E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp202-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4.1 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-5. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.

Note: A PC push during exception processing concatenates the SRL register to the MSb of the PC prior to the push.

The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap does not occur. The stack error trap occurs on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-5: CALL STACK FRAME

4.4.2 DATA RAM PROTECTION FEATURE

The PIC24H product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-35 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2
where:

Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb.

Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
	RTCIF	DMA5IF	_	_	—	—	_			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15	Unimplemen	ted: Read as '	O'							
bit 14	RTCIF: Real-	Time Clock and	d Calendar Int	errupt Flag Sta	atus bit					
	1 = Interrupt r	equest has occ	curred							
	0 = Interrupt r) = Interrupt request has not occurred								
bit 13	DMA5IF: DMA Channel 5 Data Transfer Complete Interrupt Flag Status bit									

- 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 12-0 Unimplemented: Read as '0'

REGISTER 7-12:	IEC2: INTERRUPT ENABLE CONTROL REGISTER 2
----------------	---

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
—	DMA4IE	PMPIE		—	—	—	—				
bit 15							bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	—	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	Unimplemen	ted: Read as ')'								
bit 14	DMA4IE: DM	A Channel 4 Da	ata Transfer C	complete Interi	rupt Enable bit						
	1 = Interrupt r	request enabled	d								
	0 = Interrupt r	request not ena	bled								
bit 13	PMPIE: Paral	llel Master Port	Interrupt Ena	ble bit							
	1 = Interrupt r	request enabled	quest enabled								
hit 12-5	Unimplemen	ted: Read as '	טיכע ז'								
bit 4		A Channel 3 D	, ata Transfer (complete Inter	runt Enable bit						
bit 4	1 = Interrupt r	request enable									
	0 = Interrupt r	request has ena	abled								
bit 3	C1IE: ECAN1	I Event Interrup	t Enable bit ⁽¹⁾)							
	1 = Interrupt r	request enabled	t								
	0 = Interrupt r	request not ena	bled								
bit 2	C1RXIE: ECA	AN1 Receive Da	ata Ready Inte	errupt Enable I	bit ⁽¹⁾						
	1 = Interrupt r	1 = Interrupt request enabled									
L:1											
DILI	1 = Interrupt r	Event interrup									
	1 = Interrupt	request not enabled	bled								
bit 0	SPI2EIE: SPI	2 Error Interrur	t Enable bit								
	1 = Interrupt r	request enable	1								
	0 = Interrupt r	request not ena	bled								

Note 1: Interrupts disabled on devices without ECAN[™] modules.

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	—	—			INT1R<4:0>			
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	_	—	
bit 7		•				•	bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-13	Unimplemen	ted: Read as ')'					
bit 12-8	INT1R<4:0>:	Assign Externa	al Interrupt 1	(INTR1) to the	corresponding F	RPn pin		

11111 = Input tied to Vss 11001 = Input tied to RP25	
•	
•	
•	
00001 = Input tied to RP1	
00000 = Input tied to RP0	

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
—	—	—	—			—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—			INT2R<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-5	Unimplemen	ted: Read as '	0'				
bit 4-0	INTR2R<4:0>	-: Assign Exter	nal Interrupt 2	2 (INTR2) to the	e corresponding	RPn pin	
	11111 = Inpu	it tied to Vss					
	11001 = Inpu	it tied to RP25					
	•						
	•						
	•						
	00001 = Inpu	It tied to RP1					

00000 = Input tied to RP0

U-0 U-0	J-0 R/W-1	R/W-1		D 444 4	
			D/ V V- I	R/W-1	R/W-1
			T3CKR<4:0>	>	
bit 15	ŀ				bit 8
U-0 U-0	J-0 R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_		T2CKR<4:0>	>	
bit 7					bit 0
Legend:					
R = Readable bit W =	Nritable bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at POR '1' =	Bit is set	'0' = Bit is cle	eared	x = Bit is unki	nown
bit 12-8 T3CKR<4:0>: Assign 1111 = Input tied 11001 = Input tied 11001 = Input tied 100001 = Input tied 100000 = Input tied 100000 = Input tied 100000 = Input tied 100000 = Input tied 11111 = Input tied 11111 = Input tied 11001 = Input tied 10000 = Input tied 100000 = Input tied 10000 = Input tied 100000 = Input tied 10000 = Input tied 100000 = Input tied 100000000 = Input tied 100000000000 = Input tied 1000000000000000000000000000000000000	on Timer3 External C o Vss o RP25 o RP0 ead as '0' gn Timer2 External C o Vss o RP25	Clock (T3CK) to t	the correspond	ing RPn pin ing RPn pin	
\sim	o RP1				
• 00001 = Input tied :					

00000 = Input tied to RP0

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, the of PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit[™] (I²C[™])" (DS70195) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation.
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, refer to the "*dsPIC33F/PIC24H Family Reference Manual*". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual chapters.

