

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp502-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

- **Note 1:** This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 of family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 family of 16-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and VSS pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors")
• VCAP

(see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note: The AVDD and AVSS pins must be connected independent of the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVss is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

NOTES:

FIGURE 4-4: DATA MEMORY MAP FOR PIC24HJ128GP202/204, PIC24HJ64GP202/204, PIC24HJ128GP502/504 AND PIC24HJ64GP502/504 DEVICES WITH 8 KB RAM

4.3 Memory Organization Resources

Many useful resources related to Memory Organization are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwprod-ucts/Devices.aspx?dDoc-Name=en534555

4.3.1 KEY RESOURCES

- Section 4. "Program Memory" (DS70203)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

TABLE 4-15: DMA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0380	CHEN SIZE DIR HALF NULLW - - - - AMODE<1:0> - - MODE<1:0>											0000					
DMA0REQ	0382	FORCE IRQSEL<6:0>										0000						
DMA0STA	0384								S	TA<15:0>								0000
DMA0STB	0386								S	TB<15:0>								0000
DMA0PAD	0388								Р	AD<15:0>								0000
DMA0CNT	038A	_	—	—	_	—	_					CN1	<9:0>					0000
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	_	—	AMOD	E<1:0>	—	_	MODE	<1:0>	0000
DMA1REQ	038E	FORCE								0000								
DMA1STA	0390	STA<15:0> 01										0000						
DMA1STB	0392		STB<15:0>											0000				
DMA1PAD	0394		PAD<15:0> 00										0000					
DMA1CNT	0396	CNT<9:0>								0000								
DMA2CON	0398	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	_	—	AMOD	E<1:0>	—	_	MODE	<1:0>	0000
DMA2REQ	039A	FORCE - - - - IRQSEL<6:0> 0										0000						
DMA2STA	039C	STA<15:0>									0000							
DMA2STB	039E	STB<15:0>									0000							
DMA2PAD	03A0	PAD<15:0>								0000								
DMA2CNT	03A2	_	_	—		_	_					CN1	<9:0>					0000
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	—	—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA3REQ	03A6	FORCE - - - - IRQSEL<6:0> 00							0000									
DMA3STA	03A8	STA<15:0> 000							0000									
DMA3STB	03AA								S	TB<15:0>								0000
DMA3PAD	03AC			•					P	AD<15:0>								0000
DMA3CNT	03AE	—	—	—	—	—	—					CN1	<9:0>					0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW	_		_	_	—	AMOD	E<1:0>	—	_	MODE	<1:0>	0000
DMA4REQ	03B2	FORCE	—	—	—	—	—	—	—	—			I	RQSEL<6:0	>			0000
DMA4STA	03B4								S	TA<15:0>								0000
DMA4STB	03B6								S	TB<15:0>								0000
DMA4PAD	03B8								Р	AD<15:0>								0000
DMA4CNT	03BA	—	—	—	—	—	—					CN1	<9:0>					0000
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	—	—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA5REQ	03BE	FORCE	—	—	_	—	—	—	—	—			I	RQSEL<6:0	>			0000
DMA5STA	03C0								S	TA<15:0>								0000
DMA5STB	03C2		STB<15:0> 000										0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 2	CMIF: Comparator Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 0	SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE					
bit 15							bit 8					
												
