

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj32gp304t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
	—	—	—	—	—	—						
bit 15							bit 8					
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0					
_	—	—	—	IPL3 ⁽¹⁾	PSV	—	—					
bit 7							bit 0					
Legend:		C = Clear only	/ bit									
R = Readable	e bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set						
0' = Bit is clea	ared	ʻx = Bit is unki	nown	U = Unimpler								
bit 15-4	Unimplemen	ted: Read as '	כי									
bit 3	IPL3: CPU Int	terrupt Priority	Level Status b	oit 3 ⁽¹⁾								
	1 = CPU inter	rupt priority lev	el is greater th	nan 7								
	0 = CPU interrupt priority level is 7 or less											
bit 2	PSV: Program	n Space Visibili	ty in Data Spa	ce Enable bit								
	1 = Program space visible in data space											

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

0 = Program space not visible in data space

Unimplemented: Read as '0'

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

bit 1-0

4.0 MEMORY ORGANIZATION

Note:	This data sheet summarizes the features of the PIC24HJ32GP302/304,
	PIC24HJ64GPX02/X04 and
	PIC24HJ128GPX02/X04 families of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	Section 4. "Program Memory"
	(DS70203) of the "dsPIC33F/PIC24H
	Family Reference Manual", which is avail-
	able from the Microchip web site
	(www.microchip.com).

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices is shown in Figure 4-1.

	PIC24HJ32GP302/304	PIC24HJ64GPX02/X04	PIC24HJ128GPX02/X04	
▲	GOTO Instruction Reset Address	GOTO Instruction	GOTO Instruction Reset Address	0x000000 0x000002
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table	0x000004
	Reserved		Reserved	0x0000FE 0x000100
	Alternate Vector Table	Alternate Vector Table	Alternate Vector Table	0x000104 0x0001FE
Space	User Program Flash Memory (11264 instructions)	User Program Flash Memory		0x000200 0x0057FE 0x005800
· Memory			User Program Flash Memory (44032 instructions)	0x00ABFE
User				0x00AC00
	Unimplemented			
	(Read '0's)	Unimplemented		0x0157FE
		(Read '0's)		0x015800
			Unimplemented	
			(Read '0's)	
				0x7FFFFE
Î	Reserved	Reserved	Reserved	0,00000
ory Space	Device Configuration Registers	Device Configuration Registers	Device Configuration Registers	0xF7FFFE 0xF80000 0xF80017
iration Mem	Reserved	Reserved	Reserved	0xF80018
Configu	DEVID (2)	DEVID (2)	DEVID (2)	0xFEFFFE 0xFF0000 0xFF0002
V	Reserved	Reserved	Reserved	OVEFEEE
Note	: Memory areas are no	t shown to scale.		

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address, as shown in Figure 4-2.

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in Section 7.1 "Interrupt Vector Table".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.2.5 DMA RAM

The PIC24HJ32GP302/304 devices contain 1 Kbytes of dual ported DMA RAM located at the end of X data PIC24HJ64GPX02/X04 space. The and PIC24HJ128GPX02/X04 devices contain 2 Kbytes of dual ported DMA RAM located at the end of X data space, and is a part of X data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note:	DMA RAM can be used for general									
	purpose data storage if the DMA functior									
	is not required in an application.									

FIGURE 4-3: DATA MEMORY MAP FOR PIC24HJ32GP302/304 DEVICES WITH 4 KB RAM

TABLE 4-28: PORTA REGISTER MAP FOR PIC24HJ128GP204/504, PIC24HJ64GP204/504 AND PIC24HJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	_	_	_	_	_	TRISA10	TRISA9	TRISA8	TRISA7	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
PORTA	02C2	_	_	_	-	_	RA10	RA9	RA8	RA7	_	_	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	_	_	_	-	_	LATA10	LATA9	LATA8	LATA7	_	_	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	02C6	—	_	-	_	_	ODCA10	ODCA9	ODCA8	ODCA7	_	—	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX
ODCB	02CE	_	_	_	_	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PORTC REGISTER MAP FOR PIC24HJ128GP204/504, PIC24HJ64GP204/504 AND PIC24HJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0	—	-	—	—	-	—	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC	02D2	_	_	_	_	_	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX
LATC	02D4	_	_	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	XXXX
ODCC	02D6	_	-	_	-	_	_	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	-	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: SYSTEM CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	-	—	—	_	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	_{XXXX} (1)
OSCCON	0742	_		COSC<2	:0>	—	N	NOSC<2:0>		CLKLOCK	IOLOCK	LOCK		CF	—	LPOSCEN	OSWEN	₀₃₀₀ (2)
CLKDIV	0744	ROI		DOZE<2:	:0>	DOZEN	FR	RCDIV<2:0	>	PLLPOS	ST<1:0>	—		F	PLLPRE<4	4:0>		3040
PLLFBD	0746	—	—		—	—	_	—	PLLDIV<8:0>						0030			
OSCTUN	0748	_	_	_		—	_	_	TUN<5:0>						0000			

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values dependent on type of Reset.

