

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                        |
|----------------------------|-------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                           |
| Core Size                  | 16-Bit                                                                        |
| Speed                      | 40 MIPs                                                                       |
| Connectivity               | I <sup>2</sup> C, PMP, SPI, UART/USART                                        |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                    |
| Number of I/O              | 35                                                                            |
| Program Memory Size        | 64KB (22K x 24)                                                               |
| Program Memory Type        | FLASH                                                                         |
| EEPROM Size                | -                                                                             |
| RAM Size                   | 8K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                     |
| Data Converters            | A/D 13x10b/12b                                                                |
| Oscillator Type            | Internal                                                                      |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                 |
| Package / Case             | 44-VQFN Exposed Pad                                                           |
| Supplier Device Package    | 44-QFN (8x8)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp204-e-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# Pin Diagrams (Continued)

| 44-Pin QFN <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pins are up to 5V tolerant                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AN4/C1IN-/RP2 <sup>(1)</sup> /CN6/RB2<br>AN5/C1IN+/RP3 <sup>(1)</sup> /CN7/RB3<br>24<br>AN6/RP16 <sup>(1)</sup> /CN8/RC0<br>26<br>AN7/RP17 <sup>(1)</sup> /CN9/RC1<br>26<br>AN8/CVREF/RP18 <sup>(1)</sup> /PMA2/CN10/RC2<br>27<br>VDD<br>28<br>VSS<br>25<br>OSC1/CLKI/CN30/RA2<br>30<br>OSC2/CLKO/CN29/RA3<br>31<br>TDO/PMA8/RA8<br>SOSCI/RP4 <sup>(1)</sup> /CN1/RB4 | 22       PGEC1/AN3/C2IN+/RP1(1)/CN5/RB1         23       PGED1/AN2/C2IN+/RP1(1)/CN4/RB0         24       PGED1/AN2/C2IN+/RP1(1)/CN4/RB0         25       PGED1/AN2/C2IN+/RP1(1)/CN4/RB0         26       AN1/NEF+/CN2/RA1         27       PGED1/AN2/C2IN+/RP1(1)/CN4/RB0         28       AN1/NEF+/CN2/RA1         29       AN1/NEF+/CN2/RA1         20       AN1/NEF+/CN2/RA1         21       PGED1/AN2/C2IN+/RP1(1)/CN1/RB15         21       AN0/NEF+/CN2/RA1         22       PGED1/AN2/RA1         23       AN0/NEF+/CN2/RA1         33       TCK/PMA7/RA1         34       AN0/NEF+/CN11/PMC51/RB14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AN11/RP13 <sup>(1)</sup> /CN13/PMRD/RB13<br>AN12/RP12 <sup>(1)</sup> /CN14/PMD0/RB12<br>PGEC2/RP11 <sup>(1)</sup> /CN15/PMD1/RB11<br>PGED2/RP10 <sup>(1)</sup> /CN16/PMD2/RB10<br>VcAP <sup>(3)</sup><br>Vss<br>RP25 <sup>(1)</sup> /CN19/PMA6/RC9<br>RP24 <sup>(1)</sup> /CN19/PMA6/RC9<br>RP24 <sup>(1)</sup> /CN19/PMA5/RC8<br>RP23 <sup>(1)</sup> /CN17/PMA0/RC7<br>RP22 <sup>(1)</sup> /CN18/PMA1/RC6<br>SDA1/RP9 <sup>(1)</sup> /CN21/PMD3/RB9 |
| Note 1: The RPx pins can be used by any<br>2: The metal plane at the bottom of th<br>3: Refer to Section 2.3 "CPU Logic                                                                                                                                                                                                                                               | soscor11CKCN0/RA4<br>TDI/PMA9/RA9<br>RP19(1)/CN28/PMBE/RC3<br>RP19(1)/CN28/PMBE/RC3<br>RP19(1)/CN28/PMBE/RC3<br>RP19(1)/CN28/PMBE/RC3<br>RP21(1)/CN28/PMBE/RC3<br>RP21(1)/CN28/PMBE/RC3<br>VD5<br>PGEC3/ASCL1/RP6(1)/CN28/PMD3/RB5<br>PGEC3/ASCL1/RP6(1)/CN28/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>PGEC3/ASCL1/RP6(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB6<br>RP21(1)/CN23/PMD6/RB | in this section for the list of available peripherals.<br>and is recommended to be connected to VSS externally.<br>" for proper connection to this pin.                                                                                                                                                                                                                                                                                              |

# 3.5 CPU Control Registers

REGISTER 3-1:

