

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp204t-i-ml

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 CPU Resources

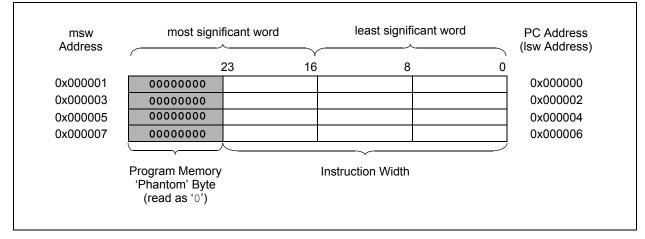
Many useful resources related to the CPU are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en534555

3.4.1 KEY RESOURCES

- Section 2. "CPU" (DS70204)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address, as shown in Figure 4-2.

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in Section 7.1 "Interrupt Vector Table".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

IADLE 4-10	J. L		LOIST							K FIC24HJ 120GF 502/504 AND FIC24HJ04GF 502/504								
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	_	CSIDL	ABAT	_	R	EQOP<2:0	>	OPN	/ODE<2:0	>	—	CANCAP	—	—	WIN	0480
C1CTRL2	0402	—	_	_	—	_	_	—	_	—	— — — DNCNT<4:0>				0000			
C1VEC	0404	—	_	_		F	ILHIT<4:0>			—			ICODE<6:0>				0000	
C1FCTRL	0406	D	MABS<2:0	>	—	—	—	—	_	—	—	—	FSA<4:0>			0000		
C1FIFO	0408	—	_			FBP<5:0>			_	_	FNRB<5:0>			0000				
C1INTF	040A	_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF		FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	—	_	_	—	_	_	—	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRCN	IT<7:0>							RERRCN	T<7:0>				0000
C1CFG1	0410	—	_	_	—	_	_	—	_	SJW<1	:0>			BRP<	:5:0>			0000
C1CFG2	0412	—	WAKFIL	_	—	_	SE	G2PH<2:0)>	SEG2PHTS	SAM	S	EG1PH<2	:0>	P	RSEG<2:0)>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MSk	<1:0>	F6MS	<<1:0>	F5MSI	K<1:0>	F4MS	K<1:0>	F3MSK<	:1:0>	F2MSH	<<1:0>	F1MSK	<1:0>	F0MSI	K<1:0>	0000
C1FMSKSEL2	041A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	K<1:0>	F12MS	SK<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSK	<1:0>	F8MSI	K<1:0>	0000

TABLE 4-16: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 OR 1 (FOR PIC24HJ128GP502/504 AND PIC24HJ64GP502/504)

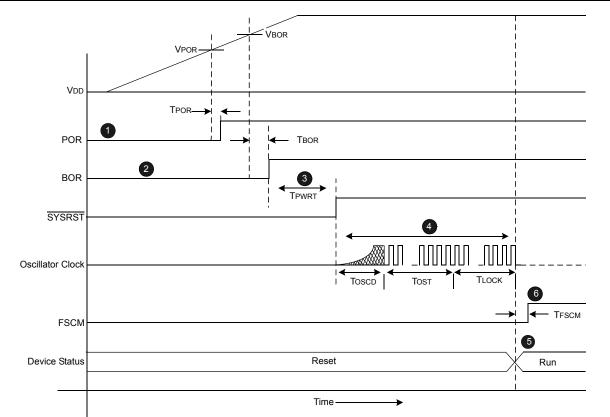
Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 (FOR PIC24HJ128GP502/504 AND PIC24HJ64GP502/504)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							See	e definition	when WIN	= x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TXABT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	RI<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TXABT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PF	RI<1:0>	0000
C1RXD	0440								Received	Data Word								xxxx
C1TXD	0442								Transmit I	Data Word								xxxx

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.