2: OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.

REGISTER /	-0. 11-51.1		LAG STAT	03 1201311			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF
bit 15					·		bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IF	IC7IF	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:			,				
R = Readable		vv = vvritable	DIT	U = Unimplei	mented bit, read		
-n = value at P	OR	= Bit is set		$0^{\circ} = Bit is cle$	eared	x = Bit is unkn	IOWN
bit 15		T2 Transmitter	Interrunt Fla	a Status hit			
bit 15	1 = Interrupt r	request has oc	curred	g olalus bil			
	0 = Interrupt r	equest has not	occurred				
bit 14	U2RXIF: UAF	RT2 Receiver Ir	nterrupt Flag	Status bit			
	1 = Interrupt r	equest has occ	curred				
hit 12		request has not	Coccurred	i+			
DIL 13	1 = Interrupt r	request has occ	curred	it.			
	0 = Interrupt r	request has not	occurred				
bit 12	T5IF: Timer5	Interrupt Flag S	Status bit				
	1 = Interrupt r	equest has occ	curred				
		equest has not	Coccurred				
DIUTI	1 = Interrunt r	request has occ	Status Dit				
	0 = Interrupt r	equest has not	occurred				
bit 10	OC4IF: Outpu	ut Compare Ch	annel 4 Interr	upt Flag Status	s bit		
	1 = Interrupt r 0 = Interrupt r	equest has occored	curred				
bit 9	OC3IF: Outpu	ut Compare Ch	annel 3 Interr	upt Flag Status	s bit		
	1 = Interrupt r 0 = Interrupt r	equest has occorequest has not	curred				
bit 8	DMA2IF: DM	A Channel 2 Da	ata Transfer (Complete Interr	upt Flag Status	bit	
	1 = Interrupt r	equest has occ	curred				
hit 7		anture Channe	8 Interrunt	Elan Status hit			
	1 = Interrupt r	request has occ	curred	i lag Status bit			
	0 = Interrupt r	equest has not	occurred				
bit 6	IC7IF: Input C	Capture Channe	el 7 Interrupt	Flag Status bit			
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	curred				
bit 5	Unimplemen	ted: Read as ')'				
bit 4	INT1IF: Exter	nal Interrupt 1	Flag Status b	it			
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 3	CNIF: Input C	hange Notifica	tion Interrupt	⊢lag Status bit			
	$\perp = \text{interrupt r}$ 0 = Interrupt r	equest has occ request has not	occurred				

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGIST
--

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
FORCE ⁽¹⁾		—	_	—	—	_	—					
bit 15							bit 8					
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0					
—				IRQSEL<6:0>	(2)							
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15	FORCE: Ford	e DMA Transfe	er bit ⁽¹⁾									
	1 = Force a single DMA transfer (Manual mode)											
				inin iequest								

bit 14-7 Unimplemented: Read as '0'

bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾

0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ

Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: Refer to Table 7-1 for a complete listing of IRQ numbers for all interrupt sources.

11.6.2.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 11-15 through Register 11-27). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 11-2 and Figure 11-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

TABLE 11-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

Function	RPnR<4:0>	Output Name
NULL	00000	RPn tied to default port pin
C10UT	00001	RPn tied to Comparator1 Output
C2OUT	00010	RPn tied to Comparator2 Output
U1TX	00011	RPn tied to UART1 Transmit
U1RTS	00100	RPn tied to UART1 Ready To Send
U2TX	00101	RPn tied to UART2 Transmit
U2RTS	00110	RPn tied to UART2 Ready To Send
SDO1	00111	RPn tied to SPI1 Data Output
SCK1	01000	RPn tied to SPI1 Clock Output
SS1	01001	RPn tied to SPI1 Slave Select Output
SDO2	01010	RPn tied to SPI2 Data Output
SCK2	01011	RPn tied to SPI2 Clock Output
SS2	01100	RPn tied to SPI2 Slave Select Output
C1TX	10000	RPn tied to ECAN1 Transmit
OC1	10010	RPn tied to Output Compare 1
OC2	10011	RPn tied to Output Compare 2
OC3	10100	RPn tied to Output Compare 3
OC4	10101	RPn tied to Output Compare 4