**SR: CPU STATUS REGISTER** 

| U-0            | U-0                                    | U-0                                | U-0                              | U-0                              | U-0               | U-0               | R/W-0           |
|----------------|----------------------------------------|------------------------------------|----------------------------------|----------------------------------|-------------------|-------------------|-----------------|
|                | —                                      | _                                  | _                                | _                                | —                 | _                 | DC              |
| bit 15         |                                        |                                    |                                  |                                  |                   |                   | bit 8           |
| D 444 o(1      | = (2)                                  | $\nabla (\alpha , \alpha)$         |                                  |                                  |                   | DAMA              | DAAL O          |
| R/W-0          | <pre>/ R/W-U<sup>-/</sup></pre>        | R/W-0(-)                           | R-U                              | R/W-U                            | R/W-0             | R/W-0             | R/W-U           |
| bit 7          | IPL<2:0>(=)                            |                                    | RA                               | N                                | 00                | Z                 |                 |
|                |                                        |                                    |                                  |                                  |                   |                   | DILU            |
| Legend:        |                                        |                                    |                                  |                                  |                   |                   |                 |
| C = Clear c    | only bit                               | R = Readable                       | bit                              | U = Unimpler                     | nented bit, read  | as '0'            |                 |
| S = Set onl    | y bit                                  | W = Writable                       | bit                              | -n = Value at                    | POR               |                   |                 |
| '1' = Bit is s | set                                    | '0' = Bit is clea                  | ared                             | x = Bit is unk                   | nown              |                   |                 |
| h:1 4 5 0      |                                        | tod. Dood oo f                     | <u>.</u> ,                       |                                  |                   |                   |                 |
| DIC 15-9       |                                        | Head as                            | J                                |                                  |                   |                   |                 |
| DILO           | $1 = \Delta \operatorname{carry}_{-0}$ | U Hall Cally/Bo                    | low_order bit (1                 | for byte-sized c                 | lata) or 8th low- | order bit (for wo | rd-sized data)  |
|                | of the res                             | sult occurred                      |                                  | ioi byte-sized t                 |                   |                   |                 |
|                | 0 = No carry                           | -out from the 4                    | th low-order b                   | oit (for byte-siz                | ed data) or 8th   | low-order bit (f  | or word-sized   |
| L:1 7 F        |                                        | the result occur                   | red                              |                                  |                   |                   |                 |
| DIT 7-5        |                                        | O Interrupt Priority               | ority Level Sta                  | itus Dits <sup>(=)</sup>         | to dischlad       |                   |                 |
|                | 111 = CPU Ir<br>110 = CPU Ir           | nterrupt Priority                  | Level is 7 (15                   | ), user interrup<br>.)           | ols disabled      |                   |                 |
|                | 101 <b>= CPU I</b> r                   | nterrupt Priority                  | Level is 5 (13                   | 5)                               |                   |                   |                 |
|                | 100 = CPU Ir                           | nterrupt Priority                  | Level is 4 (12                   | 2)                               |                   |                   |                 |
|                | 011 = CPU Ir<br>010 = CPU Ir           | nterrupt Priority                  | Level is 3 (11<br>Level is 2 (10 | )                                |                   |                   |                 |
|                | 001 = CPU Ir                           | nterrupt Priority                  | Level is 1 (9)                   | ,                                |                   |                   |                 |
|                | 000 <b>= CPU I</b> r                   | nterrupt Priority                  | Level is 0 (8)                   |                                  |                   |                   |                 |
| bit 4          | <b>RA:</b> REPEAT                      | Loop Active bit                    |                                  |                                  |                   |                   |                 |
|                | 1 = REPEAT  <br>0 = REPEAT             | oop in progress<br>oop not in prog | s<br>ress                        |                                  |                   |                   |                 |
| bit 3          | N: MCU ALU                             | Negative bit                       |                                  |                                  |                   |                   |                 |
|                | 1 = Result wa                          | as negative                        | (                                | <b>t</b> ive)                    |                   |                   |                 |
| hit 2          | 0 = Result was                         | I Overflow bit                     |                                  | uve)                             |                   |                   |                 |
|                | This bit is use                        | ed for signed ar                   | ithmetic (two's                  | s complement)                    | It indicates an   | overflow of a m   | nagnitude that  |
|                | causes the si                          | gn bit to change                   | e state.                         | o complement)                    |                   |                   | lagintado tilat |
|                | 1 = Overflow                           | occurred for sig                   | gned arithmeti                   | ic (in this arithr               | netic operation)  |                   |                 |
|                | 0 = No overfloor                       | ow occurred                        |                                  |                                  |                   |                   |                 |
| bit 1          | Z: MCU ALU                             | Zero bit                           | 4h - <b>7</b> h 4 h              | 1 :1 - 1                         | ·····             |                   |                 |
|                | 1 = An operation 0 = The most          | recent operation                   | on that affects                  | the Z bit has c                  | cime in the past  | non-zero resul    | lt)             |
| bit 0          | C: MCU ALU                             | Carry/Borrow b                     | oit                              |                                  |                   |                   | ,               |
|                | 1 = A carry-o                          | ut from the Mos                    | st Significant b                 | oit of the result                | occurred          |                   |                 |
|                | 0 = No carry-                          | out from the Mo                    | ost Significant                  | bit of the resu                  | It occurred       |                   |                 |
| Note 4-        | The ID! 20:05 6:4-                     | oro ocnocian-i                     | od with the ID                   | 1 ~2 hit /005                    |                   | m the ODU Let     | orrupt Dricaite |
| NOLE T:        | Level. The value in                    | are concatenat                     | ndicates the l                   | L-32 DIL (UUR<br>PL if IPI <3> = | 1. User interrur  | ots are disabled  | l when          |
|                | IPL<3> = 1.                            |                                    |                                  | ····· <b>-</b> •                 |                   |                   |                 |
| 2:             | The IPL<2:0> Stat                      | us bits are read                   | d only when th                   | e NSTDIS bit                     | (INTCON1<15>      | )=1.              |                 |

#### 4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
  - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
  - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>), is always '0'.
  - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.



## FIGURE 4-7: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

## EXAMPLE 5-2: LOADING THE WRITE BUFFERS

| ; | Set up NVMCO  | N for row programming opera | ıti | ions                                   |
|---|---------------|-----------------------------|-----|----------------------------------------|
|   | MOV           | #0x4001, W0                 | ;   |                                        |
|   | MOV           | W0, NVMCON                  | ;   | Initialize NVMCON                      |
| ; | Set up a poir | nter to the first program m | ien | nory location to be written            |
| ; | program memo: | ry selected, and writes ena | ıbl | led                                    |
|   | MOV           | #0x0000, W0                 | ;   |                                        |
|   | MOV           | W0, TBLPAG                  | ;   | Initialize PM Page Boundary SFR        |
|   | MOV           | #0x6000, W0                 | ;   | An example program memory address      |
| ; | Perform the ? | TBLWT instructions to write | e t | the latches                            |
| ; | Oth_program_v | word                        |     |                                        |
|   | MOV           | #LOW_WORD_0, W2             | ;   |                                        |
|   | MOV           | #HIGH_BYTE_0, W3            | ;   |                                        |
|   | TBLWTL        | W2, [W0]                    | ;   | Write PM low word into program latch   |
|   | TBLWTH        | W3, [W0++]                  | ;   | Write PM high byte into program latch  |
| ; | 1st_program_  | word                        |     |                                        |
|   | MOV           | #LOW_WORD_1, W2             | ;   |                                        |
|   | MOV           | #HIGH_BYTE_1, W3            | ;   |                                        |
|   | TBLWTL        | W2, [W0]                    | ;   | Write PM low word into program latch   |
|   | TBLWTH        | W3, [W0++]                  | ;   | Write PM high byte into program latch  |
| ; | 2nd_program   | _word                       |     |                                        |
|   | MOV           | #LOW_WORD_2, W2             | ;   |                                        |
|   | MOV           | #HIGH_BYTE_2, W3            | ;   |                                        |
|   | TBLWTL        | W2, [W0]                    | ;   | Write PM low word into program latch   |
|   | TBLWTH        | W3, [W0++]                  | ;   | Write PM high byte into program latch  |
|   | •             |                             |     |                                        |
|   | •             |                             |     |                                        |
|   | •             |                             |     |                                        |
| ; | 63rd_program_ | _word                       |     |                                        |
|   | MOV           | #LOW_WORD_31, W2            | ;   |                                        |
|   | MOV           | #HIGH_BYTE_31, W3           | ;   |                                        |
|   | TBLWTL        | W2, [W0]                    | ;   | Write PM low word into program latch   |
|   | TBLWTH        | W3, [W0++]                  | ;   | Write PM high byte into program latch  |
|   | IDDWIN        | W3, [W3+1]                  | '   | write in high byte files program faten |

## EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

| DISI | #5          | <pre>; Block all interrupts with priority &lt;7 ; for next 5 instructions</pre> |
|------|-------------|---------------------------------------------------------------------------------|
| MOV  | #0x55, W0   |                                                                                 |
| MOV  | W0, NVMKEY  | ; Write the 55 key                                                              |
| MOV  | #0xAA, W1   | ;                                                                               |
| MOV  | W1, NVMKEY  | ; Write the AA key                                                              |
| BSET | NVMCON, #WR | ; Start the erase sequence                                                      |
| NOP  |             | ; Insert two NOPs after the                                                     |
| NOP  |             | ; erase command is asserted                                                     |
|      |             |                                                                                 |

