

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp204-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

- **Note 1:** This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 of family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 family of 16-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and VSS pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors")
• VCAP

(see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for ADC module is implemented

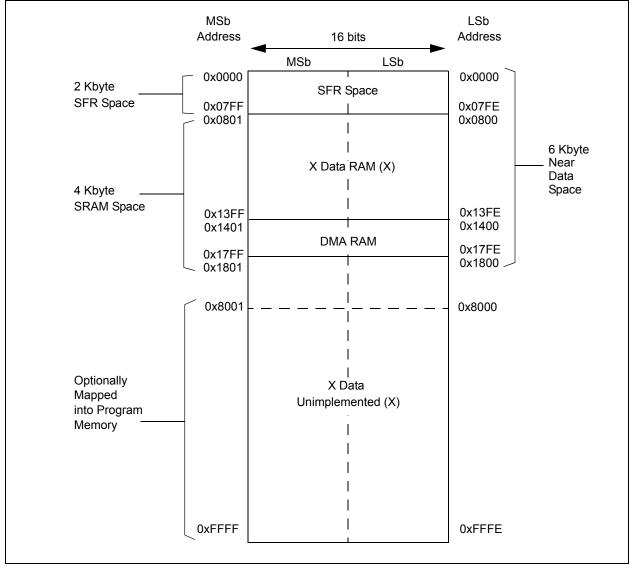
Note: The AVDD and AVSS pins must be connected independent of the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVss is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.


4.2.5 DMA RAM

The PIC24HJ32GP302/304 devices contain 1 Kbytes of dual ported DMA RAM located at the end of X data PIC24HJ64GPX02/X04 space. The and PIC24HJ128GPX02/X04 devices contain 2 Kbytes of dual ported DMA RAM located at the end of X data space, and is a part of X data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note:	DMA RAM can be used for general
	purpose data storage if the DMA function
	is not required in an application.

FIGURE 4-3: DATA MEMORY MAP FOR PIC24HJ32GP302/304 DEVICES WITH 4 KB RAM

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
BSRAM	0750	_	—	_			—	-	_	—	_		_	-	IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	_	_	_	—	—	—	-	-	—	—	—	—	—	IW_SSR	IR_SSR	RL_SSR	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not present in devices with 32K Flash (PIC24HJ32GP302/304).

TABLE 4-33: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	—	—	—	—	_	ERASE	_	-		NVMO	P<3:0>		0000
NVMKEY	0766		—	_	—	—	—						NVMKE	EY<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	_	_	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	_	_	_	_	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	RTCCMD	PMPMD	CRCMD	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER	27-4: INTC	CON2: INTERR	UPT CONT	ROL REGIST	ER 2		
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	_	_	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	—	INT2EP	INT1EP	INT0EP
bit 7		·					bit C
Legend: R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is cle		x = Bit is unkr	nown
bit 14	1 = Use alt 0 = Use sta DISI: DISI 1 = DISI ir	nable Alternate Ir ernate vector tab andard (default) v Instruction Statu nstruction is activ nstruction is not a	le vector table is bit e				
bit 13-3	Unimplem	ented: Read as '	0'				
bit 2	1 = Interrup	xternal Interrupt 2 ot on negative ed ot on positive edg	ge	t Polarity Selec	t bit		
bit 1	1 = Interrup	xternal Interrupt of ot on negative ed ot on positive edg	ge	t Polarity Selec	t bit		
bit 0		xternal Interrupt (ot on negative ed		t Polarity Selec	t bit		

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

1 = Interrupt on negative edge 0 = Interrupt on positive edge

REGISTER 7-13:	IEC3: INTERRUPT ENABLE CONTROL REGISTER 3
----------------	---

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	RTCIE	DMA5IE	—	_	—	—	—
bit 15		-					bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as ')'				
bit 14	RTCIE: Real-	Time Clock and	d Calendar Int	errupt Enable	bit		
	1 = Interrupt i	request enabled	b				

0 = Interrupt request not enabled

bit 13 DMA5IE: DMA Channel 5 Data Transfer Complete Interrupt Enable bit

1 = Interrupt request enabled

0 = Interrupt request not enabled

bit 12-0 Unimplemented: Read as '0'