REGISTER 11-	3: RPINF	R3: PERIPHE	RAL PIN SE		FREGISTER	3	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—			T3CKR<4:0>	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			T2CKR<4:0>	>	
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at PO	R	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unki	nown
bit 12-8	T3CKR<4:0> T3CKR<4:0> T3CKR T4001 = Inpu T40000 = Inpu	•: Assign Timer ut tied to Vss ut tied to RP25 ut tied to RP1 ut tied to RP0 nted: Read as •: Assign Timer ut tied to Vss ut tied to RP25	3 External Clo	ock (T3CK) to t ock (T2CK) to t	he correspond	ing RPn pin ing RPn pin	

00000 = Input tied to RP0

19.4 ECAN Resources

Many useful resources related to ECAN are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

19.4.1 KEY RESOURCES

- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 19	9-6: CilNTF	ECAN™ IN	TERRUPT	FLAG REGIS	STER		
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	—	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15							bit 8
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit 0
Legend:		C = Writeable	bit, but only	0' can be writt	en to clear the b	it	
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	IOWN
			- 1				
Dit 15-14		ted: Read as		L :4			
DIT 13	1 = Transmitte	mitter in Error : er is in Rus Off	state Bus Off	DIT			
	0 = Transmitte	er is not in Bus	Off state				
bit 12	TXBP: Transr	mitter in Error S	State Bus Pas	sive bit			
	1 = Transmitte	er is in Bus Pa	ssive state				
	0 = Transmitte	er is not in Bus	Passive state	e 			
bit 11	RXBP: Receiver	ver in Error Sta	ite Bus Passiv	ve bit			
	0 = Receiver i	is not in Bus Passi	assive state				
bit 10	TXWAR: Tran	nsmitter in Erro	r State Warnii	ng bit			
	1 = Transmitte	er is in Error W	arning state	0			
	0 = Transmitte	er is not in Erro	or Warning sta	ate			
bit 9	RXWAR: Rec	eiver in Error S	State Warning	bit			
	\perp = Receiver i	is in Error war	ning state Narning state				
bit 8	EWARN: Tran	nsmitter or Rec	eiver in Frror	State Warning	ı bit		
2.1.0	1 = Transmitte	er or Receiver	is in Error Sta	te Warning sta	ate		
	0 = Transmitte	er or Receiver	is not in Error	State Warning	g state		
bit 7	IVRIF: Invalid	Message Rec	eived Interrup	ot Flag bit			
	1 = Interrupt F	Request has or	curred				
bit 6	• – Interrupt Request has not occurred WAKIE: Bus Wake-up Activity Interrupt Flog bit						
Sit 0	1 = Interrupt F	Request has or	curred	ag bit			
	0 = Interrupt F	Request has no	ot occurred				
bit 5	ERRIF: Error	Interrupt Flag	bit (multiple s	ources in CilN	TF<13:8> registe	er)	
	1 = Interrupt F	Request has or	curred				
L:1 4	0 = Interrupt F	Request has no					
DIT 4		ted: Read as	U torrupt Elog b	:4			
DIL 3	FIFOIF: FIFO Almost Full Interrupt Flag bit						
	0 = Interrupt F	Request has no	ot occurred				
bit 2	RBOVIF: RX	Buffer Overflov	v Interrupt Fla	ag bit			
	1 = Interrupt F	Request has or	curred				
1. 11. A	0 = Interrupt F	Request has no	ot occurred				
bit 1	1 = Interrupt F	fer Interrupt FI	ag bit				
	0 = Interrupt F	Request has no	ot occurred				
bit 0	TBIF: TX Buff	fer Interrupt Fla	ag bit				
	1 = Interrupt F	Request has or	curred				
	0 = Interrupt F	Request has no	ot occurred				

22.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70301) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices, and its operation.

Some of the key features of this module are:

- Time: hours, minutes and seconds
- 24-hour format (military time)
- · Calendar: weekday, date, month and year
- Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- BCD format for compact firmware
- Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 22-1: RTCC BLOCK DIAGRAM

© 2007-2012 Microchip Technology Inc.