| R/W-0           | R/W-0                                           | R/W-0                           | R/W-0               | R/W-0           | R/W-0           | R/W-0           | R/W-0   |
|-----------------|-------------------------------------------------|---------------------------------|---------------------|-----------------|-----------------|-----------------|---------|
| U2TXIE          | U2RXIE                                          | INT2IE                          | T5IE                | T4IE            | OC4IE           | OC3IE           | DMA2IE  |
| bit 15          |                                                 |                                 |                     |                 |                 |                 | bit 8   |
| <b></b>         |                                                 |                                 |                     |                 |                 |                 |         |
| R/W-0           | R/W-0                                           | U-0                             | R/W-0               | R/W-0           | R/W-0           | R/W-0           | R/W-0   |
| IC8IE           | IC7IE                                           | —                               | INT1IE              | CNIE            | CMIE            | MI2C1IE         | SI2C1IE |
| bit 7           |                                                 |                                 |                     |                 |                 |                 | bit 0   |
| Logond:         |                                                 |                                 |                     |                 |                 |                 |         |
| R = Readable    | bit                                             | W = Writable                    | bit                 | U = Unimple     | mented bit read | d as '0'        |         |
| -n = Value at F | POR                                             | '1' = Bit is set                |                     | 0' = Bit is cle | ared            | x = Bit is unkr | nown    |
|                 |                                                 |                                 |                     |                 |                 |                 |         |
| bit 15          | U2TXIE: UAF                                     | RT2 Transmitte                  | r Interrupt En      | able bit        |                 |                 |         |
|                 | 1 = Interrupt r                                 | request enable                  | d                   |                 |                 |                 |         |
|                 | 0 = Interrupt r                                 | request not ena                 | abled               |                 |                 |                 |         |
| bit 14          | U2RXIE: UAF                                     | RT2 Receiver li                 | nterrupt Enab       | le bit          |                 |                 |         |
|                 | 1 = Interrupt r                                 | request enable                  | d<br>abled          |                 |                 |                 |         |
| bit 13          | INT2IF: Exter                                   | rnal Interrupt 2                | Enable bit          |                 |                 |                 |         |
|                 | 1 = Interrupt r                                 | request enable                  | d                   |                 |                 |                 |         |
|                 | 0 = Interrupt r                                 | request not ena                 | abled               |                 |                 |                 |         |
| bit 12          | T5IE: Timer5                                    | Interrupt Enab                  | le bit              |                 |                 |                 |         |
|                 | 1 = Interrupt r                                 | request enable                  | d                   |                 |                 |                 |         |
| bit 11          | 0 = Interrupt 1                                 | Interrunt Enab                  | lo bit              |                 |                 |                 |         |
|                 | 1 = Interrupt r                                 | request enable                  | d                   |                 |                 |                 |         |
|                 | 0 = Interrupt r                                 | request not ena                 | abled               |                 |                 |                 |         |
| bit 10          | OC4IE: Output                                   | ut Compare Ch                   | annel 4 Interi      | rupt Enable bit |                 |                 |         |
|                 | 1 = Interrupt r                                 | request enable                  | d                   |                 |                 |                 |         |
| <b>h</b> # 0    |                                                 | request not ena                 | abled               | unt Enchla bit  |                 |                 |         |
| DIL 9           |                                                 | ut Compare Cr<br>request enable | annei 3 interi<br>d | upt Enable bit  |                 |                 |         |
|                 | 0 = Interrupt r                                 | request not enable              | abled               |                 |                 |                 |         |
| bit 8           | DMA2IE: DM                                      | A Channel 2 D                   | ata Transfer (      | Complete Inter  | rupt Enable bit |                 |         |
|                 | 1 = Interrupt r                                 | request enable                  | d                   |                 |                 |                 |         |
|                 | 0 = Interrupt r                                 | request not ena                 | abled               |                 |                 |                 |         |
| bit 7           | IC8IE: Input C                                  | Capture Chann                   | el 8 Interrupt      | Enable bit      |                 |                 |         |
|                 | $\perp = \text{Interrupt r}$<br>0 = Interrupt r | request enable                  | u<br>abled          |                 |                 |                 |         |
| bit 6           | IC7IE: Input (                                  | Capture Chann                   | el 7 Interrupt      | Enable bit      |                 |                 |         |
|                 | 1 = Interrupt r                                 | request enable                  | d                   |                 |                 |                 |         |
|                 | 0 = Interrupt r                                 | request not ena                 | abled               |                 |                 |                 |         |
| bit 5           | Unimplemen                                      | ted: Read as '                  | 0'                  |                 |                 |                 |         |
| bit 4           | INT1IE: Exter                                   | rnal Interrupt 1                | Enable bit          |                 |                 |                 |         |
|                 | 1 = Interrupt r                                 | request enable                  | a<br>abled          |                 |                 |                 |         |
| bit 3           | CNIE: Input C                                   | Change Notifica                 | ation Interrupt     | Enable bit      |                 |                 |         |
|                 | 1 = Interrupt r                                 | request enable                  | d                   |                 |                 |                 |         |
|                 | 0 = Interrupt r                                 | request not ena                 | abled               |                 |                 |                 |         |

# REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

| U-0          | R/W-1                                                                                                           | R/W-0                | R/W-0                                      | U-0               | R/W-1          | R/W-0           | R/W-0 |
|--------------|-----------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------|-------------------|----------------|-----------------|-------|
| —            |                                                                                                                 | CNIP<2:0>            |                                            |                   |                | CMIP<2:0>       |       |
| oit 15       |                                                                                                                 |                      |                                            |                   |                |                 | bit   |
|              |                                                                                                                 |                      |                                            |                   |                |                 |       |
| U-0          | R/W-1                                                                                                           | R/W-0                | R/W-0                                      | U-0               | R/W-1          | R/W-0           | R/W-0 |
| _            |                                                                                                                 | MI2C1IP<2:0>         |                                            |                   |                | SI2C1IP<2:0>    |       |
| bit 7        |                                                                                                                 |                      |                                            |                   |                |                 | bit   |
| Legend:      |                                                                                                                 |                      |                                            |                   |                |                 |       |
| R = Readab   | le bit                                                                                                          | W = Writable         | bit                                        | U = Unimple       | mented bit, re | ad as '0'       |       |
| -n = Value a | t POR                                                                                                           | '1' = Bit is set     |                                            | '0' = Bit is cle  | eared          | x = Bit is unkn | own   |
|              |                                                                                                                 |                      |                                            |                   |                |                 |       |
| bit 15       | Unimpleme                                                                                                       | nted: Read as '      | )'                                         |                   |                |                 |       |
| bit 14-12    | CNIP<2:0>:                                                                                                      | Change Notifica      | tion Interrup                              | t Priority bits   |                |                 |       |
|              | 111 <b>= Interr</b>                                                                                             | upt is priority 7 (I | nighest priori                             | ty interrupt)     |                |                 |       |
|              | •                                                                                                               |                      |                                            |                   |                |                 |       |
|              | •                                                                                                               |                      |                                            |                   |                |                 |       |
|              | 001 <b>= Interr</b>                                                                                             | upt is priority 1    |                                            |                   |                |                 |       |
|              | 000 <b>= Interr</b>                                                                                             | upt source is dis    | abled                                      |                   |                |                 |       |
| bit 11       | Unimpleme                                                                                                       | nted: Read as '      | )'                                         |                   |                |                 |       |
| bit 10-8     | CMIP<2:0>:                                                                                                      | Comparator Inte      | errupt Priorit                             | y bits            |                |                 |       |
|              | 111 = Interru                                                                                                   | upt is priority 7 (I | nighest priori                             | ty interrupt)     |                |                 |       |
|              | •                                                                                                               |                      |                                            |                   |                |                 |       |
|              | •                                                                                                               |                      |                                            |                   |                |                 |       |
|              | 001 = Interru                                                                                                   | upt is priority 1    |                                            |                   |                |                 |       |
|              | 000 = Interru                                                                                                   | upt source is dis    | abled                                      |                   |                |                 |       |
| bit 7        | Unimpleme                                                                                                       | nted: Read as '      | )'                                         |                   |                |                 |       |
| bit 6-4      | MI2C1IP<2:                                                                                                      | 0>: I2C1 Master      | Events Inter                               | rupt Priority bit | s              |                 |       |
|              | 111 = Interru                                                                                                   | upt is priority 7 (I | nighest priori                             | ty interrupt)     | -              |                 |       |
|              | •                                                                                                               |                      | 0 1                                        | , ,               |                |                 |       |
|              | •                                                                                                               |                      |                                            |                   |                |                 |       |
|              | •                                                                                                               |                      |                                            |                   |                |                 |       |
|              | 001 = Interru                                                                                                   | upt is priority 1    | abled                                      |                   |                |                 |       |
| hit 2        |                                                                                                                 | nted: Deed on '      | abieu<br>.,                                |                   |                |                 |       |
|              |                                                                                                                 | Ne 1004 Olever       | )<br>• • • • • • • • • • • • • • • • • • • |                   |                |                 |       |
| DIT 2-0      | SIZC1IP <z:u< td=""><td></td><td>vents Interru</td><td>Ipt Priority bits</td><td></td><td></td><td></td></z:u<> |                      | vents Interru                              | Ipt Priority bits |                |                 |       |
|              |                                                                                                                 | upt is priority 7 (I | lignest prior                              | ty interrupt)     |                |                 |       |
|              | •                                                                                                               |                      |                                            |                   |                |                 |       |
|              | •                                                                                                               |                      |                                            |                   |                |                 |       |
|              | 001 = Interru                                                                                                   | upt is priority 1    |                                            |                   |                |                 |       |

