

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp202-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-7: OUTPUT COMPARE REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Οι	utput Compar	re 1 Seconda	ary Register							XXXX
OC1R	0182								Output Co	ompare 1 Re	gister							XXXX
OC1CON	0184	_	_	OCSIDL		_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC2RS	0186							Οι	utput Compai	re 2 Seconda	ary Register							XXXX
OC2R	0188								Output Co	ompare 2 Re	gister							XXXX
OC2CON	018A	—	_	OCSIDL		—	_	—	—	_	_		OCFLT	OCTSEL		OCM<2:0>		0000
OC3RS	018C							Οι	utput Compai	re 3 Seconda	ary Register							XXXX
OC3R	018E								Output Co	ompare 3 Re	gister							XXXX
OC3CON	0190	—		OCSIDL		—	_		_	_	—		OCFLT	OCTSEL		OCM<2:0>		0000
OC4RS	0192							Οι	utput Compai	re 4 Seconda	ary Register							XXXX
OC4R	0194								Output Co	ompare 4 Re	gister							XXXX
OC4CON	0196	_		OCSIDL		_	_	_	_		_		OCFLT	OCTSEL		OCM<2:0>		0000
														1				<u> </u>

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	-	_	-	-	—	-	—				Receive	Register				0000
I2C1TRN	0202	_	_	_	_	_	_	_	_				Transmit	Register				OOFF
I2C1BRG	0204	_	_	_	_	_	_	_				Baud Ra	te Generato	r Register				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					Address	Register					0000
I2C1MSK	020C	_	_	_	_	_	_	Address Mask Register						0000				

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_	UTX8			U	ART Transn	nit Register				XXXX
U1RXREG	0226	_	_	_	_	_	_	_	URX8			U,	ART Receive	ed Register				0000
U1BRG	0228	Baud Rate Generator Prescaler 0							0000									

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

- **Note 1: POR:** A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed.
 - 2: BOR: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.
 - **3: PWRT Timer:** The programmable power-up timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay TPWRT ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay TPWRT has elapsed, the SYSRST becomes inactive, which in turn enables the selected oscillator to start generating clock cycles.
 - 4: Oscillator Delay: The total delay for the clock to be ready for various clock source selections are given in Table 6-1. Refer to Section 9.0 "Oscillator Configuration" for more information.
 - **5:** When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the reset address, which redirects program execution to the appropriate start-up routine.
 - 6: The Fail-Safe Clock Monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay TFSCM elapsed.

FIGURE 7-1: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 INTERRUPT VECTOR TABLE

	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector	-	
	Stack Error Trap Vector	-	
	Math Error Trap Vector	-	
	DMA Error Trap Vector	-	
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
	Interrupt Vector 53	0x00007E	
rity	Interrupt Vector 54	0x000080	
rio	~		
л. Н	~		
Inde	~		
0	Interrupt Vector 116	0x0000FC	
nra	Interrupt Vector 117	0x0000FE	
Vat	Reserved	0x000100	
l Di	Reserved	0x000102	
asir	Reserved	4	
crea	Oscillator Fall Trap Vector	-	
) Oec	Address Ellor Hap Vector	-	
	Math Error Trap Vector	-	
	DMA Error Trap Vector	-	
	Reserved		
	Reserved	-	
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~	-	
	~	-	
	~	-	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~]	
	~]	
	~		
	Interrupt Vector 116		
↓	Interrupt Vector 117	0x0001FE	
V	Start of Code	0x000200	
۷	Start of Code	0x000200	

REGISTER	7-22: IPC7:	INTERRUPT	PRIORITY	CONTROL RI	EGISTER 7		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		U2TXIP<2:0>		—		U2RXIP<2:0>	
oit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		INT2IP<2:0>		_		T5IP<2:0>	
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable b	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15	Unimpleme	nted: Read as '0)'				
bit 14-12	U2TXIP<2:0	>: UART2 Trans	mitter Interru	upt Priority bits			
	111 = Interr	upt is priority 7 (h	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 11	Unimpleme	nted: Read as '0)'				
bit 10-8	U2RXIP<2:0	0>: UART2 Rece	iver Interrup	t Priority bits			
	111 = Interr	upt is priority 7 (h	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interr 000 = Interr	upt is priority 1 upt source is disa	abled				
bit 7	Unimpleme	nted: Read as '0)'				
bit 6-4	INT2IP<2:02	>: External Interr	upt 2 Priority	/ bits			
	111 = Interr	upt is priority 7 (h	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 3	Unimpleme	nted: Read as 'o)'				
bit 2-0	T5IP<2:0>:	Timer5 Interrupt	Priority bits				
	111 = Interr	upt is priority 7 (h	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					

000 = Interrupt source is disabled

REGISTER 7-29: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
	_	_	_	-	ILF	R<3:0>	*
bit 15							bit 8
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
_				VECNUM<6:0	>		
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, re	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-12 bit 11-8	Unimpleme ILR: New Cf 1111 = CPL	nted: Read as ' PU Interrupt Prior I Interrupt Priorit I Interrupt Priorit	o' prity Level bits y Level is 15 y Level is 1 y Level is 0				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0	VECNUM: V 0111111 = 0000001 = 0000000 =	ector Number o Interrupt Vector Interrupt Vector Interrupt Vector	t Pending Inte pending is nu pending is nu pending is nu	rrupt bits mber 135 mber 9 mber 8			

© 2007-2012 Microchip Technology Inc.

