

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp502-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADLE 4-1	$\frac{1}{1000} = \frac{1}{10000000000000000000000000000000000$																	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C				SID<	10:3>					SID<2:0>		—	EXIDE	-	EID<1	7:16>	XXXX
C1RXF11EID	046E				EID<	15:8>							EID<	7:0>				XXXX
C1RXF12SID	0470				SID<	10:3>				SID<2:0> — EXIDE — EID<17:16>					7:16>	XXXX		
C1RXF12EID	0472				EID<	15:8>							EID<	7:0>				XXXX
C1RXF13SID	0474				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	XXXX
C1RXF13EID	0476				EID<	15:8>							EID<	7:0>				XXXX
C1RXF14SID	0478				SID<	10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	XXXX
C1RXF14EID	047A				EID<	15:8>				EID<7:0>						XXXX		
C1RXF15SID	047C				SID<	10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	XXXX
C1RXF15EID	047E				EID<	15:8>				EID<7:0>						XXXX		

TABLE 4-18: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1 (FOR PIC24HJ128GP502/504 AND PIC24HJ64GP502/504) (CONTINUED)

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: PERIPHERAL PIN SELECT INPUT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	_	—	_			INT1R<4:0>			_	—	_	_	_	_	_	_	1F00
RPINR1	0682	_	_	_	_	_	_	_	_	_	_	_			INT2R<4:0	>		001F
RPINR3	0686	_	_	_			T3CKR<4:0>			_	_	_			T2CKR<4:0	>		1F1F
RPINR4	0688	_	_	_			T5CKR<4:0>			_	_	_			T4CKR<4:0	>		1F1F
RPINR7	068E	_	_	_			IC2R<4:0>			_	_	_			IC1R<4:0>			1F1F
RPINR10	0694	_	_	_			IC8R<4:0>			_	_	_			IC7R<4:0>			1F1F
RPINR11	0696	_	_	_	_	_	_	_	_	_	_	_			OCFAR<4:0	>		001F
RPINR18	06A4	_	_	_			U1CTSR<4:0	>		_	_	_			U1RXR<4:0	>		1F1F
RPINR19	06A6	_	_	_			U2CTSR<4:0	>		_	_	_			U2RXR<4:0	>		1F1F
RPINR20	06A8	_	_	_			SCK1R<4:0>			_	_	_			SDI1R<4:0	>		1F1F
RPINR21	06AA	_	_	_	_	_	_	_	_	_	_	_			SS1R<4:0	•		001F
RPINR22	06AC	_	_	_			SCK2R<4:0>			_	_	_			SDI2R<4:0	>		1F1F
RPINR23	06AE	_	_	_	_	_	_	_	—	_	_	_			SS2R<4:0	•		001F
RPINR26 ⁽¹⁾	06B4	_	_	_	_	_	_	_	_	_	_	_			C1RXR<4:0	>		001F

nd: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is present for PIC24HJ128GP502/504 and PIC24HJ64GP502/504 devices only.

6.3 System Reset

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 family of devices have two types of Reset:

- Cold Reset
- Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a cold Reset, the FNOSC configuration bits in the FOSC device configuration register selects the device clock source. A warm Reset is the result of all other reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection bits (COSC<2:0>) in the Oscillator Control register (OSCCON<14:12>).

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. A description of the sequence in which this occurs and is shown in Figure 6-2.

Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd			Toscd
FRCPLL	Toscd	—	TLOCK	TOSCD + TLOCK
XT	Toscd	Tost	—	TOSCD + TOST
HS	Toscd	Tost	—	TOSCD + TOST
EC	—	—	—	—
XTPLL	Toscd	Tost	TLOCK	TOSCD + TOST + TLOCK
HSPLL	Toscd	Tost	TLOCK	TOSCD + TOST + TLOCK
ECPLL	—	—	TLOCK	TLOCK
Sosc	Toscd	Тоѕт	—	TOSCD + TOST
LPRC	Toscd	_	_	Toscd

TABLE 6-1: OSCILLATOR DELAY

Note 1: ToscD = Oscillator Start-up Delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal Oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.