# 000 = Interrupt source is disabled

| REGISTER      | 7-22: IPC7:                  | INTERRUPT                               | PRIORITY       | CONTROL RI        | EGISTER 7       |                  |       |
|---------------|------------------------------|-----------------------------------------|----------------|-------------------|-----------------|------------------|-------|
| U-0           | R/W-1                        | R/W-0                                   | R/W-0          | U-0               | R/W-1           | R/W-0            | R/W-0 |
| —             |                              | U2TXIP<2:0>                             |                | —                 |                 | U2RXIP<2:0>      |       |
| oit 15        |                              |                                         |                |                   |                 |                  | bit   |
| U-0           | R/W-1                        | R/W-0                                   | R/W-0          | U-0               | R/W-1           | R/W-0            | R/W-0 |
| _             |                              | INT2IP<2:0>                             |                | _                 |                 | T5IP<2:0>        |       |
| bit 7         |                              |                                         |                |                   |                 |                  | bit   |
| Legend:       |                              |                                         |                |                   |                 |                  |       |
| R = Readabl   | e bit                        | W = Writable b                          | bit            | U = Unimpler      | mented bit, rea | ad as '0'        |       |
| -n = Value at | POR                          | '1' = Bit is set                        |                | '0' = Bit is cle  | ared            | x = Bit is unkno | own   |
|               |                              |                                         |                |                   |                 |                  |       |
| bit 15        | Unimpleme                    | nted: Read as '0                        | )'             |                   |                 |                  |       |
| bit 14-12     | U2TXIP<2:0                   | >: UART2 Trans                          | mitter Interru | upt Priority bits |                 |                  |       |
|               | 111 = Interr                 | upt is priority 7 (h                    | nighest priori | ty interrupt)     |                 |                  |       |
|               | •                            |                                         |                |                   |                 |                  |       |
|               | •                            |                                         |                |                   |                 |                  |       |
|               | 001 = Interr                 | upt is priority 1                       |                |                   |                 |                  |       |
|               | 000 = Interr                 | upt source is disa                      | abled          |                   |                 |                  |       |
| bit 11        | Unimpleme                    | nted: Read as '0                        | )'             |                   |                 |                  |       |
| bit 10-8      | U2RXIP<2:0                   | 0>: UART2 Rece                          | iver Interrup  | t Priority bits   |                 |                  |       |
|               | 111 = Interr                 | upt is priority 7 (h                    | nighest priori | ty interrupt)     |                 |                  |       |
|               | •                            |                                         |                |                   |                 |                  |       |
|               | •                            |                                         |                |                   |                 |                  |       |
|               | 001 = Interr<br>000 = Interr | upt is priority 1<br>upt source is disa | abled          |                   |                 |                  |       |
| bit 7         | Unimpleme                    | nted: Read as '0                        | )'             |                   |                 |                  |       |
| bit 6-4       | INT2IP<2:02                  | >: External Interr                      | upt 2 Priority | / bits            |                 |                  |       |
|               | 111 = Interr                 | upt is priority 7 (h                    | nighest priori | ty interrupt)     |                 |                  |       |
|               | •                            |                                         |                |                   |                 |                  |       |
|               | •                            |                                         |                |                   |                 |                  |       |
|               | 001 = Interr                 | upt is priority 1                       |                |                   |                 |                  |       |
|               | 000 = Interr                 | upt source is disa                      | abled          |                   |                 |                  |       |
| bit 3         | Unimpleme                    | nted: Read as 'o                        | )'             |                   |                 |                  |       |
| bit 2-0       | T5IP<2:0>:                   | Timer5 Interrupt                        | Priority bits  |                   |                 |                  |       |
|               | 111 = Interr                 | upt is priority 7 (h                    | nighest priori | ty interrupt)     |                 |                  |       |
|               | •                            |                                         |                |                   |                 |                  |       |
|               | •                            |                                         |                |                   |                 |                  |       |
|               | 001 = Interr                 | upt is priority 1                       |                |                   |                 |                  |       |

000 = Interrupt source is disabled

## REGISTER 11-21: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTERS 6

| U-0             | U-0        | U-0              | R/W-0                                  | R/W-0            | R/W-0     | R/W-0           | R/W-0 |
|-----------------|------------|------------------|----------------------------------------|------------------|-----------|-----------------|-------|
| —               | —          | —                |                                        |                  | RP13R<4:0 | >               |       |
| bit 15          |            |                  |                                        |                  |           |                 | bit 8 |
|                 |            |                  |                                        |                  |           |                 |       |
| U-0             | U-0        | U-0              | R/W-0                                  | R/W-0            | R/W-0     | R/W-0           | R/W-0 |
| —               | —          | —                |                                        |                  | RP12R<4:0 | >               |       |
| bit 7           |            |                  |                                        |                  |           |                 | bit 0 |
|                 |            |                  |                                        |                  |           |                 |       |
| Legend:         |            |                  |                                        |                  |           |                 |       |
| R = Readable    | bit        | W = Writable     | bit U = Unimplemented bit, read as '0' |                  |           |                 |       |
| -n = Value at P | OR         | '1' = Bit is set |                                        | '0' = Bit is cle | eared     | x = Bit is unkr | nown  |
|                 |            |                  |                                        |                  |           |                 |       |
| bit 15 13       | Unimplomon | tod. Dood on '   | `,                                     |                  |           |                 |       |

| DIT 15-13 | Unimplemented: Read as 0                                                                                                                 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| bit 12-8  | <b>RP13R&lt;4:0&gt;:</b> Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 11-2 for peripheral function numbers) |
| bit 7-5   | Unimplemented: Read as '0'                                                                                                               |
| bit 4-0   | RP12R<4:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 11-2 for                                           |