EXAMPLE 5-2: LOADING THE WRITE BUFFERS

; Set up NVMCON for row programming oper	ations
MOV #0x4001, W0	;
MOV W0, NVMCON	; Initialize NVMCON
; Set up a pointer to the first program	memory location to be written
; program memory selected, and writes en	abled
MOV #0x0000, W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #0x6000, W0	; An example program memory address
; Perform the TBLWT instructions to writ	e the latches
; 0th_program_word	
MOV #LOW_WORD_0, W2	;
MOV #HIGH_BYTE_0, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; 1st_program_word	
MOV #LOW_WORD_1, W2	;
MOV #HIGH_BYTE_1, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; 2nd_program_word	
MOV #LOW_WORD_2, W2	;
MOV #HIGH_BYTE_2, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
•	
•	
•	
; 63rd_program_word	
MOV #LOW_WORD_31, W2	;
MOV #HIGH_BYTE_31, W3	i . Muite DM less second into management less in
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	<pre>; Block all interrupts with priority <7 ; for next 5 instructions</pre>
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0×AA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

- **Note 1: POR:** A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed.
 - 2: BOR: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.
 - **3: PWRT Timer:** The programmable power-up timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay TPWRT ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay TPWRT has elapsed, the SYSRST becomes inactive, which in turn enables the selected oscillator to start generating clock cycles.
 - 4: Oscillator Delay: The total delay for the clock to be ready for various clock source selections are given in Table 6-1. Refer to Section 9.0 "Oscillator Configuration" for more information.
 - **5:** When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the reset address, which redirects program execution to the appropriate start-up routine.
 - 6: The Fail-Safe Clock Monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay TFSCM elapsed.

REGISTER 7	7-25: IPC11:	INTERRUPT	PRIORITY		REGISTER 11			
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
	_	_		_		DMA4IP<2:0>		
bit 15							bit 8	
r								
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
		PMPIP<2:0>		—	—	—		
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-11 bit 10-8	DMA4IP<2:0	ted: Read as '(>: DMA Channe pt is priority 7 (l	el 4 Data Trar	•	e Interrupt Prior	ity bits		
		pt is priority i pt source is dis	abled					
bit 7	Unimplemen	ted: Read as '	0'					

PMPIP<2:0>: Parallel Master Port Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1 000 = Interrupt source is disabled

Unimplemented: Read as '0'

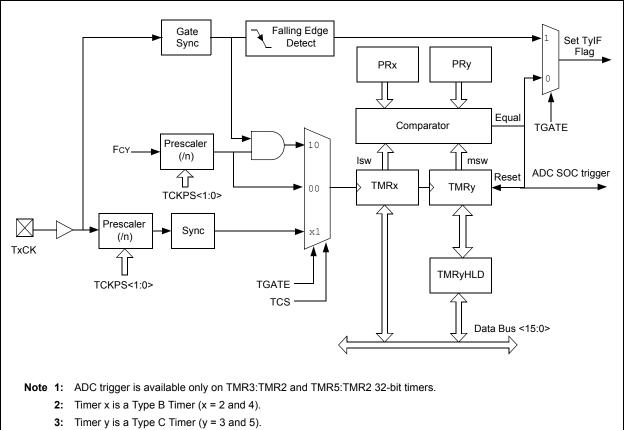
bit 6-4

bit 3-0

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGIST
--

-												
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
FORCE ⁽¹⁾	—	—		—			—					
bit 15							bit 8					
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0					
	IRQSEL<6:0> ⁽²⁾											
bit 7	•						bit 0					
Legend:												
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'								
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15		e DMA Transfe										
		ingle DMA trans DMA transfer										

bit 14-7 Unimplemented: Read as '0'


bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾

0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ

Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: Refer to Table 7-1 for a complete listing of IRQ numbers for all interrupt sources.

13.3 Timer Resources

Many useful resources related to Timers are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

13.3.1 KEY RESOURCES

- Section 11. "Timers" (DS70205)
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

		R/W-0	U-0	U-0	U-0	U-0	U-0		
	DMABS<2:0>		—	—	_	—	—		
bit 15							bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	— — FSA<4:0>								
bit 7							bit (
Levende		C = M/rite eble		'O' oon ho writte	ve to close the l	.:4			
Legend: B = Boodabl	a hit		•	'0' can be writte					
R = Readable bitW = Writable bit-n = Value at POR'1' = Bit is set				0 = Onimplen	nented bit, read	x = Bit is unkr			
	FUR				aleu		IOWIT		
bit 12-5	101 = 24 buffe 100 = 16 buffe 011 = 12 buffe 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe	ers in DMA RA ers in DMA RA ers in DMA RA ers in DMA RA rs in DMA RAN rs in DMA RAN rs in DMA RAN ted: Read as '	AM AM AM A A A A						
bit 4-0	•	FO Area Starts		oite					
	11111 = Read 11110 = Read •	d buffer RB31		5113					

