

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp204-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.3 Interrupt Control and Status Registers

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

7.3.2 IFSx

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user software can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-29.

7.4 Interrupt Resources

Many useful resources related Interrupts are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwprod- ucts/Devices.aspx?dDoc- Name=en534555

7.4.1 KEY RESOURCES

- Section 32. "Interrupts (Part III)" (DS70214)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

11-0	11-0	11-0	11-0	11-0	R/\\/_1	R/W/-0	R/\\/_0
0-0	0-0	0-0	0-0	0-0	D/ VV- I		N/W-U
 bit 15							bit 8
							bit c
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		DMA5IP<2:0>		_	—	_	—
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as '	0'				
bit 10-8	RTCIP<2:0>:	Real-Time Clo	ck and Caler	ndar Interrupt Fl	lag Status bits		
	111 = Interru	pt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	DMA5IP<2:0	>: DMA Chann	el 5 Data Tra	nsfer Complete	Interrupt Prior	ity bits	
	111 = Interru	pt is priority 7 (highest priorit	ty interrupt)			
	•						
	•						
	001 = Interru	nt is priority 1					
	000 = Interru	pt source is dis	abled				

REGISTER 7-26: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

bit 3-0

Unimplemented: Read as '0'

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD	DR<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	t	U = Unimplemer	nted bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- bit 3 CF: Clock Fail Detect bit (read/clear by application)
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2 Unimplemented: Read as '0'
- bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to Section 39. "Oscillator (Part III)" (DS70308) in the "dsPIC33F/PIC24H Family Reference Manual" (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - **3:** This register is reset only on a Power-on Reset (POR).

REGISTER 11-15: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTERS 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP1R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP0R<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ıd as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
·							

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-16: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTERS 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP3R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP2R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-19: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTERS 4

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP9R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	_			RP8R<4:0>		
bit 7	·						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP9R<4:0>:** Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP8R<4:0>:** Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-20: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTERS 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP11R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP10R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP11R<4:0>:** Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-23: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTERS 8⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			RP17R<4:0>	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP16R<4:0>				
bit 7	-						bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	
hit 15-13	Unimplemen	tod: Read as '	n '				

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP17R<4:0>:** Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP16R<4:0>:** Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 11-24: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTERS 9⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—			RP19R<4:0>	>			
bit 15		- -					bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	—			RP18R<4:0>	>			
bit 7							bit 0		
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x			x = Bit is unkr	nown					
bit 15-13	Unimplemented: Read as '0'								
bit 12-8	t 12-8 RP19R<4:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits (see Table 11-2 for peripheral function numbers)								
bit 7-5	Unimplemen	ted: Read as '	כי						
hit 1 0	DD10D-1.0								

bit 4-0 **RP18R<4:0>:** Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

NOTES:

15.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- · Continuous Pulse mode
- PWM mode without fault protection
- · PWM mode with fault protection

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

15.2 Output Compare Resources

Many useful resources related to Output Compare are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

15.2.1 KEY RESOURCES

- Section 13. "Output Compare" (DS70209)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- **Note 1:** This data sheet summarizes the features the PIC24HJ32GP302/304, of PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN 2.0, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8- or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or two stop bits
- Hardware flow control option with UxCTS and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- · 4-deep FIFO Receive Data buffer
- Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive interrupts
- · A separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- Support for sync and break characters
- · Support for automatic baud rate detection
- IrDA[®] encoder and decoder logic
- 16x baud clock output for IrDA[®] support

A simplified block diagram of the UART module is shown in Figure 18-1. The UART module consists of these key hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- · Asynchronous Receiver

	n (n =	0-15)					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	_	EXIDE	—	EID17	EID16
bit 7							bit 0
Legend:		C = Writeable	bit, but only	0' can be writte	en to clear the b	it	
R = Readable	bit	W = Writable	bit U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-5	SID<10:0>: S 1 = Message 0 = Message	Standard Identifi address bit SIE address bit SIE	ier bits Dx must be '1 Dx must be '0	' to match filter ' to match filter			
bit 4	Unimplemen	ted: Read as '	o'				

REGISTER 19-16: CIRXFnSID: ECAN™ ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER n (n = 0-15)

If MIDE = 1, then:

1 = Match only messages with extended identifier addresses

0 = Match only messages with standard identifier addresses

If MIDE = 0, then: Ignore the EXIDE bit.