#### REGISTER 11-22: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTERS 7

peripheral function numbers)

| U-0    | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0      | R/W-0 | R/W-0 |
|--------|-----|-----|-------|-------|------------|-------|-------|
| —      | —   | —   |       |       | RP15R<4:0> |       |       |
| bit 15 |     |     |       |       |            |       | bit 8 |

| U-0   | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0      | R/W-0 | R/W-0 |
|-------|-----|-----|-------|-------|------------|-------|-------|
| —     | —   | —   |       |       | RP14R<4:0> |       |       |
| bit 7 |     |     |       |       |            |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 11-2 for peripheral function numbers)

NOTES:

## 14.1 Input Capture Resources

Many useful resources related to Input Capture are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the |
|-------|---------------------------------------------|
|       | product page using the link above, enter    |
|       | this URL in your browser:                   |
|       | http://www.microchip.com/wwwproducts/       |
|       | Devices.aspx?dDocName=en532315              |

#### 14.1.1 KEY RESOURCES

- Section 12. "Input Capture" (DS70198)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

| REGISTER 19     | 9-6: CilNTF           | ECAN™ IN                              | TERRUPT                     | FLAG REGIS       | STER              |                 |       |
|-----------------|-----------------------|---------------------------------------|-----------------------------|------------------|-------------------|-----------------|-------|
| U-0             | U-0                   | R-0                                   | R-0                         | R-0              | R-0               | R-0             | R-0   |
| _               | —                     | ТХВО                                  | TXBP                        | RXBP             | TXWAR             | RXWAR           | EWARN |
| bit 15          |                       |                                       |                             |                  |                   |                 | bit 8 |
|                 |                       |                                       |                             |                  |                   |                 |       |
| R/C-0           | R/C-0                 | R/C-0                                 | U-0                         | R/C-0            | R/C-0             | R/C-0           | R/C-0 |
| IVRIF           | WAKIF                 | ERRIF                                 | —                           | FIFOIF           | RBOVIF            | RBIF            | TBIF  |
| bit 7           |                       |                                       |                             |                  |                   |                 | bit 0 |
|                 |                       |                                       |                             |                  |                   |                 |       |
| Legend:         |                       | C = Writeable                         | bit, but only               | 0' can be writt  | en to clear the b | it              |       |
| R = Readable    | bit                   | W = Writable                          | bit                         | U = Unimple      | mented bit, read  | as '0'          |       |
| -n = Value at P | POR                   | '1' = Bit is set                      |                             | '0' = Bit is cle | eared             | x = Bit is unkr | IOWN  |
|                 |                       |                                       | - 1                         |                  |                   |                 |       |
| Dit 15-14       |                       | ted: Read as                          |                             | L :4             |                   |                 |       |
| DIT 13          | 1 = Transmitte        | mitter in Error :<br>er is in Rus Off | state Bus Off               | DIT              |                   |                 |       |
|                 | 0 = Transmitte        | er is not in Bus                      | Off state                   |                  |                   |                 |       |
| bit 12          | TXBP: Transr          | mitter in Error S                     | State Bus Pas               | sive bit         |                   |                 |       |
|                 | 1 = Transmitte        | er is in Bus Pa                       | ssive state                 |                  |                   |                 |       |
|                 | 0 = Transmitte        | er is not in Bus                      | Passive state               | e<br>            |                   |                 |       |
| bit 11          | <b>RXBP:</b> Receiver | ver in Error Sta                      | ite Bus Passiv              | ve bit           |                   |                 |       |
|                 | 0 = Receiver i        | is not in Bus Passi                   | assive state                |                  |                   |                 |       |
| bit 10          | TXWAR: Tran           | nsmitter in Erro                      | r State Warnii              | ng bit           |                   |                 |       |
|                 | 1 = Transmitte        | er is in Error W                      | arning state                | 0                |                   |                 |       |
|                 | 0 = Transmitte        | er is not in Erro                     | or Warning sta              | ate              |                   |                 |       |
| bit 9           | RXWAR: Rec            | eiver in Error S                      | State Warning               | bit              |                   |                 |       |
|                 | $\perp$ = Receiver i  | is in Error war                       | ning state<br>Narning state |                  |                   |                 |       |
| bit 8           | EWARN: Tran           | nsmitter or Rec                       | eiver in Frror              | State Warning    | ı bit             |                 |       |
| 2.1.0           | 1 = Transmitte        | er or Receiver                        | is in Error Sta             | te Warning sta   | ate               |                 |       |
|                 | 0 = Transmitte        | er or Receiver                        | is not in Error             | State Warning    | g state           |                 |       |
| bit 7           | IVRIF: Invalid        | Message Rec                           | eived Interrup              | ot Flag bit      |                   |                 |       |
|                 | 1 = Interrupt F       | Request has or                        | curred                      |                  |                   |                 |       |
| bit 6           |                       | Wake-un Activi                        | tv Interrunt Fl             | ag bit           |                   |                 |       |
| Sit 0           | 1 = Interrupt F       | Request has or                        | curred                      | ag bit           |                   |                 |       |
|                 | 0 = Interrupt F       | Request has no                        | ot occurred                 |                  |                   |                 |       |
| bit 5           | ERRIF: Error          | Interrupt Flag                        | bit (multiple s             | ources in CilN   | TF<13:8> registe  | er)             |       |
|                 | 1 = Interrupt F       | Request has or                        | curred                      |                  |                   |                 |       |
| L:1 4           | 0 = Interrupt F       | Request has no                        |                             |                  |                   |                 |       |
| DIT 4           |                       | ted: Read as                          | U<br>torrupt Elog b         | :4               |                   |                 |       |
| DIL 3           | 1 = Interrupt F       | Request has or                        | curred                      | π                |                   |                 |       |
|                 | 0 = Interrupt F       | Request has no                        | ot occurred                 |                  |                   |                 |       |
| bit 2           | <b>RBOVIF:</b> RX     | Buffer Overflov                       | v Interrupt Fla             | ag bit           |                   |                 |       |
|                 | 1 = Interrupt F       | Request has or                        | curred                      |                  |                   |                 |       |
| 1. 11. A        | 0 = Interrupt F       | Request has no                        | ot occurred                 |                  |                   |                 |       |
| bit 1           | 1 = Interrupt F       | fer Interrupt FI                      | ag bit                      |                  |                   |                 |       |
|                 | 0 = Interrupt F       | Request has no                        | ot occurred                 |                  |                   |                 |       |
| bit 0           | TBIF: TX Buff         | fer Interrupt Fla                     | ag bit                      |                  |                   |                 |       |
|                 | 1 = Interrupt F       | Request has or                        | curred                      |                  |                   |                 |       |
|                 | 0 = Interrupt F       | Request has no                        | ot occurred                 |                  |                   |                 |       |