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T1IP<2:0>		—		OC1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC1IP<2:0>				INT0IP<2:0>	
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, re	ad as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as ')'				
bit 14-12	T1IP<2:0>:	Timer1 Interrupt	Priority bits				
	111 = Interr	upt is priority 7 (ł	nighest priorit	y interrupt)			
	•						
	•						
		upt is priority 1					
		upt source is dis					
bit 11	-	ented: Read as '					
bit 10-8		>: Output Compa			rity bits		
	111 = Interr	upt is priority 7 (I	highest priorit	y interrupt)			
	•						
	•						
		upt is priority 1 upt source is disa	ahled				
bit 7		ented: Read as '					
bit 6-4	•	: Input Capture C		errupt Priority b	oits		
		upt is priority 7 (I					
	•						
	•						
		upt is priority 1					
		upt source is dis	abled				
bit 3	Unimpleme	ented: Read as ')'				
bit 2-0	INT0IP<2:0	>: External Interr	upt 0 Priority	bits			
	111 = Interr	upt is priority 7 (I	nighest priorit	y interrupt)			
	•						
	•						

001 = Interrupt is priority 1 000 = Interrupt source is disabled

REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5	0: IPC5: INTERRUPT PRIORITY	CONTROL REGISTER 5
--	-----------------------------	--------------------

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC8IP<2:0>		—		IC7IP<2:0>	
bit 15							bit
					D 444 4	D 444 0	D 444 0
U-0	U-1	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
 bit 7		_		—		INT1IP<2:0>	bit
							bit
Legend:							
R = Readab	le bit	W = Writable	oit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	-	ted: Read as '					
bit 14-12		· ·		errupt Priority bi	ts		
	111 = Interrup	pt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interrup	pt is priority 1					
	000 = Interrup	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as ')'				
bit 10-8	IC7IP<2:0>:	nput Capture C	hannel 7 Inte	errupt Priority bi	ts		
	111 = Interrup	pt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
	• 001 = Interrup	ot is priority 1					
		pt is priority i pt source is dis	abled				
bit 7-3	-	ted: Read as '					
bit 2-0	-	External Interr		, bits			
5112 0		pt is priority 7 (I					
	•	, (i	g. eet p. er	(j			
	•						
	•						
	001 = Interrup		ablad				
	000 = interrup	pt source is dis	anieu				

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	_	—		RTCIP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		DMA5IP<2:0>	1011 0			_	_
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-11	Unimpleme	ented: Read as ')'				
bit 10-8		Real-Time Clo		•	ag Status bits		
	111 = Interr	upt is priority 7 (I	highest priori	ty interrupt)			
	•						
	•						
		upt is priority 1 upt source is dis	abled				
bit 7	Unimpleme	ented: Read as '	כי				
bit 6-4	DMA5IP<2:	0>: DMA Channe	el 5 Data Tra	nsfer Complete	Interrupt Priori	ty bits	
	111 = Interr	upt is priority 7 (I	highest priori	ty interrupt)			
	•						
	• •						
	• • 001 = Interr	upt is priority 1					

REGISTER 7-26: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

bit 3-0

Unimplemented: Read as '0'

9.1 CPU Clocking System

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices provide seven system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (PLL)
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- · Low-Power RC (LPRC) Oscillator
- · FRC Oscillator with postscaler

9.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- Crystal (XT): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- High-Speed Crystal (HS): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- External Clock (EC): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The Low-Power RC (LPRC) internal oscillator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip PLL to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.3 "PLL Configuration**".

The FRC frequency depends on the FRC accuracy (see Table 28-19) and the value of the FRC Oscillator Tuning register (see Register 9-4).

9.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 25.1 "Configuration Bits" for further details.) The Initial Oscillator FNOSC<2:0> Selection Configuration bits, (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) Fosc is divided by 2 to generate the device instruction clock (FcY) and the peripheral clock time base (FP). FcY defines the operating speed of the device, and speeds up to 40 MHz are supported by the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 architecture.

Instruction execution speed or device operating frequency, FCY, is given by:

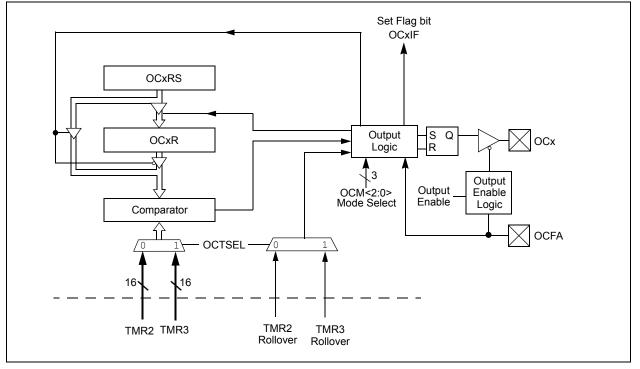
EQUATION 9-1: DEVICE OPERATING FREQUENCY

$$FCY = \frac{FOSC}{2}$$

REGISTER 11-4: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	—	—	T5CKR<4:0>					
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_					T4CKR<4:0	>		
bit 7	·						bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown	
	• • 00001 = Inpu	ut tied to RP25 ut tied to RP1 ut tied to RP0						
bit 7-5	Unimplemer	nted: Read as '	0'					
bit 4-0	11111 = Inpu 11001 = Inpu • • • • • •	Assign Timer ut tied to Vss ut tied to RP25 ut tied to RP1 ut tied to RP0	4 External Clo	ock (T4CK) to t	he correspond	ing RPn pin		