REGISIER	/-5: IF5U:I					-	B 444 -
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF
bit 7							bit 0
Legend:	o hit	\\/ = \\/ritabla	hit	II – Unimplo	montod bit roo	d ac '0'	
			DIL	0 = 0	menteu bit, rea	uas u	
-n = value at	POR	" = Bit is se	t	$0^{\circ} = Bit is cle$	eared	x = Bit is unkn	own
bit 15	Unimplemen	ted: Read as	ʻ0'				
bit 14	DMA1IF: DM	A Channel 1 E	ata Transfer C	complete Inter	rupt Flag Status	bit	
	1 = Interrupt r	equest has oc	curred	·			
	0 = Interrupt r	equest has no	ot occurred				
bit 13	AD1IF: ADC1	Conversion (Complete Interi	rupt Flag Statu	ıs bit		
	1 = Interrupt r	equest has oc equest has no	curred				
bit 12	U1TXIF: UAR	T1 Transmitte	r Interrupt Flag	a Status bit			
	1 = Interrupt r	equest has oc	curred	,			
	0 = Interrupt r	equest has no	ot occurred				
bit 11	U1RXIF: UAF	RT1 Receiver I	nterrupt Flag S	Status bit			
	1 = Interrupt r	equest has or	curred				
hit 10	SPI1E: SPI1	Event Interrur	n occurreu ht Flag Status k	nit			
	1 = Interrupt r	request has or	curred	Л			
	0 = Interrupt r	equest has no	ot occurred				
bit 9	SPI1EIF: SPI	1 Error Interru	pt Flag Status	bit			
	1 = Interrupt r	equest has oc	curred				
1.1.0	0 = Interrupt r	request has no	ot occurred				
DIT 8	1 3IF: Timer3	Interrupt Flag	Status bit				
	0 = Interrupt r	request has no	ot occurred				
bit 7	T2IF: Timer2	Interrupt Flag	Status bit				
	1 = Interrupt r	equest has oc	curred				
	0 = Interrupt r	equest has no	ot occurred				
bit 6	OC2IF: Outpu	ut Compare Cl	nannel 2 Interro	upt Flag Statu	s bit		
	1 = Interrupt r 0 = Interrupt r	equest has oc request has no	t occurred				
bit 5	IC2IF: Input C	apture Chanr	el 2 Interrupt F	-lag Status bit			
	1 = Interrupt r	equest has oc	curred	U			
	0 = Interrupt r	request has no	ot occurred				
bit 4	DMA0IF: DM	A Channel 0 E	ata Transfer C	complete Inter	rupt Flag Status	s bit	
	1 = Interrupt r	equest has or	curred				
bit 3	T1IF: Timer1	Interrupt Flag	Status hit				
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	equest has no	ot occurred				

IEGA, INTERDURT EL AC STATUS DECISTER A

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
	RTCIF	DMA5IF	_	_	—	—	_				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							
bit 15	Unimplemen	ted: Read as '	O'								
bit 14	RTCIF: Real-	Time Clock and	d Calendar Int	errupt Flag Sta	atus bit						
	1 = Interrupt r	equest has occ	curred								
	0 = Interrupt r	equest has not	t occurred								
bit 13	DMA5IF: DM	DMA5IF: DMA Channel 5 Data Transfer Complete Interrupt Flag Status bit									

- 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 12-0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_			—			DMA1IP<2:0>					
oit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		AD1IP<2:0>		<u> </u>		U1TXIP<2:0>					
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable b	Dit	U = Unimpler	nented bit, rea	ad as '0'					
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own				
oit 15-11	Unimplemen	nted: Read as '0)'								
oit 10-8	DMA1IP<2:0	>: DMA Channe	el 1 Data Tra	nsfer Complete	Interrupt Prio	rity bits					
	111 = Interru	ipt is priority 7 (r	nghest priori	ty interrupt)							
	•										
	•										
	001 = Interru	upt is priority 1									
	000 = Interru	ipt source is disa	abled								
bit 7	Unimplemer	nted: Read as '0)'								
oit 6-4	AD1IP<2:0>	: ADC1 Convers	ion Complet	e Interrupt Prior	rity bits						
	111 = Interru	upt is priority 7 (h	nighest priori	ty interrupt)							
	•										
	•										
	001 = Interru 000 = Interru	upt is priority 1 upt source is disa	abled								
bit 3	Unimplemer	nted: Read as '0)'								
oit 2-0	U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits										
	111 = Interru	upt is priority 7 (h	nighest priori	ty interrupt)							
	•										
	•										
	• 001 - Intorru	unt is priority 1									