| REGISTER 20-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER |                             |                   |                |                   |                  |                  |             |  |  |
|----------------------------------------------------------------------|-----------------------------|-------------------|----------------|-------------------|------------------|------------------|-------------|--|--|
| U-0                                                                  | U-0                         | U-0               | U-0            | U-0               | R/W-0            | R/W-0            | R/W-0       |  |  |
| —                                                                    | —                           | —                 | —              | —                 | CH123N           | VB<1:0>          | CH123SB     |  |  |
| bit 15                                                               |                             |                   |                |                   |                  |                  | bit         |  |  |
|                                                                      |                             |                   |                |                   |                  |                  |             |  |  |
| U-0                                                                  | U-0                         | U-0               | U-0            | U-0               | R/W-0            | R/W-0            | R/W-0       |  |  |
| —                                                                    | —                           | _                 | —              |                   | CH1231           | NA<1:0>          | CH123SA     |  |  |
| bit 7                                                                |                             |                   |                |                   |                  |                  | bit (       |  |  |
|                                                                      |                             |                   |                |                   |                  |                  |             |  |  |
| Legend:                                                              |                             |                   |                |                   |                  |                  |             |  |  |
| R = Readab                                                           | le bit                      | W = Writable I    | bit            | U = Unimple       | mented bit, rea  | d as '0'         |             |  |  |
| -n = Value a                                                         | t POR                       | '1' = Bit is set  |                | '0' = Bit is cle  | eared            | x = Bit is unk   | nown        |  |  |
|                                                                      |                             |                   |                |                   |                  |                  |             |  |  |
| bit 15-11                                                            | Unimplemen                  | ited: Read as '0  | )'             |                   |                  |                  |             |  |  |
| bit 10-9                                                             | CH123NB<1:                  | :0>: Channel 1,   | 2, 3 Negative  | e Input Select fo | or Sample B bit  | S                |             |  |  |
|                                                                      | When AD12E                  | B = 1, CHxNB i    | s: U-0, Unim   | plemented, Re     | ad as '0'        |                  |             |  |  |
|                                                                      | 11 = CH1 neg                | gative input is A | N9, CH2 neg    | ative input is A  | N10, CH3 nega    | ative input is A | N11<br>o(1) |  |  |
|                                                                      | $0 \times = CH1, CH$        | H2, CH3 negativ   | ve input is VR | EF-               | in, cho negat    | ive input is Air | 0. /        |  |  |
| bit 8                                                                | <b>CH123SB</b> : C          | hannel 1, 2, 3 F  | ositive Input  | Select for Sam    | ple B bit        |                  |             |  |  |
|                                                                      | When AD12E                  | 3 = 1, CHxSA is   | s: U-0, Unimp  | plemented, Re     | ad as '0'        |                  |             |  |  |
|                                                                      | 1 = CH1 posi                | tive input is AN  | 3, CH2 positiv | e input is AN4    | , CH3 positive i | nput is AN5      |             |  |  |
|                                                                      | 0 = CH1 posi                | tive input is AN  | 0, CH2 positiv | e input is AN1    | , CH3 positive i | nput is AN2      |             |  |  |
| bit 7-3                                                              | Unimplemen                  | ited: Read as '0  | )'             |                   |                  |                  |             |  |  |
| bit 2-1                                                              | CH123NA<1:                  | :0>: Channel 1,   | 2, 3 Negative  | e Input Select fo | or Sample A bit  | S                |             |  |  |
|                                                                      | When AD12E                  | 3 = 1, CHxNA i    | s: U-0, Unim   | plemented, Re     | ad as '0'        |                  |             |  |  |
|                                                                      | 11 = CH1 neg                | gative input is A | N9, CH2 neg    | ative input is A  | NTU, CH3 nega    | ive input is A   | N11<br>o(1) |  |  |
|                                                                      | $0 \times = CH1, CH$        | H2, CH3 negativ   | ve input is VR | EF-               | in, cho negat    |                  | 0.          |  |  |
| bit 0                                                                | <b>CH123SA</b> : C          | hannel 1, 2, 3 F  | ositive Input  | Select for Sam    | ple A bit        |                  |             |  |  |
|                                                                      | When AD12                   | B = 1, CHxSA is   | s: U-0, Unim   | plemented. Re     | ad as '0'        |                  |             |  |  |
|                                                                      | 1 = CH1 posi                | tive input is AN  | 3, CH2 positiv | e input is AN4    | , CH3 positive i | nput is AN5      |             |  |  |
|                                                                      | 0 = CH1 posi                | tive input is AN  | 0, CH2 positiv | e input is AN1    | , CH3 positive i | nput is AN2      |             |  |  |
|                                                                      |                             |                   |                |                   |                  |                  |             |  |  |
| 1 T                                                                  | This late a status of the F |                   |                |                   |                  |                  | (00 (00)    |  |  |

**Note 1:** This bit setting is Reserved in PIC24HJ128GPX02, PIC24HJ64GPX02 and PIC24HJ32GPX02 (28-pin) devices.

## REGISTER 21-1: CMCON: COMPARATOR CONTROL REGISTER (CONTINUED)

| bit 6 | C1OUT: Comparator 1 Output bit<br>$\frac{\text{When C1INV = 0:}}{1 = C1 \text{ VIN+ > C1 VIN-}}$ $0 = C1 \text{ VIN+ < C1 VIN-}$ $\frac{\text{When C1INV = 1:}}{0 = C1 \text{ VIN+ > C1 VIN-}}$ |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 5 | <b>C2INV:</b> Comparator 2 Output Inversion bit                                                                                                                                                 |
|       | <ul> <li>1 = C2 output inverted</li> <li>0 = C2 output not inverted</li> </ul>                                                                                                                  |
| bit 4 | C1INV: Comparator 1 Output Inversion bit<br>1 = C1 output inverted<br>0 = C1 output not inverted                                                                                                |
| bit 3 | <b>C2NEG:</b> Comparator 2 Negative Input Configure bit<br>1 = Input is connected to VIN+<br>0 = Input is connected to VIN-<br>See Figure 21-1 for the comparator modes.                        |
| bit 2 | <b>C2POS:</b> Comparator 2 Positive Input Configure bit<br>1 = Input is connected to VIN+<br>0 = Input is connected to CVREF<br>See Figure 21-1 for the comparator modes.                       |
| bit 1 | <b>C1NEG:</b> Comparator 1 Negative Input Configure bit<br>1 = Input is connected to VIN+<br>0 = Input is connected to VIN-<br>See Figure 21-1 for the comparator modes.                        |
| bit 0 | <b>C1POS:</b> Comparator 1 Positive Input Configure bit<br>1 = Input is connected to VIN+<br>0 = Input is connected to CVREF<br>See Figure 21-1 for the comparator modes.                       |

- **Note 1:** If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See **Section 11.6 "Peripheral Pin Select"** for more information.
  - 2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.



# FIGURE 23-2: CRC GENERATOR RECONFIGURED FOR $x^{16} + x^{12} + x^5 + 1$

## 23.2 User Interface

#### 23.2.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN = 5, then the size of the data is PLEN + 1 = 6. The data must be written as follows:

```
data[5:0] = crc_input[5:0]
data[7:6] = `bxx
```

Once data is written into the CRCWDAT MSb (as defined by PLEN), the value of VWORD (VWORD<4:0>) increments by one. The serial shifter starts shifting data into the CRC engine when CRCGO = 1 and VWORD > 0. When the MSb is shifted out, VWORD decrements by one. The serial shifter continues shifting until the VWORD reaches 0. Therefore, for a given value of PLEN, it will take (PLEN + 1) \* VWORD number of clock cycles to complete the CRC calculations.

When VWORD reaches 8 (or 16), the CRCFUL bit will be set. When VWORD reaches 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORD<4:0> bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO.

To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it is necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORD Pointer will roll over to 0. The hardware will then behave like the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See Section 23.2.2 "Interrupt Operation").

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

#### 23.2.2 INTERRUPT OPERATION

When the VWORD<4:0> bits make a transition from a value of '1' to '0', an interrupt will be generated.