17.2 I²C Resources

Many useful resources related to I^2C are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwprod-
	ucts/Devices.aspx?dDoc-
	Name=en532315

17.2.1 KEY RESOURCES

- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

17.3 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- The I2CxADD register holds the slave address
- A status bit, ADD10, indicates 10-bit Address mode
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

19.4 ECAN Resources

Many useful resources related to ECAN are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

19.4.1 KEY RESOURCES

- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 1	9-10: CiCFC	G2: ECAN™ I	BAUD RATE		ATION REGI	STER 2				
U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x			
_	WAKFIL	_	_	—		SEG2PH<2:0>				
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SEG2PHTS	SAM		SEG1PH<2:0	>		PRSEG<2:0>				
bit 7							bit C			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
hit 15	Unimplomo	ntad: Dood oo '	0'							
bit 14		lect CAN bus I	u ine Filter for V	Nake-un hit						
DIC 14		d bus line filter f	or wake-up	vake-up bit						
	0 = CAN bus	line filter is not	t used for wak	e-up						
bit 13-11	Unimplemer	nted: Read as '	0'							
bit 10-8	SEG2PH<2:	0>: Phase Seg	ment 2 bits							
	111 = Length	h is 8 x Tq								
	•									
	•									
	•									
	000 = Length	h is 1 x Tq								
bit 7	SEG2PHTS: Phase Segment 2 Time Select bit									
	1 = Freely pr 0 = Maximun	y programmable mum of SEG1PH bits or Information Processing Time (IPT), whichever is greater								
bit 6	SAM: Sampl	le of the CAN b	us Line bit	0		0				
	1 = Bus line is sampled three times at the sample point									
	0 = Bus line is sampled once at the sample point									
bit 5-3	SEG1PH<2:	0>: Phase Seg	ment 1 bits							
	111 = Length	h is 8 x Tq								
	•									
	•									
	•	. .								
	000 = Lengtr		T 0							
DIT 2-0	PRSEG<2:0		Time Segmer	nt dits						
		ΠISԾXIQ								
	•									
	•									
		h ie 1 v To								
	uuu – Lengu									

	n (n =	0-15)					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	_	EXIDE	—	EID17	EID16
bit 7							bit 0
Legend:		C = Writeable	bit, but only	0' can be writte	en to clear the b	it	
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-5	SID<10:0>: S 1 = Message 0 = Message	Standard Identifi address bit SIE address bit SIE	ier bits Dx must be '1 Dx must be '0	' to match filter ' to match filter			
bit 4	Unimplemen	ted: Read as '	o'				

REGISTER 19-16: CIRXFnSID: ECAN™ ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER n (n = 0-15)

_						
E	XIDE:	Exten	ded Ic	lentifier	Enable	bit

bit 3

If MIDE = 1, then:

1 = Match only messages with extended identifier addresses

0 = Match only messages with standard identifier addresses

If MIDE = 0, then: Ignore the EXIDE bit.

- bit 2 Unimplemented: Read as '0'
- bit 1-0 EID<17:16>: Extended Identifier bits
 - 1 = Message address bit EIDx must be '1' to match filter
 - 0 = Message address bit EIDx must be '0' to match filter

REGISTER 1	19-20: CiRX REGI	MnSID: ECAN STER n (n = 0	™ ACCEPT -2)	ANCE FILTE	R MASK ST	ANDARD IDE	NTIFIER		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3		
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x		
SID2	SID1	SID0		MIDE		EID17	EID16		
bit 7		·		•		·	bit 0		
Legend:		C = Writeable	bit, but only '	0' can be writte	en to clear the	bit			
R = Readable	e bit	W = Writable	bit	U = Unimpler	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set	et '0' = Bit is cleared x = Bit is unknown						
bit 15-5	SID<10:0>: 1 = Include k 0 = Bit SIDx	Standard Identifi bit SIDx in filter c is don't care in f	er bits comparison ilter comparis	son					
bit 4	Unimpleme	nted: Read as ')'						
bit 3	MIDE: Identifier Receive Mode bit								
	1 = Match or 0 = Match ei (i.e., if (F	nly message typ ther standard or filter SID) = (Mes	es (standard extended ad ssage SID) or	or extended ac dress message r if (Filter SID/E	ldress) that cor e if filters match EID) = (Messag	rrespond to EXII า le SID/EID))	DE bit in filter		

- bit 2 Unimplemented: Read as '0'
- bit 1-0 EID<17:16>: Extended Identifier bits
 - 1 = Include bit EIDx in filter comparison
 - 0 = Bit EIDx is don't care in filter comparison

REGISTER 19-21: CIRXMnEID: ECAN[™] ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER n (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/\/-x	R/\/_x	R/M-x	R/\\/_x	R/W-x	R/\/_x	R/M-x	R/M-x

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

REGISTER 20-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

hit 3	SIMSAM: Simultaneous Sample Select hit (only applicable when $CHPS<1:05 = 0.1 \text{ or } 1_{12}$)
bit 3	When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple chappels individually in sequence
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit
	 1 = ADC conversion cycle is completed 0 = ADC conversion not started or in progress Automatically set by hardware when ADC conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.