PRIORITY CONTROL REGISTER

001 = Interrupt is priority 1 000 = Interrupt source is disabled

REGISTER 7-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—		_		—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
—	—	_	—	_		DMA3IP<2:0>		
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared x = Bit is unknown			

bit 15-3 Unimplemented: Read as '0'

bit 2-0 DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)

٠

001 = Interrupt is priority 1

000 = Interrupt source is disabled

11-0	11-0	11-0	11-0	11-0	R/\\/_1	R/W/-0	R/\\/_0					
0-0	0-0	0-0	0-0	0-0	D/ VV- I		N/W-U					
 bit 15							bit 8					
							bit c					
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
—		DMA5IP<2:0>		_	—	_	—					
bit 7							bit 0					
Legend:												
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown								
bit 15-11	Unimplemen	ted: Read as '	0'									
bit 10-8	RTCIP<2:0>: Real-Time Clock and Calendar Interrupt Flag Status bits											
	111 = Interru	pt is priority 7 (highest priori	ty interrupt)								
	•											
	•											
	001 = Interru	pt is priority 1										
	000 = Interru	pt source is dis	abled									
bit 7	Unimplemen	ted: Read as '	0'									
bit 6-4	DMA5IP<2:0	>: DMA Chann	el 5 Data Tra	nsfer Complete	Interrupt Prior	ity bits						
	111 = Interru	pt is priority 7 (highest priorit	ty interrupt)								
	•											
	•											
	001 = Interru	001 = Interrupt is priority 1										
	000 = Interru	pt source is dis	abled									

REGISTER 7-26: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

bit 3-0

Unimplemented: Read as '0'

The DMA controller features eight identical data transfer channels.

Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- Eight DMA channels
- Register Indirect with Post-increment Addressing mode
- Register Indirect without Post-increment Addressing mode
- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete

- Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or Automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat block transfer modes
- Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source
- · Debug support features

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

FIGURE 8-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS

11.6 Peripheral Pin Select

Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

11.6.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 26 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

11.6.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of special function registers: one to map peripheral inputs, and another one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.6.2.1 Input Mapping

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it is mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-14). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 11-2 illustrates remappable pin selection for U1RX input.

FIGURE 11-2: REMAPPABLE MUX INPUT FOR U1RX

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
_	—	—			SCK1R<4:0	>							
bit 15							bit 8						
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
	—	—			SDI1R<4:0	>							
bit 7	·	-					bit 0						
Legend:													
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'							
-n = Value a	It POR	eared	x = Bit is unkr	nown									
bit 15-13	Unimplemer	nted: Read as '	0'										
bit 12-8	SCK1R<4:0>	>: Assign SPI1	Clock Input (S	SCK1) to the co	orresponding F	RPn pin							
	11111 = Inp	11111 = Input tied to Vss											
	11001 = Inp	ut tied to RP25											
	•												
	•												
	•	ut tigd to DD1											
		ut fied to RP1											
bit 7-5	Unimplemen	nted: Read as '	∩ '										
bit 4_0	SDI1R<4·0>	· Assign SPI1 F	ິ lata Innut (SD	11) to the corre	esponding RPr	nin							
	11111 = Inn	ut tied to Vss			copolicing rail								
	11001 = Inp	ut tied to RP25											
	•												
	•												
	•												
	00001 = Inp	ut tied to RP1											
	00000 = Inp i	ut tied to RP0											

REGISTER 11-10: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

REGISTER 11-23: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTERS 8⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			RP17R<4:0>	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP16R<4:0>	•	
bit 7	-						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown
hit 15-13	Unimplemen	tod: Read as '	n '				

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP17R<4:0>:** Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP16R<4:0>:** Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 11-24: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTERS 9⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—			RP19R<4:0>	>			
bit 15		- -					bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	—			RP18R<4:0>	>			
bit 7							bit 0		
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15-13	Unimplemen	ted: Read as '	כי						
bit 12-8	RP19R<4:0> peripheral fur	: Peripheral Ounction numbers)	tput Function)	is Assigned to	RP19 Output	Pin bits (see Tal	ble 11-2 for		
bit 7-5	Unimplemen	ted: Read as '	כי						
hit 1 0	PP19P<4:0>: Paripharal Output Eulection is Assigned to PP19 Output Pin hits (see Table 11.2 for								

bit 4-0 **RP18R<4:0>:** Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

15.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- · Continuous Pulse mode
- PWM mode without fault protection
- · PWM mode with fault protection

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, the of PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit[™] (I²C[™])" (DS70195) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation.
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, refer to the "*dsPIC33F/PIC24H Family Reference Manual*". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual chapters.