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

REGISTER 19-8: CIEC: ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
			TERRC	NT<7:0>						
bit 15							bit 8			
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
			RERRC	CNT<7:0>						
bit 7							bit 0			
Legend:		C = Writeable b	oit, but only	0' can be writter	n to clear the	e bit				
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknow						

bit 15-8	TERRCNT<7:0>: Transmit Error Count bits
bit 7-0	RERRCNT<7:0>: Receive Error Count bits

REGISTER 19-9: CiCFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1

<u> </u>	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 15 bit 8	—	—	—	—	—	—	—	_
	bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW	<1:0>	BRP<5:0>					
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-6	SJW<1:0>: Synchronization Jump Width bits
	11 = Length is 4 x TQ
	10 = Length is 3 x TQ
	01 = Length is 2 x TQ
	00 = Length is 1 x TQ
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits
	11 1111 = TQ = 2 x 64 x 1/FCAN
	•
	•
	•
	00 0010 = Tq = 2 x 3 x 1/Fcan
	00 0001 = Tq = 2 x 2 x 1/Fcan
	00 0000 = Tq = 2 x 1 x 1/FCAN

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x		
_	WAKFIL	_	_	_		SEG2PH<2:0>			
bit 15							bit		
-			-						
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SEG2PHTS	SAM		SEG1PH<2:0>	>		PRSEG<2:0>			
bit 7							bit		
Legend:									
R = Readable	bit	W = Writable	e bit	U = Unimple	mented bit, re	ad as '0'			
-n = Value at F	POR	'1' = Bit is se	et	'0' = Bit is cle	eared	x = Bit is unkno	own		
bit 15	•	ted: Read as							
bit 14			Line Filter for W	/ake-up bit					
		bus line filter							
L:1 40 44			ot used for wake	e-up					
bit 13-11		ted: Read as							
bit 10-8)>: Phase Seg	gment 2 bits						
	111 = Length	IIS 8 X IQ							
	•								
	•								
	•								
bit 7	000 = Length		ent 2 Time Sele	ot hit					
	1 = Freely pro								
			hits or Informati	ion Processin	a Time (IPT)	whichever is greate	≥r		
bit 6					ge (ii),	inicite for to grout			
bit o	SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point								
			ce at the sampl						
bit 5-3)>: Phase Seg	-						
	111 = Length								
	•								
	•								
	•								
	000 = Length	is 1 x Tq							
bit 2-0	•		Time Segmen	t bits					
	111 = Length		0						
	•								
	•								
	•								
	000 = Length	is 1 x Tq							
	5								

REGISTER	19-20: CiRXM REGIS	InSID: ECAN TER n (n = 0		ANCE FILTE	R MASK STA	NDARD IDEI	NTIFIER
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	MIDE		EID17	EID16
bit 7							bit 0
Legend:		C = Writeable	bit, but only '	0' can be writte	en to clear the b	bit	
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	t POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown
bit 15-5	1 = Include bi	standard Identifi t SIDx in filter c s don't care in f	comparison	on			
bit 4	Unimplemen	ted: Read as 'o)'				
bit 3	MIDE: Identif	ier Receive Mo	de bit				
	0 = Match eit	ner standard or	extended ad	dress message	ldress) that corr e if filters match EID) = (Message		DE bit in filter

- bit 2 Unimplemented: Read as '0'
- bit 1-0 EID<17:16>: Extended Identifier bits
 - 1 = Include bit EIDx in filter comparison
 - 0 = Bit EIDx is don't care in filter comparison

REGISTER 19-21: CIRXMnEID: ECAN[™] ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER n (n = 0-2)

		•	•				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writeable bit, but only	C = Writeable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADDR15	CS1		10110	-	R<13:8>	1011 0	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADD	R<7:0>			
bit 7							bit (
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

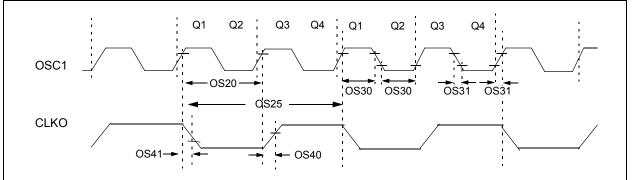
bit 15	ADDR15: Parallel Port Destination Address bits
bit 14	CS1: Chip Select 1 bit
	1 = Chip select 1 is active
	0 = Chip select 1 is inactive
bit 13-0	ADDR13:ADDR0: Parallel Port Destination Address bits