21.3 Comparator Voltage Reference

21.3.1 CONFIGURING THE COMPARATOR VOLTAGE REFERENCE

The Voltage Reference module is controlled through the CVRCON register (Register 21-2). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR3:CVR0), with one range offering finer resolution. The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 21-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

23.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- **Note 1:** This data sheet summarizes the features the PIC24HJ32GP302/304, of PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet. refer to Section 36. "Programmable Cyclic Redundancy Check (CRC)" (DS70298) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The programmable CRC generator offers the following features:

- User-programmable polynomial CRC equation
- Interrupt output
- Data FIFO

FIGURE 23-1: CRC SHIFTER DETAILS

23.1 Overview

The module implements a software configurable CRC generator. The terms of the polynomial and its length can be programmed using the CRCXOR bits (X<15:1>) and the CRCCON bits (PLEN<3:0>), respectively.

EQUATION 23-1: CRC EQUATION

$$x^{16} + x^{12} + x^5 + 1$$

To program this polynomial into the CRC generator, the CRC register bits should be set as shown in Table 23-1.

TABLE 23-1:	EXAMPLE CRC SETUP
-------------	-------------------

Bit Name	Bit Value
PLEN<3:0>	1111
X<15:1>	00010000010000

For the value of X<15:1>, the 12th bit and the 5th bit are set to '1', as required by the CRC equation. The 0th bit required by the CRC equation is always XORed. For a 16-bit polynomial, the 16th bit is also always assumed to be XORed; therefore, the X<15:1> bits do not have the 0th bit or the 16th bit.

The topology of a standard CRC generator is shown in Figure 23-2.

© 2007-2012 Microchip Technology Inc.

23.5 Programmable CRC Registers

REGISTER 23-1: CRCCON: CRC CONTROL REGISTER

U-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
	_	CSIDL			VWORD<4:0)>	
bit 15							bit 8
R-0	R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT	—	CRCGO		PLE	N<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplement	ted: Read as '0	,				
bit 13	CSIDL: CRC	Stop in Idle Mo	ode bit				
	1 = Discontin 0 = Continue	ue module opera	eration when o tion in Idle mo	device enters lo ode	dle mode		
bit 12-8	VWORD<4:0	>: Pointer Valu	e bits				
	Indicates the greater than 7	number of val 7, or 16 when F	id words in th PLEN<3:0> is	ne FIFO. Has a less than or eq	a maximum va jual to 7.	alue of 8 when	PLEN<3:0> is
bit 7	CRCFUL: FIF	O Full bit					
	1 = FIFO is f	ull					
	0 = FIFO is n	not full					
bit 6	CRCMPT: FIF	O Empty Bit					
	1 = FIFO is e	empty					
	0 = FIFO is n	not empty	- 1				
bit 5	Unimplemen	ted: Read as	0,				
bit 4	CRCGO: Star	rt CRC bit					
	1 = Start CR	C serial shifter	tor after EIEO	is omntv			
hit 3.0			ath hite	is empty			
DIL 3-0	Penotes the l	enath of the pr	iyui Dilə İvnomial to br	a apparated mi	nue 1		
	Denotes the l	engui oi uie po	nynonnai to be	e generateu mi	1105 1.		

REGISTER 23-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U				U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

FIGURE 28-3: CLKO AND I/O TIMING CHARACTERISTICS

TABLE 28-20: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Oper (unless otherw Operating temp	rating Co vise state perature	nditions: ed) -40°C ≤ -40°C ≤	' 3.0V to Ta ≤+85' Ta ≤+12	3.6V °C for Inc 5°C for E	dustrial xtended
Param No.	Symbol	Character	Characteristic		Typ ⁽¹⁾	Max	Units	Conditions
DO31	TIOR	Port Output Rise Tim	e		10	25	ns	—
DO32	TIOF	Port Output Fall Time	e		10	25	ns	—
DI35	TINP	INTx Pin High or Low Time (input)		20		—	ns	—
DI40	Trbp	CNx High or Low Tim	ne (input)	2		—	TCY	—

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

TABLE 29-7: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHA	Standar (unless Operation	rd Opera otherwing temp	ating Con ise stated erature	nditions d) -40°C ≤	: 3.0V to 3.6V TA ≤+150°C for High Temperature			
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Max Units Conditions		
		Program Flash Memory						
HD130	Eр	Cell Endurance	10,000	_		E/W	-40° C to +150° C ⁽²⁾	
HD134	TRETD	Characteristic Retention	20	—	_	Year	1000 E/W cycles or less and no other specifications are violated	

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to 150°C.

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimens	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			6.80
Optional Center Pad Length	T2			6.80
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.80
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- · Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support