15.0 OUTPUT COMPARE


- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

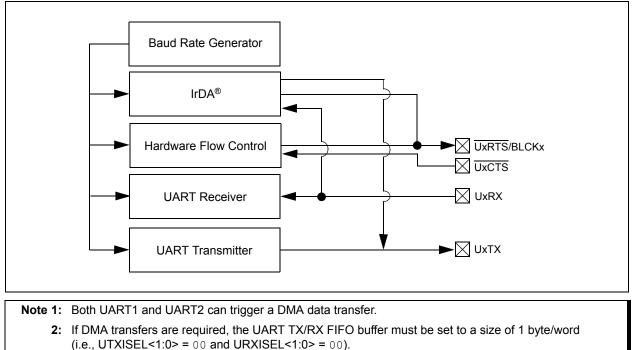
The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- · Continuous Pulse mode
- PWM mode without fault protection
- · PWM mode with fault protection

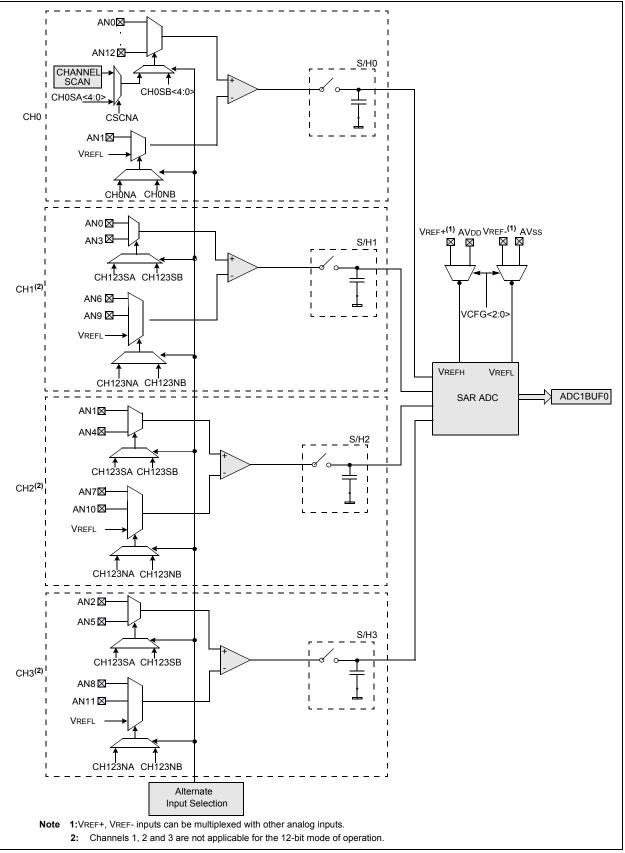
FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- **Note 1:** This data sheet summarizes the features the PIC24HJ32GP302/304, of PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24HJ32GP302/304, PIC24HJ64GPX02/ X04 and PIC24HJ128GPX02/X04 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN 2.0, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder. The primary features of the UART module are:

- Full-Duplex, 8- or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or two stop bits
- Hardware flow control option with UxCTS and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- · 4-deep FIFO Receive Data buffer
- Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive interrupts
- · A separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- Support for sync and break characters
- · Support for automatic baud rate detection
- IrDA[®] encoder and decoder logic
- 16x baud clock output for IrDA[®] support


A simplified block diagram of the UART module is shown in Figure 18-1. The UART module consists of these key hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- · Asynchronous Receiver

REGISTER 22-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0		MTHOM	NE<3:0>	
bit 15							bit 8

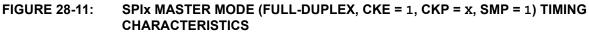
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTE	N<1:0>		DAYON	E<3:0>	
bit 7							bit 0