Unimplemented: Read as '0'

bit 2

bit 1-0 **EID<17:16>:** Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

R/W-0 TXENn bit 15 R/W-0 TXENm bit 7 Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 6 bit 5	R-0 TXABTn R-0 TXABTm ⁽¹⁾	R-0 TXLARBn R-0	R-0 TXERRn	R/W-0 TXREQn	R/W-0 RTRENn	R/W-0	R/W-0			
TXENn bit 15 R/W-0 TXENm bit 7 Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 5	R-0 TXABTm ⁽¹⁾	R-0	TXERRn	TXREQn	RTRFNn					
bit 15 R/W-0 TXENM bit 7 Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 5	R-0 TXABTm ⁽¹⁾	R-0				IXNPF	≀l<1:0>			
R/W-0 TXENm bit 7 Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 6 bit 5	R-0 TXABTm ⁽¹⁾	R-0					bit			
R/W-0 TXENm bit 7 Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 6 bit 6	R-0 TXABTm ⁽¹⁾	R-0								
TXENm bit 7 Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 6 bit 5	TXABTm ⁽¹⁾		R-0	R/W-0	R/W-0	R/W-0	R/W-0			
bit 7 Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 6 bit 5		TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPF	२।<1:0>			
Legend: R = Readable I -n = Value at P bit 15-8 bit 7 bit 6 bit 5							bit			
R = Readable I <u>-n = Value at P</u> bit 15-8 bit 7 bit 6 bit 5		C = Writeable	hit but only ')' oon ho writto	n to cloar tha h	.i+				
-n = Value at P bit 15-8 bit 7 bit 6 bit 5	hit	C = White a Die	bit, but only t		n to clear the c	1 ac (0)				
bit 15-8 bit 7 bit 6 bit 5		vv = vvritable	DIL	0 = 0	nenieu bil, reau	ias u v – Ditio unkr				
bit 15-8 bit 7 bit 6 bit 5	<u>'UR</u>	I = Bit is set		0 = Bit is clear	areo	x = Bit is unkr	IOWN			
bit 7 bit 6 bit 5	See Definitio	n for Bits 7-0 C	ontrols Ruffer	n						
bit 6 bit 5		RX Buffer Sele	ction bit							
bit 6 bit 5	1 = Buffer TR	Rn is a transm	it huffer							
bit 6 bit 5	0 = Buffer TR	RBn is a receive	buffer							
bit 5	TXABTm: Me	essage Aborted	l bit ⁽¹⁾							
bit 5	1 = Message was aborted									
bit 5	0 = Message	completed tran	smission succ	cessfully						
	TXLARBm: N	Message Lost A	vrbitration bit ⁽¹⁾)						
	1 = Message	lost arbitration	while being se	ent						
	0 = Message	did not lose ar	bitration while	being sent						
bit 4	TXERRm: Er	ror Detected D	uring Transmis	ssion bit ⁽¹⁾						
	1 = A bus err	or occurred wh	ile the messag	e was being s	ent					
	0 = A bus err	or did not occu	while the me	ssage was bei	ng sent					
bit 3	IXREQm: M	essage Send R	equest bit							
	1 = Requests	s that a messag	e be sent. The	e bit automatica	ally clears wher	the message i	s successfull			
	0 = Clearing 1	the bit to '0' wh	ile set request	s a messade a	bort					
bit 2	Cleaning the bit to 0 while set requests a message abolt RTRENm: Auto-Remote Transmit Enable bit									
	1 = When a remote transmit is received. TXREQ will be set									
	0 = When a remote transmit is received, TXREQ will be unaffected									
bit 1-0	TXmPRI<1:0	>: Message Tra	ansmission Pri	iority bits						
	11 = Highest	message prior	ty	-						
	10 = High inte	ermediate mes	sage priority							
	01 = Low interview	ermediate mess	age priority							
	00 = Lowest	message priori	ty .							
Note 1. This	s hit is cleared	when the TYDI	=0 hit is set							

~ .

The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM. Note:

BUFFER 19-5: ECAN™ MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
			By	te 3					
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
Byte 2									
bit 7					bit 0				
Legend:									
R = Readable bit W = Writable bit U			U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		

bit 15-8 Byte 3<15:8>: ECAN™ Message Byte 3

bit 7-0 Byte 2<7:0>: ECAN Message Byte 2

BUFFER 19-6: ECAN™ MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
Byte 5									
bit 15							bit 8		

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 4			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit		U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	1

bit 15-8 Byte 5<15:8>: ECAN™ Message Byte 5

bit 7-0 Byte 4<7:0>: ECAN Message Byte 4

20.4 ADC Helpful Tips

- 1. The SMPI<3:0> (AD1CON2<5:2>) control bits:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated if enabled.
 - b) When the CSCNA bit (AD1CON2<10>) is set to '1', determines when the ADC analog scan channel list defined in the AD1CSSL/AD1CSSH registers starts over from the beginning.
 - c) On devices without a DMA peripheral, determines when ADC result buffer pointer to ADC1BUF0-ADC1BUFF, gets reset back to the beginning at ADC1BUF0.
- On devices without a DMA module, the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF regardless of which analog inputs are being used subject to the SMPI<3:0> bits (AD1CON2<5:2>) and the condition described in 1c above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- On devices with a DMA module, the ADC module has only 1 ADC result buffer, (i.e., ADC1BUF0), per ADC peripheral and the ADC conversion result must be read either by the CPU or DMA controller before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in manual sample mode, particularly where the users code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. On devices with two ADC modules, the ADCxPCFG registers for both ADC modules must be set to a logic '1' to configure a target I/O pin as a digital I/O pin. Failure to do so means that any alternate digital input function will always see only a logic '0' as the digital input buffer is held in Disable mode.