23.5 Programmable CRC Registers

REGISTER 23-1: CRCCON: CRC CONTROL REGISTER

U-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
	_	CSIDL			VWORD<4:0)>	
bit 15							bit 8
R-0	R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT	—	CRCGO		PLE	N<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplement	ted: Read as '0	,				
bit 13	CSIDL: CRC	Stop in Idle Mo	ode bit				
	1 = Discontin 0 = Continue	ue module opera	eration when o tion in Idle mo	device enters lo ode	dle mode		
bit 12-8	VWORD<4:0	>: Pointer Valu	e bits				
	Indicates the greater than 7	number of val 7, or 16 when F	id words in th PLEN<3:0> is	ne FIFO. Has a less than or eq	a maximum va jual to 7.	alue of 8 when	PLEN<3:0> is
bit 7	CRCFUL: FIF	O Full bit					
	1 = FIFO is f	ull					
	0 = FIFO is n	not full					
bit 6	CRCMPT: FIF	O Empty Bit					
	1 = FIFO is empty						
	0 = FIFO is not empty						
bit 5	Unimplemented: Read as '0'						
bit 4	CRCGO: Start CRC bit						
	1 = Start CRC serial shifter						
hit 3.0			ath hite	is empty			
DIL 3-0	Penotes the l	enath of the pr	iyui Dilə İvnomial to br	a apparated mi	nue 1		
	Denotes the length of the polynomial to be generated minus 1.						

25.2 On-Chip Voltage Regulator

All of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 Ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 25-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 28-13 located in Section 28.1 "DC Characteristics".

Note:	It is important for the low-ESR capacitor to
	be placed as close as possible to the VCAP
	pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 25-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

25.3 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

TABLE 25-5: CODE FLASH SECURITY SEGMENT SIZES FOR 128 KB DEVICES

CONFIG BITS	BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
SSS<2:0> = x11 0K	VS = 256 IW 0x00000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x002000h 0x0007FEh 0x002000h 0x002000h 0x0000h 0x001FFEh 0x002000h 0x0000h 0x001FFEh 0x002000h 0x002000h 0x00000h 0x007FFEh 0x008000h 0x008000h 0x0010000h 0x010000h 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh BS = 768 IW 0x0007FEh 0x0007FEh 0x000800h 0x00200h 0x0007FEh 0x000200h 0x0007FEh 0x002000h 0x0007FFEh 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x007FFEh 0x008000h 0x007FFEh 0x008000h 0x0007FFEh 0x010000h 0x010000h 0x0157FEh 0x0157FEh	VS = 256 IW 0x00000h 0x0001FEh 0x000200h BS = 3840 IW 0x0007FEh 0x0007FEh 0x0000h 0x0007FEh 0x002000h 0x0000h 0x003FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x001000h 0x01000h 0x01000h 0x0157FEh	VS = 256 IW 0x000000h BS = 7936 IW 0x000200h 0x0007FEh 0x0007FEh 0x0000800h 0x00200h 0x0000800h 0x00200h 0x002000h 0x00200h 0x00200h 0x00200h 0x00200h 0x002000h 0x00200h 0x002000h 0x00200h 0x00200h 0x0007FEh 0x004000h 0x007FFEh 0x008000h 0x007FFEh 0x010000h 0x010000h 0x0157FEh
SSS<2:0> = x10 4K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h SS = 3840 IW 0x0007FEh 0x000800h 0x001FFEh 0x000800h 0x001FFEh 0x00400h 0x00200h 0x00000h 0x00200h 0x00400h 0x007FEh 0x00400h 0x007FFEh 0x00400h 0x007FFEh 0x00400h 0x00400h 0x007FFEh 0x00400h 0x007FFEh 0x00400h 0x007FFEh 0x00400h 0x007FFEh 0x00400h 0x007FFEh 0x00400h 0x00400h 0x00400h 0x00400h	VS = 256 IW 0x00000h 0x0001FEh 0x000200h BS = 768 IW 0x0007FEh 0x000800h SS = 3072 IW 0x001FEh 0x00200h 0x0007FEh 0x00200h 0x001FFEh 0x00200h 0x00157FEh 0x00800h 0x003FFEh 0x007FEh 0x007FEh 0x00400h 0x007FEh 0x00400h 0x007FEh 0x007FFEh 0x00800h 0x007FFEh 0x00800h 0x007FFEh 0x00407FEh 0x007FFEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x003FFEh 0x003FFEh 0x007FEh GS = 39936 IW 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x000200h 0x000200h 0x000800h 0x001FEEh 0x002000h 0x003FEEh 0x002000h 0x003FEEh 0x004000h 0x003FEEh 0x004000h 0x003FEEh GS = 35840 IW 0x0157FEh
SSS<2:0> = x01 8K	VS = 256 IW 0x00000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x00000h SS = 7936 IW 0x00400h 0x003FFEh 0x004000h 0x007FFEh 0x00800h 0x007FFEh 0x00800h 0x007FFEh 0x00800h 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x01000h 0x01000h 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh BS = 768 IW 0x000200h 0x0007FEh 0x0007FEh 0x0000h 0x001FFEh 0x00200h 0x0007FFEh 0x00200h 0x0007FFEh 0x00200h 0x003FFEh 0x007FFEh 0x007FFEh 0x00800h 0x007FFEh 0x00800h 0x007FFEh 0x00800h 0x007FFEh 0x00800h 0x007FFEh 0x0000h 0x007FFEh 0x0000h 0x007FFEh 0x0000h 0x007FFEh 0x001000h 0x007FFEh	VS = 256 IW 0x000000h BS = 3840 IW 0x000200h 0x000200h 0x0007FEh 0x000800h 0x000800h 0x00000h 0x0007FEh 0x00200h 0x000800h 0x00200h 0x000800h 0x002000h 0x002000h 0x00000h 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x007FFEh 0x008000h 0x007FFEh 0x008000h 0x007FFEh 0x0000h 0x007FFEh 0x0000h 0x007FFEh 0x0000h 0x007FFEh 0x0000h 0x007FFEh 0x001000h 0x010000h	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x003FFEh 0x002000h 0x003FFEh 0x002000h 0x003FFEh 0x007FFEh 0x007FFEh 0x008000h 0x007FFEh 0x008000h 0x007FFEh 0x008000h 0x007FFEh GS = 35840 IW 0x0157FEh
SSS<2:0> = x00 16K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x00200h 0x001FFEh 0x00200h 0x003FFEh 0x004000h 0x007FFEh 0x008000h 0x007FFEh 0x008000h 0x007FFEh 0x008000h SS = 16128 IW 0x000FFEh 0x008000h 0x007FFEh 0x008000h GS = 27648 IW 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x000800h 0x0007FEh BS = 768 IW 0x000800h 0x0007FEh 0x00200h 0x003FFEh SS = 15360 IW 0x004000h 0x007FEh GS = 27648 IW 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x00200h 0x003FFEh 0x00200h 0x003FFEh 0x004000h 0x007FFEh 0x008000h 0x007FFEh 0x008000h 0x007FFEh 0x008000h GS = 12288 IW 0x004000h 0x007FFEh 0x008000h GS = 27648 IW 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h BS = 7936 IW 0x000200h 0x003800h SS = 8192 IW 0x004000h 0x003FEh SS = 8192 IW 0x004000h 0x003FFEh GS = 27648 IW 0x0157FEh 0x0157FEh 0x0157FEh

