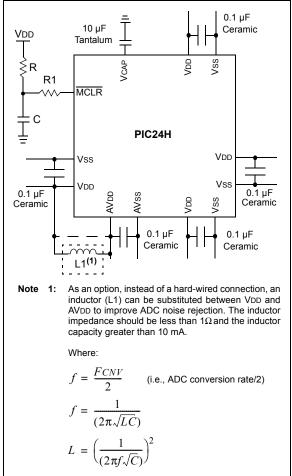
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detalls	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp202-i-so

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

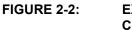
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including MCUs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

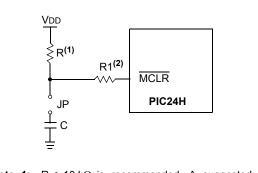
A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, preferably surface mount connected within one-eights inch of the VCAP pin connected to ground. The type can be ceramic or tantalum. Refer to **Section 28.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 25.2 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides for two specific device functions:

- Device Reset
- Device programming and debugging


During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS

- - 2: $\underline{R1} \leq 470\Omega$ will limit any current flowing into \overline{MCLR} from the external capacitor C, in the event of \overline{MCLR} pin breakdown, due to Electrostatic Discharge (ESD) or <u>Electrical</u> Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		U2TXIP<2:0>		—		U2RXIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		INT2IP<2:0>				T5IP<2:0>	
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	emented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	-	0>: UART2 Trans		upt Prioritv bits			
		rupt is priority 7 (
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	upt source is dis	abled				
bit 11	Unimpleme	ented: Read as '	0'				
bit 10-8	U2RXIP<2:	0>: UART2 Rece	eiver Interrup	t Priority bits			
	111 = Interr	rupt is priority 7 (highest priori	ity interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is dis	abled				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-4		>: External Inter					
	111 = Interr	rupt is priority 7 (highest priori	ity interrupt)			
	•						
	•						
		rupt is priority 1 rupt source is dis	abled				
bit 3	Unimpleme	ented: Read as '	0'				
bit 2-0	T5IP<2:0>:	Timer5 Interrupt	Priority bits				
	111 = Interr •	rupt is priority 7 (highest prior	ity interrupt)			
	•						
	•	and the method of the state					
		rupt is priority 1					

000 = Interrupt source is disabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		C1IP<2:0> ⁽¹⁾		_		C1RXIP<2:0>(1)				
bit 15	•						bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—		SPI2IP<2:0>		_		SPI2EIP<2:0>				
bit 7							bit C			
Legend:										
R = Readab	le bit	W = Writable b	oit	U = Unimple	mented bit, re	ead as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own			
bit 15	Unimpleme	ented: Read as '0	,							
bit 14-12	C1IP<2:0>:	ECAN1 Event In	terrupt Priori	ty bits ⁽¹⁾						
	111 = Interr	rupt is priority 7 (h	nighest priori	ty interrupt)						
	•									
	•									
	001 = Interrupt is priority 1									
		rupt source is disa								
bit 11		ented: Read as '0								
bit 10-8	C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits ⁽¹⁾									
	111 = Interr	rupt is priority 7 (h	highest priori	ty interrupt)						
	•									
	•									
		rupt is priority 1								
h:+ 7		rupt source is disa								
bit 7	-	ented: Read as '0								
bit 6-4		SPI2 Event Int rupt is priority 7 (h	-	-						
	•		lighest phon	ly interrupt)						
	•									
	•	unt in priority 1								
		rupt is priority 1 rupt source is disa	abled							
bit 3		ented: Read as '0								
bit 2-0	-	:0>: SPI2 Error In		tv bits						
		rupt is priority 7 (h		•						
	•		-							
	•									
	001 = Interr	rupt is priority 1								
		rupt io priority i rupt course is die								

000 = Interrupt source is disabled

Note 1: Interrupts disabled on devices without ECAN[™] modules.

REGISTER 7-29: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0		
—		—	—		ILI	R<3:0>			
pit 15			•				bit 8		
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
		10	100	VECNUM<6:0>		100	10		
bit 7							bit C		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimpleme	ented bit, re	ad as '0'			
-n = Value at	POR	'1' = Bit is set		$(0)^{\circ}$ = Bit is cleared $x = Bit is unknown$					
bit 15-12	Unimplement	ed: Read as '	כי						
bit 11-8	ILR: New CPU	J Interrupt Pric	rity Level bits	6					
	1111 = CPU I	nterrupt Priorit	y Level is 15						
	•								
	•								
	0001 = CPU 0000 = CPU 								
bit 7	Unimplement	ed: Read as '	כי						
bit 6-0	VECNUM: Vec	ctor Number o	f Pending Inte	errupt bits					
	0111111 = Interrupt Vector pending is number 135								
	•								
	•								
	0000001 = In i	errupt Vector	pending is nu	mber 9					
	0000000 = In t	a mu unt \/a atam							

© 2007-2012 Microchip Technology Inc.