20.5 ADC Resources

Many useful resources related to ADC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwprod-
	ucts/Devices.aspx?dDoc-
	Name=en534555

20.5.1 KEY RESOURCES

- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

24.1 **PMP** Resources

Many useful resources related to PMP are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en534555

24.1.1 KEY RESOURCES

- Section 35. "Parallel Master Port" (DS70299)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment can be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment Boot space is 1K Instruction Words (except interrupt vectors)
			 110 = Standard security; boot program Flash segment ends at 0x0007FE 010 = High security; boot program Flash segment ends at
			0x0007FE
			Boot space is 4K Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x001FFE
			001 = High security; boot program Flash segment ends at 0x001FFE
			Boot space is 8K Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x003FFE
			000 = High security; boot program Flash segment ends at 0x003FFE
RBS<1:0> ⁽¹⁾	FBS	Immediate	Boot Segment RAM Code Protection Size 11 = No Boot RAM defined 10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes 02 = Boot RAM is 1024 bytes
SWRP ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment Program Flash Write-Protect bit 1 = Secure Segment can bet written 0 = Secure Segment is write-protected
SSS<2:0> ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment Program Flash Code Protection Size (Secure segment is not implemented on 32K devices) x11 = No Secure program flash segment
			Secure space is 4K IW less BS 110 = Standard security; secure program flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program flash segment starts at End of BS, ends at 0x001FFE
			Secure space is 8K IW less BS 101 = Standard security; secure program flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program flash segment starts at End of BS, ends at 0x003FFE
			Secure space is 16K IW less BS 100 = Standard security; secure program flash segment starts at End of BS, ends at 007FFEh 000 = High security; secure program flash segment starts at End of BS, ends at 0x007FFE

TABLE 25-2: PIC24H CONFIGURATION BITS DESCRIPTION

Note 1: This Configuration register is not available on PIC24HJ32GP302/304 devices.

DC CHARACTERISTICS			Standard O (unless othe Operating te	perating Condition erwise stated) mperature -40°C -40°C	s: 3.0V to 3.6V ≤Ta ≤+85°C for Indu ≤Ta ≤+125°C for Ext	strial ended				
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units		Conditions					
Idle Current (IIDLE): Core OFF Clock ON Base Current ⁽¹⁾										
DC40d	8	10	mA	-40°C						
DC40a	8	10	mA	+25°C						
DC40b	9	10	mA	+85°C	3.3V					
DC40c	10	13	mA	+125°C						
DC41d	13	15	mA	-40°C		16 MIPS				
DC41a	13	15	mA	+25°C	3 3\/					
DC41b	13	16	mA	+85°C	- 3.3V					
DC41c	13	19	mA	+125°C						
DC42d	15	18	mA	-40°C		20 MIPS				
DC42a	16	18	mA	+25°C	2.3//					
DC42b	16	19	mA	+85°C	5.5V					
DC42c	17	22	mA	+125°C						
DC43a	23	27	mA	+25°C						
DC43d	23	26	mA	-40°C	3.3V					
DC43b	24	28	mA	+85°C		50 IVIIF 5				
DC43c	25	31	mA	+125°C						
DC44d	31	42	mA	-40°C						
DC44a	31	36	mA	+25°C	- 3.3V	40 MIPS				
DC44b	32	39	mA	+85°C						
DC44c	34	43	mA	+125°C						

TABLE 28-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base IIDLE current is measured as follows:

 CPU core is off (i.e., Idle mode), oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- External Secondary Oscillator disabled (i.e., SOSCO and SOSCI pins configured as digital I/O inputs)
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero)
- JTAG is disabled
- **2:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: These parameters are characterized but not tested in manufacturing.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

TABLE 29-7: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions
		Program Flash Memory					
HD130	Eр	Cell Endurance	10,000	_		E/W	-40° C to +150° C ⁽²⁾
HD134	TRETD	Characteristic Retention	20	—	_	Year	1000 E/W cycles or less and no other specifications are violated

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to 150°C.

Section Name	Update Description
Section 27.0 "Electrical Characteristics"	Updated Max MIPS for temperature range of -40°C to +125°C in Table 27-1
	Updated typical values in Thermal Packaging Characteristics in Table 27-3
	Added parameters DI11 and DI12 to Table 27-9
	Updated minimum values for parameters D136 (TRW) and D137 (TPE) and removed typical values in Table 27-12
	Added Extended temperature range to Table 27-13
	Updated parameter AD63 and added Note 3 to Table 27-38 and Table 27-39

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)