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 2	XWCOL2: Channel 2 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	XX	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	XX	110	1
Low-Power RC Oscillator (LPRC)	Internal	XX	101	1
Secondary (Timer1) Oscillator (Sosc)	Secondary	XX	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	-
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	_
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	—
Primary Oscillator (XT)	Primary	01	010	_
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	XX	001	1
Fast RC Oscillator (FRC)	Internal	XX	000	1

	TABLE 9-1:	CONFIGURATION BIT VALUES FOR CLOCK SELECTION
--	------------	--

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.2 Oscillator Resources

Many useful resources related to Oscillators are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

9.2.1 KEY RESOURCES

- Section 39. "Oscillator (Part III)" (DS70216)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	—			IC8R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—			IC7R<4:0>		
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable I	bit	U = Unimple	mented bit, rea	id as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15_13	Unimplomor	tod: Read as '	،				
DIL 10-13							
bit 12-8	IC8R<4:0>: /	Assign Input Ca	pture 8 (IC8)	to the correspo	onding RPn pir	1	
	11111 = Inpu 11001 = Inpu	ut fied to VSS ut fied to RP25					
	•						
	•						
	•						
	00001 = Inp	ut tied to RP1					
	00000 = Inp	ut tied to RP0					
bit 7-5	Unimplemen	nted: Read as ')'				
bit 4-0	IC7R<4:0>: /	Assign Input Ca	pture 7 (IC7)	to the correspo	onding RPn pir	ı	
	11111 = Inp	ut tied to Vss					
	11001 = Inp	ut tied to RP25					
	•						
	•						
	•						
	00001 = Inpu 00000 = Inpu	ut tied to RP1 ut tied to RP0					

REGISTER 11-6: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTERS 10

REGISTER 16-3: SPIXCON2: SPIX CONTROL REGISTER 2	REGISTER 16-3:	SPIxCON2: SPIx CONTROL REGISTER 2
--	----------------	-----------------------------------

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL		—	_	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	_	—	—	FRMDLY	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is ur			own
bit 15	FRMEN: Fran	ned SPIx Supp	ort bit				
	1 = Framed S	Plx support en	abled (SSx pi	n used as fram	ne sync pulse i	nput/output)	
	0 = Framed S	Plx support dis	abled				
bit 14	SPIFSD: Fran	ne Sync Pulse	Direction Cor	ntrol bit			
	1 = Frame syl	nc pulse input (nc pulse output	Slave)				
hit 13		ame Sync Pulse	Polarity hit				
bit 10	1 = Frame sv	nc pulse is acti	ve-hiah				
	0 = Frame sy	nc pulse is acti	ve-low				
bit 12-2	12-2 Unimplemented: Read as '0'						
bit 1	FRMDLY: Frame Sync Pulse Edge Select bit						
	1 = Frame sy	nc pulse coinci	des with first l	bit clock			
	0 = Frame sy	nc pulse prece	des first bit clo	ock			
bit 0	Unimplemen	ted: This bit m	ust not be set	to '1' by the us	ser application		

17.2 I²C Resources

Many useful resources related to I^2C are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwprod-
	ucts/Devices.aspx?dDoc-
	Name=en532315

17.2.1 KEY RESOURCES

- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

17.3 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- The I2CxADD register holds the slave address
- A status bit, ADD10, indicates 10-bit Address mode
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

18.1 UART Helpful Tips

- In multi-node direct-connect UART networks, 1. UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock relative to the incoming UxRX bit timing is no longer synchronized, resulting in the first character being invalid. This is to be expected.

18.2 UART Resources

Many useful resources related to UART are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

```
Note: In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en532315
```

18.2.1 KEY RESOURCES

- Section 17. "UART" (DS70188)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

REGISTER	19-4: CiFCT	RL: ECAN™	FIFO CON	TROL REGIS	TER		
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	DMABS<2:0>		_				
bit 15							bit 8
r							
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—			FSA<4:0>		
bit 7							bit 0
Legend:		C = Writeable	bit, but only	'0' can be writt	en to clear the	bit	
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	id as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in DMA RAM 101 = 24 buffers in DMA RAM 100 = 16 buffers in DMA RAM 011 = 12 buffers in DMA RAM 010 = 8 buffers in DMA RAM 001 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM							
bit 12-5		Ited: Read as ')' With Buffor k	aito			
511 4-0	 FSA<4:0>: FIFO Area Starts with Buffer Dits 11111 = Read buffer RB31 11110 = Read buffer RB30 . .						