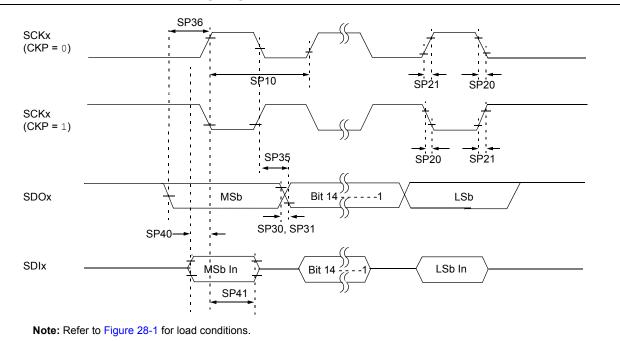
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 22-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾


U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—			—	WDAY2	WDAY1	WDAY0
bit 15							bit 8


U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN	N<1:0>		HRON	E<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9
Mada di	A write to this register is only allowed when $DTCM/DEN = 1$

Note 1: A write to this register is only allowed when RTCWREN = 1.

TABLE 28-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

АС СНА	RACTERIST	Standard (unless o Operating	therwise	stated) ture -40	°C ≤Ta ≤+8	to 3.6V 35°C for Industrial 125°C for Extended	
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency	_	_	9	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	—	—	—	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	—	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	—	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—	—	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		—	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	—	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

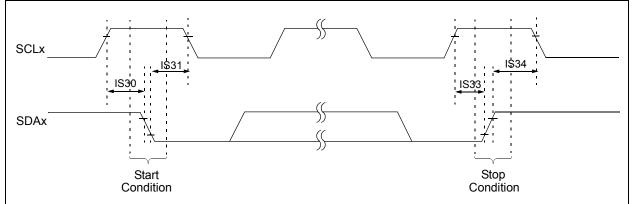
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

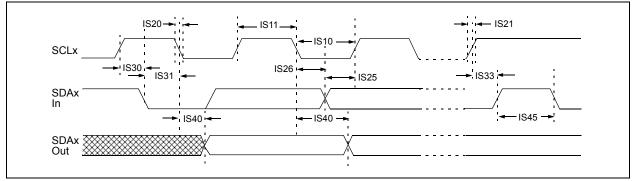
4: Assumes 50 pF load on all SPIx pins.

TABLE 28-33:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

АС СНА		TICS	Standard Op (unless othe Operating ter	rwise st	ated) e -40°	'C ≤Ta ≤+	V to 3.6V 85°C for Industrial 125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_	_	11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	_	—		ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_		ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow to SCKx \uparrow or SCKx Input$	120	_	_	ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	_		ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns	_


Note 1: These parameters are characterized, but are not tested in manufacturing.

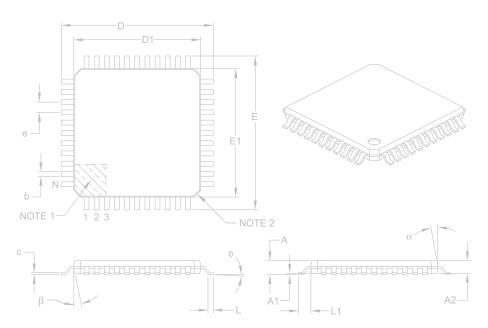
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.


3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

TABLE 29-7: DC CHARACTERISTICS: PROGRAM MEMORY


DC CHARACTERISTICS			(unless	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature				
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Con			Conditions		
		Program Flash Memory						
HD130	Eр	Cell Endurance	10,000	_	_	E/W	-40° C to +150° C ⁽²⁾	
HD134	TRETD	Characteristic Retention	20	_	_	Year	1000 E/W cycles or less and no other specifications are violated	

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to 150°C.

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dim	ension Limits	MIN	NOM	MAX
Number of Leads	N	44		
Lead Pitch	е	0.80 BSC		
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	φ	0°	3.5°	7°
Overall Width	E	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

Peripheral Module Disable (PMD)	130
Pinout I/O Descriptions	11
PMD Module	
Register Map	
PORTA	
Register Map	44, 45
PORTB	
Register Map	45
Power-on Reset (POR)	65
Power-Saving Features	129
Clock Frequency and Switching	129
Program Address Space	
Construction	
Data Access from Program Memory	
Using Program Space Visibility	52
Data Access from Program Memory	
Using Table Instructions	51
Data Access from, Address Generation	50
Memory Map	
Table Read Instructions	
TBLRDH	
TBLRDL	51
Visibility Operation	52
Program Memory	
Interrupt Vector	
Organization	
Reset Vector	