REGISTER 24-4: PMAEN: PARALLEL PORT ENABLE REGISTER

U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	PTEN14	—	—	—	F	PTEN<10:8> ⁽¹⁾	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PTEN<7:2> ⁽¹⁾					PTEN	l<1:0>
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 15	Unimplemented: Read as '0'
bit 14	PTEN14: PMCS1 Strobe Enable bit
	 1 = PMA14 functions as either PMA<14> bit or PMCS1 0 = PMA14 pin functions as port I/O
bit 13-11	Unimplemented: Read as '0'
bit 10-2	PTEN<10:2>: PMP Address Port Enable bits ⁽¹⁾
	1 = PMA<10:2> function as PMP address lines0 = PMA<10:2> function as port I/O
bit 1-0	PTEN<1:0>: PMALH/PMALL Strobe Enable bits
	 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL 0 = PMA1 and PMA0 pads functions as port I/O

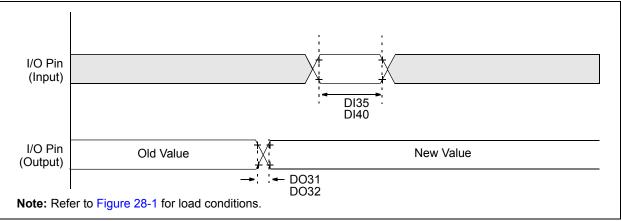
Note 1: Devices with 28 pins do not have PMA<10:2>.

IADL	E 26-2:	INSTRUCTION SET OVERVIEW (CONTINUED)										
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected					
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z					
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С					
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z					
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С					
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z					
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z					
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С					
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z					
14	CALL	CALL	lit23	Call subroutine	2	2	None					
		CALL	Wn	Call indirect subroutine	1	2	None					
15	CLR	CLR	f	f = 0x0000	1	1	None					
		CLR	WREG	WREG = 0x0000	1	1	None					
		CLR	Ws	Ws = 0x0000	1	1	None					
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep					
17	COM	COM	f	f = f	1	1	N,Z					
		СОМ	f,WREG	WREG = f	1	1	N.Z					
		СОМ	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z					
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z					
	01	CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z					
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z					
19	CPO	CPO	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z					
10	010	CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z					
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z					
20	0110	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z					
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z					
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None					
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None					
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None					
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None					
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С					
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z					
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z					
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z					
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z					
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z					
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z					
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None					
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV					
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV					
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV					
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV					
30	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None					
31	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С					
32	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С					
33	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С					
34	GOTO	GOTO	Expr	Go to address	2	2	None					
		GOTO	Wn	Go to indirect	1	2	None					

TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 28-2: EXTERNAL CLOCK TIMING

TABLE 28-16: EXTERNAL CLOCK TIMING REQUIREMENTS

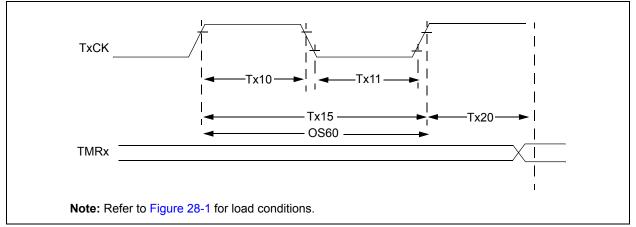

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symb	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions		
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	40	MHz	EC		
		Oscillator Crystal Frequency	3.5 10		10 40 33	MHz MHz kHz	XT HS Sosc		
OS20	Tosc	Tosc = 1/Fosc	12.5		DC	ns			
OS25	TCY	Instruction Cycle Time ⁽²⁾	25		DC	ns			
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC		
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	-	—	20	ns	EC		
OS40	TckR	CLKO Rise Time ⁽³⁾		5.2		ns	—		
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	—	ns	—		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Instruction cycle period (TcY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

FIGURE 28-3: CLKO AND I/O TIMING CHARACTERISTICS


TABLE 28-20: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Oper (unless otherw Operating temp	vise state	ed) -40°C ≤	Ta ≤+85	3.6V °C for Inc 5°C for E	
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TioR	Port Output Rise Tim	Port Output Rise Time		10	25	ns	_
DO32	TIOF	Port Output Fall Time	Port Output Fall Time		10	25	ns	—
DI35	TINP	INTx Pin High or Low Time (input)		20	_	—	ns	_
DI40	Trbp	CNx High or Low Tim	CNx High or Low Time (input)		_	_	TCY	_