FIGURE 20-3: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

REGISTER 21-1: CMCON: COMPARATOR CONTROL REGISTER (CONTINUED)

bit 6	C1OUT: Comparator 1 Output bit $\frac{\text{When C1INV = 0:}}{1 = C1 \text{ VIN+ > C1 VIN-}}$ $0 = C1 \text{ VIN+ < C1 VIN-}$ $\frac{\text{When C1INV = 1:}}{0 = C1 \text{ VIN+ > C1 VIN-}}$
bit 5	C2INV: Comparator 2 Output Inversion bit
	 1 = C2 output inverted 0 = C2 output not inverted
bit 4	C1INV: Comparator 1 Output Inversion bit 1 = C1 output inverted 0 = C1 output not inverted
bit 3	C2NEG: Comparator 2 Negative Input Configure bit 1 = Input is connected to VIN+ 0 = Input is connected to VIN- See Figure 21-1 for the comparator modes.
bit 2	C2POS: Comparator 2 Positive Input Configure bit 1 = Input is connected to VIN+ 0 = Input is connected to CVREF See Figure 21-1 for the comparator modes.
bit 1	C1NEG: Comparator 1 Negative Input Configure bit 1 = Input is connected to VIN+ 0 = Input is connected to VIN- See Figure 21-1 for the comparator modes.
bit 0	C1POS: Comparator 1 Positive Input Configure bit 1 = Input is connected to VIN+ 0 = Input is connected to CVREF See Figure 21-1 for the comparator modes.

- **Note 1:** If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See **Section 11.6 "Peripheral Pin Select"** for more information.
 - 2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.

TABLE 25-3: CODE FLASH SECURITY SEGMENT SIZES FOR 32 KB DEVICES

CONFIG BITS	BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
SSS<2:0> = x11 0K	VS = 256 IW 0x00000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x0002000h 0x001FFEh 0x004000h 0x0057FEh GS = 11008 IW 0x0157FEh 0x004000h 0x0057FEh	VS = 256 IW 0x00000h 0x0001FEh BS = 768 IW 0x000200h 0x0007FEh 0x0007FEh 0x0007FEh 0x0007FEh 0x0000h 0x001FFEh 0x0000h 0x0000h 0x001FFEh 0x001FFEh 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x0020FEh 0x00200h 0x003FFEh 0x00400h 0x0057FEh 0x0157FEh 0x0157FEh	VS = 256 IW 0x00000h 0x0001FEh BS = 3840 IW 0x000200h 0x0007FEh 0x00020h 0x0007FEh 0x001FFEh 0x0007FEh 0x00200h 0x001FFEh 0x00200h 0x001FFEh 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00257FEh 0x00157FEh 0x0157FEh	VS = 256 IW 0x00000h 0x0001FEh BS = 7936 IW 0x000200h 0x0007FEh 0x000200h 0x00007FEh 0x000200h 0x0001FFEh 0x000200h 0x0007FEh 0x001FFEh 0x00000h 0x00157FEh 0x0057FEh 0x0057FEh 0x0057FEh 0x00157FEh 0x0157FEh

TABLE 28-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS TIMING REQUIREMENTS

		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
SY10	TMCL	MCLR Pulse Width (low)	2			μs	-40°C to +85°C
SY11	Tpwrt	Power-up Timer Period	_	2 4 16 32 64 128	_	ms	-40°C to +85°C User programmable
SY12	TPOR	Power-on Reset Delay	3	10	30	μs	-40°C to +85°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs	—
SY20	Twdt1	Watchdog Timer Time-out Period	_	_		_	See Section 25.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 28-19)
SY30	Tost	Oscillator Start-up Timer Period	_	1024 Tosc		_	Tosc = OSC1 period
SY35	TFSCM	Fail-Safe Clock Monitor Delay		500	900	μs	-40°C to +85°C

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

29.1 High Temperature DC Characteristics

TABLE 29-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS		
Characteristic	VDD Range (in Volts)	Temperature Range (in °C)	PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04		
—	3.0V to 3.6V ⁽¹⁾	-40°C to +150°C	20		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized.

TABLE 29-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High Temperature Devices					
Operating Junction Temperature Range		-40	_	+155	°C
Operating Ambient Temperature Range	TA	-40	_	+150	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	PINT + PI/O V		W	
Maximum Allowed Power Dissipation	PDMAX	(TJ - TA)/θJ	A	W

TABLE 29-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature				
Parameter No.	Symbol	Characteristic	Min Typ Max Units Conditions				
Operating Voltage							
HDC10	Supply Voltage						
	VDD	_	3.0	3.3	3.6	V	-40°C to +140°C

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized.

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimens	sion Limits	MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			6.80
Optional Center Pad Length	T2			6.80
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.80
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

TABLE A-4:	MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 29.0 "High Temperature Electrical Characteristics"	Updated all ambient temperature end range values to +150°C throughout the chapter.
	Updated the storage temperature end range to +160°C.
	Updated the maximum junction temperature from +145°C to +155°C.
	Updated the maximum values for High Temperature Devices in the Thermal Operating Conditions (see Table 29-2).
	Updated the ADC Module Specifications (12-bit Mode), removing all parameters with the exception of HAD33a (see Table 29-14).
	Updated the ADC Module Specifications (10-bit Mode), removing all parameters with the exception of HAD33b (see Table 29-16).
"Product Identification System"	Updated the end range temperature value for H (High) devices.