R

Reader Response	. 388
Register Map	
CRC	44
Dual Comparator	
Parallel Master/Slave Port	43
Real-Time Clock and Calendar	
Registers	
AD1CHS0 (ADC1 Input Channel 0 Select	. 238
AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select)	. 237
AD1CON1 (ADC1 Control 1)	
AD1CON2 (ADC1 Control 2)	
AD1CON3 (ADC1 Control 3)	
AD1CON4 (ADC1 Control 4)	. 236
AD1CSSL (ADC1 Input Scan Select Low)	. 239
AD1PCFGL (ADC1 Port Configuration Low)	. 239
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)	. 213
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)	. 214
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)	. 214
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer)	. 215
CiCFG1 (ECAN Baud Rate Configuration 1)	. 211
CiCFG2 (ECAN Baud Rate Configuration 2)	. 212
CiCTRL1 (ECAN Control 1)	. 204
CiCTRL2 (ECAN Control 2)	. 205
CIEC (ECAN Transmit/Receive Error Count)	
CIFCTRL (ECAN FIFO Control)	. 207
CiFEN1 (ECAN Acceptance Filter Enable)	. 213
CiFIFO (ECAN FIFO Status)	
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection)	
	040
CilNTE (ECAN Interrupt Enable)	
CiINTF (ECAN Interrupt Flag)	. 209
CiRXFnEID (ECAN Acceptance Filter n	o 1 -
Extended Identifier)	.217
CiRXFnSID (ECAN Acceptance Filter n	
Standard Identifier)	
CiRXFUL1 (ECAN Receive Buffer Full 1)	
CiRXFUL2 (ECAN Receive Buffer Full 2)	. 220
CiRXMnEID (ECAN Acceptance Filter Mask n	

Extended Identifier)	219
CiRXMnSID (ECAN Acceptance Filter Mask n	
Standard Identifier)	219
CiRXOVF1 (ECAN Receive Buffer Overflow 1)	221
CiRXOVF2 (ECAN Receive Buffer Overflow 2)	221
CiTRBnSID (ECAN Buffer n Standard Identifier)	223,
224, 226	
CiTRmnCON (ECAN TX/RX Buffer m Control)	222
CiVEC (ECAN Interrupt Code)	
CLKDIV (Clock Divisor)	
CORCON (Core Control)	
DMACS0 (DMA Controller Status 0)	
DMACS1 (DMA Controller Status 1)	
DMACST (DMA Controller Status 1) DMAXCNT (DMA Channel x Transfer Count)	
DMAXCON (DMA Channel x Control)	
DMAxPAD (DMA Channel x Peripheral Address)	
DMAxREQ (DMA Channel x IRQ Select)	
DMAxSTA (DMA Channel x RAM Start Address A	
DMAxSTB (DMA Channel x RAM Start Address E	
DSADR (Most Recent DMA RAM Address)	
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	192
I2CxSTAT (I2Cx Status)	190
IFS0 (Interrupt Flag Status 0)	77, 84
IFS1 (Interrupt Flag Status 1)	79, 86
IFS2 (Interrupt Flag Status 2)	81, 88
IFS3 (Interrupt Flag Status 3)	82, 89
IFS4 (Interrupt Flag Status 4)	83, 90
INTCON1 (Interrupt Control 1)	75
INTCON2 (Interrupt Control 2)	
INTTREG Interrupt Control and Status Register	
IPC0 (Interrupt Priority Control 0)	
IPC1 (Interrupt Priority Control 1)	
IPC11 (Interrupt Priority Control 11)	
IPC15 (Interrupt Priority Control 15)	
IPC16 (Interrupt Priority Control 16)	
IPC17 (Interrupt Priority Control 17)	
IPC2 (Interrupt Priority Control 2)	
IPC3 (Interrupt Priority Control 3)	
IPC4 (Interrupt Priority Control 4)	
IPC5 (Interrupt Priority Control 5)	
IPC6 (Interrupt Priority Control 6)	
IPC7 (Interrupt Priority Control 7)	
IPC8 (Interrupt Priority Control 8)	
IPC9 (Interrupt Priority Control 9)	100
NVMCON (Flash Memory Control)	
NVMKEY (Nonvolatile Memory Key)	
OCxCON (Output Compare x Control)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tuning)	
PLLFBD (PLL Feedback Divisor)	126
PMD1 (Peripheral Module Disable	
Control Register 1)	132
PMD2 (Peripheral Module Disable	
Control Register 2)	133
PMD3 (Peripheral Module Disable	
Control Register 3)	
RCON (Reset Control)	
SPIxCON1 (SPIx Control 1)	
SPIxCON2 (SPIx Control 2)	184
SPIxSTAT (SPIx Status and Control)	181
SR (CPU Status)	21, 74
T1CON (Timer1 Control)	
TCxCON (Input Capture x Control)	
TxCON (Type B Time Base Control)	
TyCON (Type C Time Base Control)	
UxMODE (UARTx Mode)	