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 2	XWCOL2: Channel 2 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

REGISTER	10-3: PMD3	: PERIPHER	AL MODULE	E DISABLE C	ONTROL RE	GISTER 3	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—		—	CMPMD	RTCCMD	PMPMD
bit 15							bit 8
D 444 0	D /// 0						
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
CRCMD	DAC1MD	—	—	—	_	_	—
bit 7							bit C
Legend:							
R = Readabl	e bit	W = Writable I	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-11	Unimplement	ted: Read as 'd)'				
bit 10	CMPMD: Con	nparator Modul	e Disable bit				
		or module is di					
	0 = Comparat	or module is er	nabled				
bit 9		CC Module Dis					
		dule is disable dule is enabled					
bit 8		P Module Disat	-				
DILO		ule is disabled					
		ule is enabled					
bit 7	CRCMD: CRO	C Module Disab	ole bit				
	1 = CRC mod	ule is disabled					
	0 = CRC mod	ule is enabled					
bit 6	DAC1MD: DA	C1 Module Dis	able bit				
		dule is disabled					
		dule is enabled					
bit 5-0	Unimplement	ted: Read as '()′				

11.6 Peripheral Pin Select

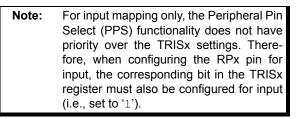
Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

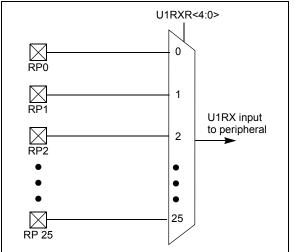
11.6.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 26 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

11.6.2 CONTROLLING PERIPHERAL PIN SELECT


Peripheral pin select features are controlled through two sets of special function registers: one to map peripheral inputs, and another one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


11.6.2.1 Input Mapping

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it is mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-14). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 11-2 illustrates remappable pin selection for U1RX input.

FIGURE 11-2: REMAPPABLE MUX INPUT FOR U1RX

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<4:0>
Timer5 External Clock	T5CK	RPINR4	T5CKR<4:0>
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 7	IC7	RPINR10	IC7R<4:0>
Input Capture 8	IC8	RPINR10	IC8R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<4:0>
UART2 Receive	U2RX	RPINR19	U2RXR<4:0>
UART2 Clear To Send	U2CTS	RPINR19	U2CTSR<4:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<4:0>
SPI1 Clock Input	SCK1	RPINR20	SCK1R<4:0>
SPI1 Slave Select Input	SS1	RPINR21	SS1R<4:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<4:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<4:0>
SPI2 Slave Select Input	SS2	RPINR23	SS2R<4:0>
ECAN1 Receive	CIRX	RPINR26	CIRXR<4:0>

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)⁽¹⁾

Note 1: Unless otherwise noted, all inputs use Schmitt input buffers.

REGISTER 11-15: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTERS 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		_			RP1R<4:0>	•	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—	RP0R<4:0>				
bit 7		·					bit (
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-16: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTERS 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP3R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP2R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 11-2 for peripheral function numbers)

14.2 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1, 2, 7 OR 8)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	ICSIDL	—	—	—	—	—
bit 15							bit 8

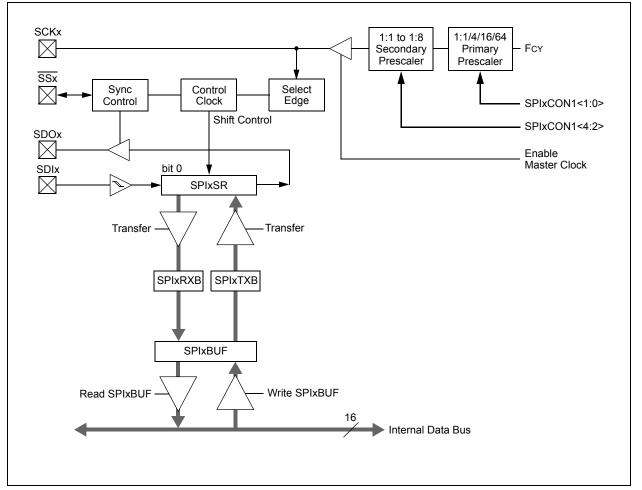
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI<1:0>		ICOV	ICBNE		ICM<2:0>	
bit 7	bit 7						bit 0