DS70293G-page 282

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended			
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP
15 MHz	Table 28-29	—	_	0,1	0,1	0,1
9 MHz	_	Table 28-30	—	1	0,1	1
9 MHz	_	Table 28-31	—	0	0,1	1
15 MHz	_	—	Table 28-32	1	0	0
11 MHz	_	_	Table 28-33	1	1	0
15 MHz		_	Table 28-34	0	1	0
11 MHz		_	Table 28-35	0	0	0

TABLE 28-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 28-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

FIGURE 28-10: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		MILLIN	IETERS	
Dimens	sion Limits	MIN	NOM	MAX
Contact Pitch E			0.65 BSC	
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

BOTTOM VIEW

		MILLIMETERS	3	
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	Ν		44	
Pitch	е		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	Е	8.00 BSC		
Exposed Pad Width	E2	6.30	6.45	6.80
Overall Length	D	8.00 BSC		
Exposed Pad Length	D2	6.30	6.45	6.80
Contact Width	b	0.25	0.30	0.38
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	_	_

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

Revision D (November 2009)

The revision includes the following global update:

• Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Microcontrollers"	Added information on high temperature operation (see " Operating Range: ").
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 "Open-Drain Configuration ".
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 20.0 "10-bit/12-bit Analog-to-Digital Converter (ADC1)"	Updated the ADC block diagrams (see Figure 20-1 and Figure 20-2).
Section 25.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 25.1 "Configuration Bits" .
	Updated the Device Configuration Register Map (see Table 28-1).
Section 28.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Removed parameters DI26, DI28 and DI29 from the I/O Pin Input Specifications (see Table 28-9).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 28-12).
Section 29.0 "High Temperature Electrical Characteristics"	Added new chapter with high temperature specifications.
"Product Identification System"	Added the "H" definition for high temperature.