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
IC8IE	IC7IE	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE					
bit 7							bit 0					
Logond:												
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit read	d as '0'						
-n = Value at F	POR	'1' = Bit is set		0' = Bit is cle	ared	x = Bit is unkr	nown					
	0.11											
bit 15	U2TXIE: UAF	RT2 Transmitte	r Interrupt En	able bit								
	1 = Interrupt r	request enable	d									
	0 = Interrupt r	request not ena	abled									
bit 14	U2RXIE: UAF	RT2 Receiver li	nterrupt Enab	le bit								
	1 = Interrupt r	request enable	d abled									
bit 13	INT2IF: Exter	rnal Interrupt 2	Enable bit									
	1 = Interrupt r	request enable	d									
	0 = Interrupt r	request not ena	abled									
bit 12	T5IE: Timer5	Interrupt Enab	le bit									
	1 = Interrupt r	request enable	d									
bit 11	0 = Interrupt 1	Interrunt Enab	lo bit									
	1 = Interrupt r	request enable	d									
	0 = Interrupt r	request not ena	abled									
bit 10	OC4IE: Output	ut Compare Ch	annel 4 Interi	upt Enable bit								
	1 = Interrupt r	request enable	d									
h # 0		request not ena	abled	unt Enchla hit								
DIL 9		ut Compare Cr request enable	annei 3 interi d	upt Enable bit								
	0 = Interrupt request not enabled											
bit 8	DMA2IE: DM	A Channel 2 D	ata Transfer (Complete Inter	rupt Enable bit							
	1 = Interrupt r	request enable	d									
	0 = Interrupt r	request not ena	abled									
bit 7	IC8IE: Input C	Capture Chann	el 8 Interrupt	Enable bit								
	$\perp = \text{Interrupt r}$ 0 = Interrupt r	request enable	u abled									
bit 6	IC7IE: Input (Capture Chann	el 7 Interrupt	Enable bit								
	1 = Interrupt r	request enable	d									
	0 = Interrupt r	request not ena	abled									
bit 5	Unimplemen	ted: Read as '	0'									
bit 4	INT1IE: Exter	rnal Interrupt 1	Enable bit									
	1 = Interrupt r	request enable	a abled									
bit 3	CNIE: Input C	Change Notifica	ation Interrupt	Enable bit								
	1 = Interrupt r	request enable	d									
	0 = Interrupt r	request not ena	abled									

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

7.6 Interrupt Setup Procedures

7.6.1 INITIALIZATION

To configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level depends on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.6.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development tool suite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the program re-enters the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.6.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.6.4 INTERRUPT DISABLE

All user interrupts can be disabled using this procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value 0xOE with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGIST
--

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
FORCE ⁽¹⁾		—	_	—	—	_	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
— IRQSEL<6:0> ⁽²⁾										
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown						
bit 15	FORCE: Ford	e DMA Transfe	er bit ⁽¹⁾							
	1 = Force a si	ingle DMA transfer	sfer (Manual) initiation by D	mode)						
				inin iequest						

bit 14-7 Unimplemented: Read as '0'

bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾

0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ

Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: Refer to Table 7-1 for a complete listing of IRQ numbers for all interrupt sources.

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	XX	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	XX	110	1
Low-Power RC Oscillator (LPRC)	Internal	XX	101	1
Secondary (Timer1) Oscillator (Sosc)	Secondary	XX	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	-
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	_
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	—
Primary Oscillator (XT)	Primary	01	010	_
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	XX	001	1
Fast RC Oscillator (FRC)	Internal	XX	000	1

	TABLE 9-1:	CONFIGURATION BIT VALUES FOR CLOCK SELECTION
--	------------	--

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.2 Oscillator Resources

Many useful resources related to Oscillators are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

9.2.1 KEY RESOURCES

- Section 39. "Oscillator (Part III)" (DS70216)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

9.4 Clock Switching Operation

Applications are free to switch among any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 25.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and FSCM function are disabled. This is the default setting.

The NOSC<2:0> control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC<2:0> bits (OSC-CON<14:12>) reflect the clock source selected by the FNOSC<2:0> Configuration bits FOSCSEL<2:0>.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.4.2 OSCILLATOR SWITCHING SEQUENCE

Performing a clock switch requires this basic sequence:

- 1. If required, read the COSC<2:0> bits to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSC<2:0> control bits for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

After the basic sequence is completed, the system clock hardware responds automatically as follows:

- The clock switching hardware compares the COSC<2:0> status bits with the new value of the NOSC<2:0> control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- 2. If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF

(OSCCON<3>) status bits are cleared.

- 3. The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC<2:0> status bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to Section 39. "Oscillator (Part III)" (DS70308) in the "dsPIC33F/ PIC24H Family Reference Manual" for details.

9.5 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

If an oscillator fails, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

13.0 TIMER2/3 AND TIMER4/5 FEATURE

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, the of PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Timer2 and Timer4 are Type B timers with the following specific features:

- A Type B timer can be concatenated with a Type C timer to form a 32-bit timer
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed after the prescaler

A block diagram of the Type B timer is shown in Figure 13-1.

Timer3 and Timer5 are Type C timers with the following specific features:

- A Type C timer can be concatenated with a Type B timer to form a 32-bit timer
- At least one Type C timer has the ability to trigger an A/D conversion
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed before the prescaler

A block diagram of the Type C timer is shown in Figure 13-2.

FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM (x = 2 or 4)

REGISTER 16-3: SPIXCON2: SPIX CONTROL REGISTER 2
--

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
FRMEN	SPIFSD	FRMPOL	_	—	_	—	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0		
—	—	—	_	—	_	FRMDLY	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at P	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown								
bit 15	FRMEN: Fran	ned SPIx Supp	ort bit						
	1 = Framed S	Plx support en	abled (SSx pi	n used as fram	ne sync pulse ir	nput/output)			
	0 = Framed S	Plx support dis	sabled						
bit 14	SPIFSD: Fran	ne Sync Pulse	Direction Cor	ntrol bit					
	1 = Frame syl	nc pulse input ((Slave) t (master)						
hit 13	FRMPOL · Fra	ame Sync Pulse	Polarity hit						
bit 15	1 = Frame svi	nc pulse is acti	ve-high						
	0 = Frame sy	nc pulse is acti	ve-low						
bit 12-2	Unimplemen	ted: Read as '	כ'						
bit 1	FRMDLY: Fra	me Sync Pulse	e Edge Select	bit					
	1 = Frame sy	nc pulse coinci	des with first l	oit clock					
	0 = Frame sy	nc pulse prece	des first bit clo	ock					
bit 0	Unimplemen	ted: This bit m	ust not be set	to '1' by the us	ser application				

18.3 UART Control Registers

REGISTER 18-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
UARTEN ⁽¹⁾	—	USIDL	IREN ⁽²⁾	RTSMD	—	UEN<1:0>		
bit 15							bit 8	

R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL	_<1:0>	STSEL
bit 7							bit 0

Legend:	HC = Hardware cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	UARTEN: UARTx Enable bit ⁽¹⁾
	1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>
	0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption
1.1.4.4	
DIT 14	Unimplemented: Read as 10 [°]
bit 13	USIDL: Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾
	1 = IrDA encoder and decoder enabled
	0 = IrDA encoder and decoder disabled
bit 11	RTSMD: Mode Selection for UxRTS Pin bit
	1 = UxRTS pin in Simplex mode
	0 = UxRTS pin in Flow Control mode
bit 10	Unimplemented: Read as '0'
bit 9-8	UEN<1:0>: UARTx Enable bits
	11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches
	10 = 0xTX, $0xRX$, $0xCTS$ and $0xRTS$ pins are enabled and used $11 = 10xTX$. $10xRX$ and $10xRTS$ pins are enabled and used: $10xCTS$ pin controlled by port latches
	00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by
	port latches
bit 7	WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit
	1 = UARTx continues to sample the UxRX pin; interrupt generated on falling edge; bit cleared
	in hardware on following rising edge
1.11.0	0 = No wake-up enabled
DIT 6	LPBACK: UARTX Loopback Mode Select bit
	 1 = Enable Loopback mode 0 = Loopback mode is disabled
bit 5	ABAUD: Auto-Baud Enable bit
	1 = Enable baud rate measurement on the next character – requires reception of a Sync field (55h)
	before other data; cleared in hardware upon completion
	0 = Baud rate measurement disabled or completed
Note 1:	Refer to Section 17. "UART" (DS70232) in the "dsPIC33F/PIC24H Family Reference Manual" for
	information on enabling the UART module for receive or transmit operation.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

19.0 ENHANCED CAN (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of PIC24HJ32GP302/304, the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

19.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices contain up to two ECAN modules.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- · Data length of 0-8 bytes
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- · Programmable clock source
- Programmable link to input capture module (IC2 for CAN1) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