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

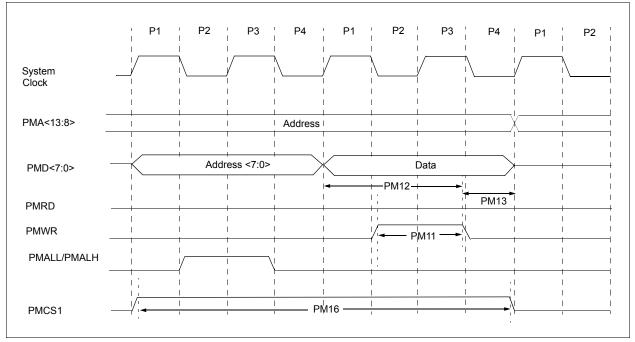

FIGURE 28-5: TIMER1, 2, 3 AND 4 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 28-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characte	eristic		Min	Тур	Мах	Units	Conditions
TA10	ТтхН	TxCK High Time	Synchron no presc		Тсү + 20		—	ns	Must also meet parameter TA15.
			Synchron with pres		(Tcy + 20)/N		_	ns	N = prescale value
			Asynchro	onous	20	_	—	ns	(1, 8, 64, 256)
TA11	ΤτxL	TxCK Low Time	Synchronous, no prescaler		(Tcy + 20)	_	—	ns	Must also meet parameter TA15.
			Synchron with pres		(Tcy + 20)/N	_	—	ns	N = prescale value
			Asynchro	onous	20	_	_	ns	(1, 8, 64, 256)
TA15	ΤτχΡ	TxCK Input Period	Synchroi no presc		2 Tcy + 40	_	—	ns	—
			Synchron with pres		Greater of: 40 ns or (2 TCY + 40)/ N		_	_	N = prescale value (1, 8, 64, 256)
			Asynchro	onous	40	_	—	ns	—
OS60	Ft1	SOSCI/T1CK Osc frequency Range (enabled by setting (T1CON<1>))	(oscillator		DC		50	kHz	_
TA20	TCKEXTMRL	Delay from Extern Edge to Timer Incr		Clock	0.75 Tcy + 40		1.75 Tcy + 40	—	

Note 1: Timer1 is a Type A.

FIGURE 28-27: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 28-50: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions	
PM11	PMWR Pulse Width	—	0.5 TCY	_	ns		
PM12	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	—	_	ns	_	
PM13	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	—	_	ns	_	
PM16	PMCSx Pulse Width	Тсү - 5	—	_	ns	—	

TABLE 28-51: DMA READ/WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Characteristic	Min. Typ		Max.	Units	Conditions	
DM1	DMA Read/Write Cycle Time	—	—	1 Tcy	ns	—	

Revision F (August 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-5: MAJOR SECTION UPDATES

Section Name	Update Description
Section 25.0 "Special Features"	Added Note 3 to the Connections for the On-chip Voltage Regulator diagram (see Figure 25-1).
Section 28.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss from the Absolute Maximum Ratings.
	Removed Note 3 and parameter DC10 (VCORE) from the DC Temperature and Voltage Specifications (see Table 28-4).
	Updated the Characteristics definition and Conditions for parameter BO10 in the Electrical Characteristics: BOR (see Table 28-11).
	Added Note 1 to the Internal Voltage Regulator Specifications (see Table 28-13).

Revision G (April 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

In addition, where applicable, new sections were added to each peripheral chapter that provide information and links to related resources, as well as helpful tips. For examples, see Section 9.2 "Oscillator Resources" and Section 20.4 "ADC Helpful Tips".

All other major changes are referenced by their respective section in the following table.

TABLE A-6: MAJOR SECTION UPDATES

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-bit Microcontrollers"	Added two new tables: • Crystal Recommendations (see Table 2-1) • Resonator Recommendations (see Table 2-2)
Section 28.0 "Electrical Characteristics"	Updated parameters DO10 and DO20 and removed parameters DO16 and DO26 in the DC Characteristics: I/O Pin Output Specifications (see Table 28-10)