## 23.3 Operation in Power-Saving Modes

#### 23.3.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

#### 23.3.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

# 24.0 PARALLEL MASTER PORT (PMP)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. "Parallel Master Port (PMP)" (DS70299) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be
  - available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory

# FIGURE 24-1: PMP MODULE OVERVIEW

devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- Fully Multiplexed Address/Data Mode
- Demultiplexed or Partially Multiplexed Address/ Data Mode:
  - Up to 11 address lines with single Chip Select
  - Up to 12 address lines without Chip Select
- Single Chip Select Line
- Programmable Strobe Options:
  - Individual Read and Write Strobes or;
  - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- · Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
  - Address Support
  - 4-Byte Deep Auto-Incrementing Buffer
- Programmable Wait States
- Selectable Input Voltage Levels



# REGISTER 24-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

| bit 2 | <b>BEP:</b> Byte Enable Polarity bit<br>1 = Byte enable active-high (PMBE)<br>0 = Byte enable active-low (PMBE) |
|-------|-----------------------------------------------------------------------------------------------------------------|
| bit 1 | WRSP: Write Strobe Polarity bit                                                                                 |
|       | For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):                                                     |
|       | 1 = Write strobe active-high (PMWR)                                                                             |
|       | 0 = Write strobe active-low (PMWR)                                                                              |
|       | For Master mode 1 (PMMODE<9:8> = 11):                                                                           |
|       | 1 = Enable strobe active-high (PMENB)                                                                           |
|       | 0 = Enable strobe active-low (PMENB)                                                                            |
| bit 0 | RDSP: Read Strobe Polarity bit                                                                                  |
|       | For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):                                                     |
|       | 1 = Read strobe active-high (PMRD)                                                                              |
|       | 0 = Read strobe active-low (PMRD)                                                                               |
|       | For Master mode 1 (PMMODE<9:8> = 11):                                                                           |
|       | 1 = Read/write strobe active-high (PMRD/PMWR)                                                                   |
|       | 0 = Read/write strobe active-low (PMRD/PMWR)                                                                    |

Note 1: These bits have no effect when their corresponding pins are used as address lines.

# TABLE 28-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

| DC CHARACTERISTICS |          | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended |      |                    |     |       |                         |  |
|--------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|-----|-------|-------------------------|--|
| Param<br>No.       | Symbol   | Characteristic                                                                                                                                                                                           | Min  | Тур <sup>(1)</sup> | Max | Units | Conditions              |  |
| Operating Voltage  |          |                                                                                                                                                                                                          |      |                    |     |       |                         |  |
| DC10               | Supply \ | /oltage                                                                                                                                                                                                  |      |                    |     |       |                         |  |
|                    | Vdd      |                                                                                                                                                                                                          | 3.0  | _                  | 3.6 | V     | Industrial and Extended |  |
| DC12               | Vdr      | RAM Data Retention Voltage <sup>(2)</sup>                                                                                                                                                                | 1.8  | _                  | —   | V     | —                       |  |
| DC16               | VPOR     | VDD Start Voltage<br>to ensure internal<br>Power-on Reset signal                                                                                                                                         | _    | _                  | Vss | V     | _                       |  |
| DC17               | Svdd     | <b>VDD Rise Rate</b><br>to ensure internal<br>Power-on Reset signal                                                                                                                                      | 0.03 | _                  | —   | V/ms  | 0-3.0V in 0.1s          |  |

**Note 1:** Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

| DC CHARACTERISTICS                                                  |                        |     | Standard O<br>(unless othe<br>Operating te | perating Condition<br>erwise stated)<br>mperature -40°C<br>-40°C | s: 3.0V to 3.6V<br>≤Ta ≤+85°C for Indu<br>≤Ta ≤+125°C for Ext | strial<br>ended |  |  |  |
|---------------------------------------------------------------------|------------------------|-----|--------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|-----------------|--|--|--|
| Parameter<br>No. <sup>(3)</sup>                                     | Typical <sup>(2)</sup> | Мах | Units Conditions                           |                                                                  |                                                               |                 |  |  |  |
| Idle Current (IIDLE): Core OFF Clock ON Base Current <sup>(1)</sup> |                        |     |                                            |                                                                  |                                                               |                 |  |  |  |
| DC40d                                                               | 8                      | 10  | mA                                         | -40°C                                                            |                                                               |                 |  |  |  |
| DC40a                                                               | 8                      | 10  | mA                                         | +25°C                                                            |                                                               |                 |  |  |  |
| DC40b                                                               | 9                      | 10  | mA                                         | +85°C                                                            | 3.3V                                                          |                 |  |  |  |
| DC40c                                                               | 10                     | 13  | mA                                         | +125°C                                                           |                                                               |                 |  |  |  |
| DC41d                                                               | 13                     | 15  | mA                                         | -40°C                                                            |                                                               |                 |  |  |  |
| DC41a                                                               | 13                     | 15  | mA                                         | +25°C                                                            | 3 3\/                                                         | 16 MIPS         |  |  |  |
| DC41b                                                               | 13                     | 16  | mA                                         | +85°C                                                            | 5.5V                                                          |                 |  |  |  |
| DC41c                                                               | 13                     | 19  | mA                                         | +125°C                                                           |                                                               |                 |  |  |  |
| DC42d                                                               | 15                     | 18  | mA                                         | -40°C                                                            |                                                               |                 |  |  |  |
| DC42a                                                               | 16                     | 18  | mA                                         | +25°C                                                            | 2.3//                                                         |                 |  |  |  |
| DC42b                                                               | 16                     | 19  | mA                                         | +85°C                                                            | 5.5V                                                          | 20 101195       |  |  |  |
| DC42c                                                               | 17                     | 22  | mA                                         | +125°C                                                           |                                                               |                 |  |  |  |
| DC43a                                                               | 23                     | 27  | mA                                         | +25°C                                                            |                                                               |                 |  |  |  |
| DC43d                                                               | 23                     | 26  | mA                                         | -40°C                                                            | 2.3//                                                         |                 |  |  |  |
| DC43b                                                               | 24                     | 28  | mA                                         | +85°C                                                            | 5.5V                                                          | 50 IVIIF 5      |  |  |  |
| DC43c                                                               | 25                     | 31  | mA                                         | +125°C                                                           |                                                               |                 |  |  |  |
| DC44d                                                               | 31                     | 42  | mA                                         | -40°C                                                            |                                                               |                 |  |  |  |
| DC44a                                                               | 31                     | 36  | mA                                         | +25°C                                                            | 2.3//                                                         |                 |  |  |  |
| DC44b                                                               | 32                     | 39  | mA                                         | +85°C                                                            | 3.3V                                                          | 40 101153       |  |  |  |
| DC44c                                                               | 34                     | 43  | mA                                         | +125°C                                                           |                                                               |                 |  |  |  |

## TABLE 28-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

**Note 1:** Base IIDLE current is measured as follows:

 CPU core is off (i.e., Idle mode), oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- External Secondary Oscillator disabled (i.e., SOSCO and SOSCI pins configured as digital I/O inputs)
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero)
- JTAG is disabled
- **2:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: These parameters are characterized but not tested in manufacturing.