R/W-0 TXENn bit 15 R/W-0 TXENm bit 7 Legend: R = Readable -n = Value at P bit 15-8 bit 15-8 bit 7 bit 6 bit 5	R-0 TXABTn R-0 TXABTm ⁽¹⁾ bit POR	R-0 TXLARBn R-0 TXLARBm ⁽¹⁾ C = Writeable W = Writable	R-0 TXERRn R-0 TXERRm ⁽¹⁾	R/W-0 TXREQn R/W-0 TXREQm	R/W-0 RTRENn R/W-0 RTRENm	R/W-0 TXnPF R/W-0 TXmPF	R/W-0 RI<1:0> bit R/W-0		
TXENn bit 15 R/W-0 TXENm bit 7 Legend: R = Readable -n = Value at P bit 15-8 bit 7 bit 5	R-0 TXABTm ⁽¹⁾ bit 20R	R-0 TXLARBm ⁽¹⁾ C = Writeable W = Writable	R-0 TXERRm ⁽¹⁾	TXREQn R/W-0 TXREQm	RTRENn R/W-0 RTRENm	R/W-0	RI<1:0> bit R/W-0		
bit 15 R/W-0 TXENm bit 7 Legend: R = Readable -n = Value at P bit 15-8 bit 7 bit 6 bit 5	R-0 TXABTm ⁽¹⁾ bit POR	R-0 TXLARBm ⁽¹⁾ C = Writeable W = Writable	R-0 TXERRm ⁽¹⁾	R/W-0 TXREQm	R/W-0 RTRENm	R/W-0 TXmPF	bit		
R/W-0 TXENm bit 7 Legend: R = Readable -n = Value at P bit 15-8 bit 7 bit 6 bit 5	R-0 TXABTm ⁽¹⁾ bit POR	R-0 TXLARBm ⁽¹⁾ C = Writeable W = Writable	R-0 TXERRm ⁽¹⁾	R/W-0 TXREQm	R/W-0 RTRENm	R/W-0 TXmPF	R/W-0		
R/W-0 TXENm bit 7 Legend: R = Readable -n = Value at P bit 15-8 bit 7 bit 6 bit 5	R-0 TXABTm ⁽¹⁾ bit POR	R-0 TXLARBm ⁽¹⁾ C = Writeable W = Writable	R-0 TXERRm ⁽¹⁾	R/W-0 TXREQm	R/W-0 RTRENm	R/W-0 TXmPF	R/W-0		
<u>TXENm</u> bit 7 Legend: R = Readable -n = Value at P bit 15-8 bit 7 bit 6 bit 5	Dit	C = Writeable W = Writable	bit but only '	TXREQm	RTRENm	TXmPF	_		
bit 7 Legend: R = Readable -n = Value at P bit 15-8 bit 7 bit 6 bit 5	bit POR	C = Writeable W = Writable	bit but only '(₹I<1:0>		
Legend: R = Readable -n = Value at P bit 15-8 bit 7 bit 6 bit 5	bit POR	C = Writeable W = Writable	bit but only '(bit		
R = Readable <u>-n = Value at P</u> bit 15-8 bit 7 bit 6 bit 5	bit POR	W = Writable	•)' oon ho writto	n to alcor the h	.;+			
-n = Value at P bit 15-8 bit 7 bit 6 bit 5	POR		hit		n to clear the b	//L 1 ac (0)			
bit 15-8 bit 7 bit 6 bit 5	OR		DIL	0 = 0	renteu bit, reat				
bit 15-8 bit 7 bit 6 bit 5		I = DILIS SEL			areu		IOWIT		
bit 7 bit 6 bit 5	See Definition	n for Bits 7-0 C	ontrols Buffer	n					
bit 6 bit 5		RX Buffer Sele	ction bit						
bit 6 bit 5	1 - Ruffer TRRn is a transmit buffer								
bit 6 bit 5	0 = Buffer TR	Bn is a receive	buffer						
bit 5	TXABTm: Message Aborted bit ⁽¹⁾								
bit 5	1 = Message was aborted								
bit 5	0 = Message	completed tran	nsmission succ	cessfully					
	TXLARBm: N	(LARBm: Message Lost Arbitration bit ⁽¹⁾							
	1 = Message	lost arbitration	while being se	ent					
	0 = Message did not lose arbitration while being sent								
bit 4	TXERRm: Error Detected During Transmission bit ⁽¹⁾								
	1 = A bus error occurred while the message was being sent								
	0 = A bus err	or did not occu	r while the me	ssage was beir	ng sent				
bit 3	IXREQm: M	essage Send R	lequest bit				c		
	1 = Requests	that a messag	e be sent. The	e bit automatica	lly clears when	the message i	s successfull		
	0 = Clearing 1	the bit to '0' wh	ile set request	s a message a	bort				
bit 2	RTRENm: Au	uto-Remote Tra	insmit Enable	bit	5011				
	1 = When a r	emote transmit	is received T	XRFQ will be s	et				
	0 = When a remote transmit is received, TXREQ will be unaffected								
bit 1-0	TXmPRI<1:0>: Message Transmission Priority bits								
	11 = Highest	message priori	ity	-					
	10 = High inte	ermediate mes	sage priority						
	01 = Low interview	ermediate mess	age priority						
	00 = Lowest	message priori	ty						
Note 1. This	hitin alaawad								

~ .