Legend:	HC = Cleared in Hardware				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture Module Stop in Idle Control bit
	1 = Input capture module halts in CPU Idle mode
	0 = Input capture module continues to operate in CPU Idle mode
bit 12-8	Unimplemented: Read as '0'
bit 7	ICTMR: Input Capture Timer Select bits
	 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits
	11 = Interrupt on every fourth capture event
	 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event
	00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
	1 = Input capture overflow occurred
	0 = No input capture overflow occurred
bit 3	ICBNE: Input Capture Buffer Empty Status bit (read-only)
	 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture Mode Select bits
	 111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode (Rising edge detect only, all other control bits are not applicable) 110 = Unused (module disabled)
	101 = Capture mode, every 16th rising edge
	100 = Capture mode, every 4th rising edge
	011 = Capture mode, every rising edge 010 = Capture mode, every falling edge
	001 = Capture mode, every edge (rising and falling)
	(ICI<1:0> bits do not control interrupt generation for this mode)
	000 = Input capture module turned off

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- · SDIx (serial data input)
- SDOx (serial data output)
- <u>SCKx</u> (shift clock input or output)
- SSx (active-low slave select)

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART"** (DS70232) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

		R/W-0	U-0	U-0	U-0	U-0	U-0
	DMABS<2:0>		—	—	_	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			FSA<4:0>		
bit 7							bit (
Levende		C = M/rite able		'O' oon ho writte	ve to close the l	.:4	
Legend: R = Readabl	a hit	W = Writable	•	'0' can be writte			
-n = Value at		'1' = Bit is set		0 = Onimplen	nented bit, read	x = Bit is unkr	
	FUR				aleu		IOWIT
bit 12-5	101 = 24 buffe 100 = 16 buffe 011 = 12 buffe 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe	ers in DMA RA ers in DMA RA ers in DMA RA ers in DMA RA rs in DMA RAN rs in DMA RAN rs in DMA RAN ted: Read as '	AM AM AM A A A A				
bit 4-0	•	FO Area Starts		oite			
	11111 = Read 11110 = Read •	d buffer RB31		5113			

R/W-0	R/W-0	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-			R/W-0	R/W-0				
F15N	/ISK<1:0>	F14MS	F14MSK<1:0>		F13MSK<1:0>		SK<1:0>			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F11M	ISK<1:0>	F10MS	K<1:0>	F9MS	K<1:0>	F8MS	K<1:0>			
bit 7							bit 0			
		0	. 1. 1. 1	01		. '1				
Legend:			•	0' can be writte						
R = Readab		W = Writable bit		U = Unimplemented bit, read						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-14	F15MSK<1.	n>: Mask Sourc	e for Filter 15	bit						
		15MSK<1:0>: Mask Source for Filter 15 bit 1 = No mask								
	10 = Accept	10 = Acceptance Mask 2 registers contain mask								
	01 = Accept	01 = Acceptance Mask 1 registers contain mask								
	00 = Accept	ance Mask 0 re	gisters contair	n mask						
bit 13-12	F14MSK<1:	0>: Mask Source	e for Filter 14	bit (same value	es as bit 15-14)				
bit 11-10	F13MSK<1:	0>: Mask Sourc	e for Filter 13	bit (same value	es as bit 15-14)				
bit 9-8	F12MSK<1:	0>: Mask Sourc	e for Filter 12	bit (same value	es as bit 15-14)				
bit 7-6	F11MSK<1:	0>: Mask Sourc	e for Filter 11	bit (same value	es as bit 15-14))				
bit 5-4	F10MSK<1:	0>: Mask Sourc	e for Filter 10	bit (same value	es as bit 15-14)				
bit 3-2	F9MSK<1:0	>: Mask Source	for Filter 9 bi	t (same values	as bit 15-14)					

REGISTER 19-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

bit 1-0 **F8MSK<1:0>:** Mask Source for Filter 8 bit (same values as bit 15-14)

22.3 RTCC Registers

(*)	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0		
RTCEN ⁽²⁾		RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPT	R<1:0>		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			CAL	<7:0>					
bit 7							bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	own		
bit 15		CC Enable bit ⁽²⁾							
DIL 15		nodule is enable							
		nodule is disable							
bit 14	Unimpleme	nted: Read as '	0'						
bit 13	-	RTCC Value Re		Enable bit					
			•	in be written to b	by the user				
	0 = RTCVAL	_H and RTCVAL	L registers ar	e locked out from	m being writter	n to by the user			
bit 12	RTCSYNC:	RTCSYNC: RTCC Value Registers Read Synchronization bit							
	1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple								
	resulting in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid								
				registers can be	e read without	concern over a	rollover rinn		
bit 11									
		HALFSEC: Half-Second Status bit ⁽³⁾ 1 = Second half period of a second							
		f period of a sec							
bit 10	RTCOE: RT	CC Output Enat	ole bit						
	1 = RTCC output enabled								
	0 = RTCC o	utput disabled							
bit 9-8			•	ndow Pointer bit					
		• •		registers when r every read or wri	•		•		
	RTCVAL<15								
	11 = Reserved								
	10 = MONTH 01 = WEEKDAY								
	00 = MINUT								
	00 = MINUT <u>RTCVAL<7:0</u>	ES							
	<u>RTCVAL<7:(</u> 11 = YEAR	ES							
	RTCVAL<7:0	ES)>:							

