" for

Note 1: Refer to **Section 17. "UART"** (DS70232) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x				
_	WAKFIL		_	_	SEG2PH<2:0>						
bit 15			·				bit				
	5 444										
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
SEG2PHTS	SAM		SEG1PH<2:02	>		PRSEG<2:0>					
bit 7							bit				
Legend:											
R = Readable	bit	W = Writable	e bit	U = Unimple	mented bit, re	ad as '0'					
-n = Value at F	POR	'1' = Bit is se	et	'0' = Bit is cle	eared	x = Bit is unkno	own				
bit 15	-	ited: Read as									
bit 14			Line Filter for V	Vake-up bit							
	 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up 										
				e-up							
bit 13-11	Unimplemented: Read as '0'										
bit 10-8	SEG2PH<2:0>: Phase Segment 2 bits										
	111 = Length is 8 x Tq										
	•										
	•										
	•										
	000 = Length is 1 x Tq										
bit 7	SEG2PHTS: Phase Segment 2 Time Select bit										
	 = Freely programmable = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater 										
bit 6				ION FIOCESSIN	g Time (IPT),	whichever is greate	51				
DILO		e of the CAN I		comple point							
	 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 										
bit 5-3)>: Phase Seg	=	e point							
	111 = Length	-									
	•	no o x ng									
	000 = Length	vie 1 v To									
bit 2-0	•		Timo Soamon	t bite							
DIL 2-0	PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ										
		INUXIU									
	-										
	•										
	•										
	000 = Length	IISIXIQ									

REGISTER 21-1: CMCON: COMPARATOR CONTROL REGISTER (CONTINUED)

bit 6	C1OUT: Comparator 1 Output bit $\frac{\text{When } \text{C1INV} = 0:}{1 = \text{C1 } \text{ViN} + \text{C1 } \text{ViN}}$ $0 = \text{C1 } \text{ViN} + \text{C1 } \text{ViN}$ $\frac{\text{When } \text{C1INV} = 1:}{0 = \text{C1 } \text{ViN} + \text{C1 } \text{ViN}}$ $1 = \text{C1 } \text{ViN} + \text{C1 } \text{ViN}$
bit 5	C2INV: Comparator 2 Output Inversion bit
	 1 = C2 output inverted 0 = C2 output not inverted
bit 4	C1INV: Comparator 1 Output Inversion bit 1 = C1 output inverted 0 = C1 output not inverted
bit 3	C2NEG: Comparator 2 Negative Input Configure bit 1 = Input is connected to VIN+ 0 = Input is connected to VIN- See Figure 21-1 for the comparator modes.
bit 2	C2POS: Comparator 2 Positive Input Configure bit 1 = Input is connected to VIN+ 0 = Input is connected to CVREF See Figure 21-1 for the comparator modes.
bit 1	C1NEG: Comparator 1 Negative Input Configure bit 1 = Input is connected to VIN+ 0 = Input is connected to VIN- See Figure 21-1 for the comparator modes.
bit 0	C1POS: Comparator 1 Positive Input Configure bit 1 = Input is connected to VIN+ 0 = Input is connected to CVREF See Figure 21-1 for the comparator modes.

- **Note 1:** If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See **Section 11.6 "Peripheral Pin Select"** for more information.
 - 2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.

21.3 Comparator Voltage Reference

21.3.1 CONFIGURING THE COMPARATOR VOLTAGE REFERENCE

The Voltage Reference module is controlled through the CVRCON register (Register 21-2). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR3:CVR0), with one range offering finer resolution. The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 21-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

REGISTER 22-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
_	MINTEN<2:0>			MINONE<3:0>					
bit 15							bit 8		
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
_	SECTEN<2:0>			SECONE<3:0>					
bit 7	<u>.</u>						bit 0		
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimplem	ented bit, rea	ad as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown			
bit 15	Unimpleme	nted: Read as 'd)'						
bit 14-12	MINTEN<2:	0>: Binary Code	d Decimal Va	alue of Minute's T	lens Digit; co	ntains a value fr	om 0 to 5		

bit 11-8MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9bit 7Unimplemented: Read as '0'

bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

24.0 PARALLEL MASTER PORT (PMP)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. "Parallel Master Port (PMP)" (DS70299) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be
 - available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory

FIGURE 24-1: PMP MODULE OVERVIEW

devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- Fully Multiplexed Address/Data Mode
- Demultiplexed or Partially Multiplexed Address/ Data Mode:
 - Up to 11 address lines with single Chip Select
 - Up to 12 address lines without Chip Select
- Single Chip Select Line
- Programmable Strobe Options:
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- · Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- Programmable Wait States
- Selectable Input Voltage Levels

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

FIGURE 28-24: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

FIGURE 28-26: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 28-49: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard C (unless oth Operating te	erwise stat	,		
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions
PM1	PMALL/PMALH Pulse Width	—	0.5 TCY	_	ns	—
PM2	Address Out Valid to PMALL/PMALH Invalid (address setup time)	—	0.75 TCY	—	ns	—
PM3	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	0.25 TCY	_	ns	—
PM5	PMRD Pulse Width		0.5 TCY	_	ns	_
PM6	PMRD or PMENB Active to Data In Valid (data setup time)	150	—	_	ns	—
PM7	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	—	5	ns	_