The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM. Note:

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

BUFFER 19-3	: ECAN	™ MESSAGE	BUFFER V	VORD 2				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1	
bit 15							bit 8	
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	_	_	RB0	DLC3	DLC2	DLC1	DLC0	
bit 7			•	·	•		bit 0	
Legend:								
R = Readable b	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit		'1' = Bit is set	'0' = Bit is cleared		ared	x = Bit is unknown		
bit 15-10	EID<5:0>: Extended Identifier bits							
bit 9	RTR: Remote Transmission Request bit							
	1 = Message	will request rer	note transmi	ssion				
	0 = Normal m	essage						
bit 8	RB1: Reserved Bit 1							

	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

BUFFER 19-4: ECAN™ MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	rte 1			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	rte 0			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 Byte 1<15:8>: ECAN™ Message Byte 0

bit 7-0 Byte 0<7:0>: ECAN Message Byte 1

23.4 Programmable CRC Resources

Many useful resources related to Programmable CRC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en534555

23.4.1 KEY RESOURCES

- Section 36. "Programmable Cyclic Redundancy Check CRC)" (DS70298)
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

DC CHARACTERISTICS			Standard O (unless othe Operating te	perating Condition erwise stated) mperature -40°C -40°C	s: 3.0V to 3.6V ≤Ta ≤+85°C for Indu ≤Ta ≤+125°C for Ext	strial ended	
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units	Inits Conditions			
Idle Current (IIDLE): Core OFF Clock ON Base Current ⁽¹⁾							
DC40d	8	10	mA	-40°C			
DC40a	8	10	mA	+25°C			
DC40b	9	10	mA	+85°C	3.3V		
DC40c	10	13	mA	+125°C			
DC41d	13	15	mA	-40°C		16 MIPS	
DC41a	13	15	mA	+25°C	3.3V		
DC41b	13	16	mA	+85°C			
DC41c	13	19	mA	+125°C			
DC42d	15	18	mA	-40°C			
DC42a	16	18	mA	+25°C	2.3//		
DC42b	16	19	mA	+85°C	5.5V	20 10115 3	
DC42c	17	22	mA	+125°C			
DC43a	23	27	mA	+25°C			
DC43d	23	26	mA	-40°C	2.3//		
DC43b	24	28	mA	+85°C	5.5V	50 IVIIF 5	
DC43c	25	31	mA	+125°C			
DC44d	31	42	mA	-40°C			
DC44a	31	36	mA	+25°C	2.3//		
DC44b	32	39	mA	+85°C	3.3V	40 101153	
DC44c	34	43	mA	+125°C			

TABLE 28-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base IIDLE current is measured as follows:

 CPU core is off (i.e., Idle mode), oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- External Secondary Oscillator disabled (i.e., SOSCO and SOSCI pins configured as digital I/O inputs)
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero)
- JTAG is disabled
- **2:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: These parameters are characterized but not tested in manufacturing.

APPENDIX A: REVISION HISTORY

Revision A (September 2007)

Initial release of this document.

Revision B (March 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text. In addition, redundant information was removed that is now available in the respective chapters of the *dsPIC33F/PIC24H Family Reference Manual*, which can be obtained from the Microchip web site (www.microchip.com).

The major changes are referenced by their respective section in the following table.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Microcontrollers"	Note 1 added to all pin diagrams (see "Pin Diagrams")
	Updated the "PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 Controller Families " table as follows:
	 PIC24HJ128GP804 changed to PIC24HJ128GP504
	 PIC24HJ128GP804 changed to PIC24HJ128GP504
	 Added new column: External Interrupts
	Added Note 3
Section 1.0 "Device Overview"	Updated parameters PMA0, PMA1 and PMD0 through PMPD7 (Table 1-1)
Section 6.0 "Interrupt Controller"	IFS0-IFSO4 changed to IFSx (see Section 6.3.2 "IFSx")
	IEC0-IEC4 changed to IECx (see Section 6.3.3 "IECx")
	IPC0-IPC19 changed to IPCx (see Section 6.3.4 "IPCx")
Section 7.0 "Direct Memory Access (DMA)"	Updated parameter PMP (see Table 7-1)
Section 8.0 "Oscillator Configuration"	Updated the third clock source item (External Clock) in Section 8.1.1 "System Clock Sources"
	Updated TUN<5:0> (OSCTUN<5:0>) bit description (see Register 8-4)
Section 19.0 "10-bit/12-bit Analog-to-Digital Converter (ADC1)"	Added Note 2 to Figure 19-3
Section 24.0 "Special Features"	Added Note 2 to Figure 24-1
	Added Note after second paragraph in Section 24.2 "On-Chip Voltage Regulator"