REGISTER 22-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- **3:** This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 22-4: RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—		
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
	YRTEN	\ <3:0>		YRONE<3:0>				
bit 7				•			bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-8 Unimplemented: Read as '0'

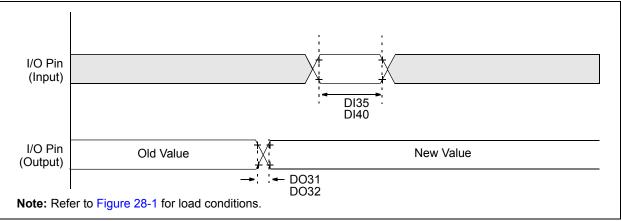
bit 7-4 YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit; contains a value from 0 to 9

bit 3-0 YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit; contains a value from 0 to 9

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 22-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x R-x R-x				
—	—	—	MTHTEN0		MTHONE<3:0>				
bit 15							bit 8		


U-0	U-0	R/W-x R/W-x		R/W-x	R/W-x R/W-x R/W-x R/W-x				
—	—	DAYTEN<1:0>		DAYONE<3:0>					
bit 7							bit 0		

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-13Unimplemented: Read as '0'bit 12MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1bit 11-8MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9bit 7-6Unimplemented: Read as '0'bit 5-4DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3bit 3-0DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

FIGURE 28-3: CLKO AND I/O TIMING CHARACTERISTICS

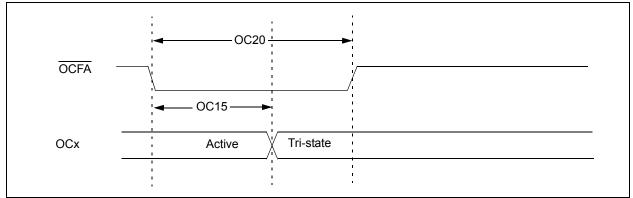
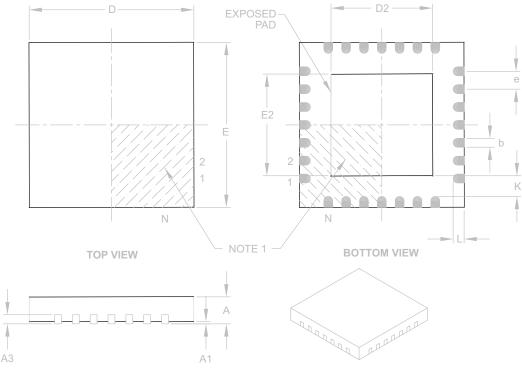


TABLE 28-20: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Oper (unless otherw Operating temp	vise state	ed) -40°C ≤	Ta ≤+85	3.6V °C for Inc 5°C for E		
Param No.	Symbol	Character	Characteristic		Typ ⁽¹⁾	Max	Units	Conditions
DO31	TioR	Port Output Rise Tim	е		10	25	ns	_
DO32	TIOF	Port Output Fall Time	Port Output Fall Time		10	25	ns	—
DI35	TINP	INTx Pin High or Low Time (input)		20	_	—	ns	_
DI40	Trbp	CNx High or Low Tim	CNx High or Low Time (input)		_	_	TCY	_

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 28-8: OC/PWM MODULE TIMING CHARACTERISTICS


TABLE 28-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
OC15	Tfd	Fault Input to PWM I/O Change	_	_	Tcy + 20	ns	_
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensio	on Limits	MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	0.65 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3		0.20 REF		
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.70	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.70	
Contact Width	b	0.23	0.38	0.43	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124B

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

RE: Reader Response From: Name Company	-
	-
Company	-
	-
Address City / State / ZIP / Country	
	-
Telephone: () FAX: () Application (optional):	
Application (optional):	
Would you like a reply? Y N	
Device: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and Literature Number: DS702930 PIC24HJ128GPX02/X04	i
Questions:	
1. What are the best features of this document?	
2. How does this document meet your hardware and software development needs?	
3. Do you find the organization of this document easy to follow? If not, why?	
4. What additions to the document do you think would enhance the structure and subject?	
5. What deletions from the document could be made without affecting the overall usefulness?	
6. Is there any incorrect or misleading information (what and where)?	
7. How would you improve this document?	