| TABLE 28-29: | SPIx MASTER MODE | (HALF-DUPLEX, | TRANSMIT ONLY | TIMING REQUIREMENTS |
|--------------|------------------|---------------|---------------|---------------------|
|--------------|------------------|---------------|---------------|---------------------|

| AC CHARACTERISTICS |                       |                                              | Standard Operating Conditions: 3.0V to 3.6V         (unless otherwise stated)         Operating temperature       -40°C ≤TA ≤+85°C for Industrial         -40°C ≤TA ≤+125°C for Extended |                    |     |       |                                      |  |
|--------------------|-----------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-------|--------------------------------------|--|
| Param<br>No.       | Symbol                | Characteristic <sup>(1)</sup>                | Min                                                                                                                                                                                      | Тур <sup>(2)</sup> | Мах | Units | Conditions                           |  |
| SP10               | TscP                  | Maximum SCK Frequency                        | _                                                                                                                                                                                        |                    | 15  | MHz   | See Note 3                           |  |
| SP20               | TscF                  | SCKx Output Fall Time                        | —                                                                                                                                                                                        | —                  |     | ns    | See parameter DO32<br>and Note 4     |  |
| SP21               | TscR                  | SCKx Output Rise Time                        | —                                                                                                                                                                                        | —                  |     | ns    | See parameter DO31 and Note 4        |  |
| SP30               | TdoF                  | SDOx Data Output Fall Time                   | _                                                                                                                                                                                        | _                  |     | ns    | See parameter DO32 and <b>Note 4</b> |  |
| SP31               | TdoR                  | SDOx Data Output Rise Time                   | -                                                                                                                                                                                        | —                  | _   | ns    | See parameter DO31 and Note 4        |  |
| SP35               | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after<br>SCKx Edge    | —                                                                                                                                                                                        | 6                  | 20  | ns    | —                                    |  |
| SP36               | TdiV2scH,<br>TdiV2scL | SDOx Data Output Setup to<br>First SCKx Edge | 30                                                                                                                                                                                       | —                  |     | ns    | _                                    |  |

Note 1: These parameters are characterized, but are not tested in manufacturing.

**2:** Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

**3:** The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

| DC CHA   | DC CHARACTERISTICS |                                                                                                                          |                                                                                                                             | d Opera<br>otherwi<br>g tempe | <b>ting Co</b><br>se state<br>erature | <b>iditions: 3.0V to 3.6V</b><br><b>d)</b><br>$-40^{\circ}C \le TA \le +150^{\circ}C$ for High |                                                 |                                              |
|----------|--------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|
| Param.   | Symbol             | Characteristic                                                                                                           | Min.                                                                                                                        | Тур.                          | Max.                                  | Units                                                                                          | Conditions                                      |                                              |
|          |                    | Output Low Voltage<br>I/O Pins:<br>2x Sink Driver Pins - RA2, RA7-<br>RA10, RB10, RB11, RB7, RB4,<br>RC3-RC9             | _                                                                                                                           | _                             | 0.4                                   | V                                                                                              | lo∟ ≤1.8 mA, VDD = 3.3V<br>See <b>Note 1</b>    |                                              |
| DO10     | Vol                | Output Low Voltage<br>I/O Pins:<br>4x Sink Driver Pins - RA0, RA1,<br>RB0-RB3, RB5, RB6, RB8, RB9,<br>RB12-RB15, RC0-RC2 | _                                                                                                                           | _                             | 0.4                                   | V                                                                                              | lo∟ ≤3.6 mA, Vod = 3.3V<br>See <b>Note 1</b>    |                                              |
|          |                    | <b>Output Low Voltage</b><br>I/O Pins:<br>8x Sink Driver Pins - RA3, RA4                                                 | _                                                                                                                           | —                             | 0.4                                   | V                                                                                              | Io∟ ⊴6 mA, VDD = 3.3V<br>See <b>Note 1</b>      |                                              |
| DO20 Vон |                    | Output High Voltage<br>I/O Pins:<br>2x Source Driver Pins - RA2,<br>RA7-RA10, RB4, RB7, RB10,<br>RB11, RC3-RC9           | 2.4                                                                                                                         | _                             | _                                     | V                                                                                              | Io∟ ≥ -1.8 mA, Vod = 3.3V<br>See <b>Note 1</b>  |                                              |
|          | Vон                | Vон                                                                                                                      | Output High Voltage<br>I/O Pins:<br>4x Source Driver Pins - RA0,<br>RA1, RB0-RB3, RB5, RB6, RB8,<br>RB9, RB12-RB15, RC0-RC2 | 2.4                           |                                       | _                                                                                              | V                                               | Io∟ ≥ -3 mA, VDD = 3.3V<br>See <b>Note 1</b> |
|          |                    | Output High Voltage<br>I/O Pins:<br>8x Source Driver Pins - RA4,<br>RA3                                                  | 2.4                                                                                                                         | _                             | _                                     | V                                                                                              | Io∟ ≥ -6 mA, VDD = 3.3V<br>See <b>Note 1</b>    |                                              |
|          |                    | Output High Voltage<br>I/O Pins:<br>2x Source Driver Pins - RA2,<br>RA7-RA10, RB4, RB7, RB10,<br>RB11, RC3-RC9           | 1.5                                                                                                                         | _                             | _                                     |                                                                                                | Іон ≥ -1.9 mA, Voo = 3.3V<br>See <b>Note 1</b>  |                                              |
|          |                    |                                                                                                                          | 2.0                                                                                                                         | _                             | _                                     | V                                                                                              | lон ≥ -1.85 mA, VDD = 3.3V<br>See <b>Note 1</b> |                                              |
|          |                    |                                                                                                                          | 3.0                                                                                                                         | _                             | _                                     |                                                                                                | ІОН ≥ -1.4 mA, VDD = 3.3V<br>See <b>Note 1</b>  |                                              |
|          |                    | <b>Output High Voltage</b><br>4x Source Driver Pins - RA0,                                                               | 1.5                                                                                                                         | _                             | _                                     |                                                                                                | IOH ≥ -3.9 mA, VDD = 3.3V<br>See <b>Note 1</b>  |                                              |
| DO20A    | VoH1               | RA1, RB0-RB3, RB5, RB6, RB8,<br>RB9, RB12-RB15, RC0-RC2                                                                  | 2.0                                                                                                                         | _                             | _                                     | V                                                                                              | IOH ≥ -3.7 mA, VDD = 3.3V<br>See <b>Note 1</b>  |                                              |
|          |                    |                                                                                                                          | 3.0                                                                                                                         | _                             | _                                     | ,                                                                                              | IOH ≥ -2 mA, VDD = 3.3V<br>See <b>Note 1</b>    |                                              |
|          |                    | Output High Voltage<br>I/O Pins:                                                                                         | 1.5                                                                                                                         | _                             | _                                     |                                                                                                | Іон ≥ -7.5 mA, Voo = 3.3V<br>See <b>Note 1</b>  |                                              |
|          |                    | 8x Source Driver Pins - RA3,<br>RA4                                                                                      | 2.0                                                                                                                         | _                             | _                                     | V                                                                                              | Іон ≥ -6.8 mA, VDD = 3.3V<br>See <b>Note 1</b>  |                                              |
|          |                    |                                                                                                                          | 3.0                                                                                                                         | _                             | _                                     |                                                                                                | IOH ≥ -3 mA, VDD = 3.3V<br>See <b>Note 1</b>    |                                              |

# TABLE 29-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

**Note 1:** Parameters are characterized, but not tested.