FIGURE 20-3: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

REGISTER 20-7:	AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW ^(1,2)
REGISTER 20-7:	AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW(', ²

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	CSS12	CSS11	CSS10	CSS9	CSS8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7						bit 0	
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimple	mented bit, read	d as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	eared	x = Bit is unk	nown	

bit 15-13 Unimplemented: Read as '0'

bit 12-0 CSS<12:0>: ADC Input Scan Selection bits

- 1 = Select ANx for input scan
- 0 = Skip ANx for input scan
- **Note 1:** On devices without 13 analog inputs, all AD1CSSL bits can be selected by user application. However, inputs selected for scan without a corresponding input on device converts VREF-.
 - **2:** CSSx = ANx, where x = 0 through 12.

REGISTER 20-8: AD	D1PCFGL: ADC1 PORT	CONFIGURATION	REGISTER LOW ^(1,2,3)
-------------------	--------------------	---------------	---------------------------------

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15					•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7	·				•		bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

- bit 12-0 PCFG<12:0>: ADC Port Configuration Control bits
 - 1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss

0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

- **Note 1:** On devices without 13 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - **2:** PCFGx = ANx, where x = 0 through 12.
 - **3:** PCFGx bits have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In this case, all port pins multiplexed with ANx will be in Digital mode.

22.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70301) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices, and its operation.

Some of the key features of this module are:

- Time: hours, minutes and seconds
- 24-hour format (military time)
- · Calendar: weekday, date, month and year
- Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- BCD format for compact firmware
- Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 22-1: RTCC BLOCK DIAGRAM

© 2007-2012 Microchip Technology Inc.

TABLE 25-2	PIC24H CONFIGURATION BITS DESCRIPTION	

Bit Field	Register	RTSP Effect	Description
RSS<1:0> ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security 0x = High security
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Immediate	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	If clock switch is enabled, RTSP effect is on any device Reset; otherwise, Immediate	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Immediate	Peripheral pin select configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	Immediate	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register has no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Immediate	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode

Note 1: This Configuration register is not available on PIC24HJ32GP302/304 devices.

25.5 JTAG Interface

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface is provided in future revisions of the document.

Note: Refer to Section 24. "Programming and Diagnostics" (DS70246) of the "dsPIC33F/PIC24H Family Reference Manual" for further information on usage, configuration and operation of the JTAG interface.

25.6 In-Circuit Serial Programming

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the *"dsPIC33F/PIC24H Flash Programming Specification"* (DS70152) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

25.7 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to $\overline{\text{MCLR}}$, VDD, VSS, and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

25.8 Code Protection and CodeGuard™ Security

The PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices offer advanced implementation of CodeGuard Security that supports BS, SS and GS while, the PIC24HJ32GP302/304 devices offer the intermediate level of CodeGuard Security that supports only BS and GS. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IPs reside on the single chip. The code protection features vary depending on the actual PIC24H implemented. The following sections provide an overview of these features.

Secure segment and RAM protection is implemented on the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices. The PIC24HJ32GP302/304 devices do not support secure segment and RAM protection.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70239) of the "dsPIC33F/PIC24H Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Din	nension Limits	MIN	NOM	MAX	
Number of Leads	N		44	44	
Lead Pitch	e		0.80 BSC		
Overall Height	А	_	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1		1.00 REF		
Foot Angle	φ	0°	3.5°	7°	
Overall Width	E		12.00 BSC		
Overall Length	D		12.00 BSC		
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.30	0.37	0.45	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fla Temperature Ran Package — Pattern —	nark — mily – Size (ag (if a ge —	P KB)	IC 24 HJ 32 GP3 02 T E / SP - XXX	Examples: a) PIC24HJ32GP302-E/SP: General Purpose PIC24H, 32 KB program memory, 28-pin, Extended temperature, SPDIP package.
Architecture:	24	=	16-bit Microcontroller	
Flash Memory Family:	HJ	=	Flash program memory, 3.3V	
Product Group:	GP2 GP3 GP8	= = =	General Purpose family General Purpose family General Purpose family	
Pin Count:	02 04	= =	28-pin 44-pin	
Temperature Range:	I E H	= = =	-40° C to+85° C (Industrial) -40° C to+125° C (Extended) -40° C to+150° C (High)	
Package:	SP SO ML MM PT	= = = =	Skinny Plastic Dual In-Line - 300 mil body (SPDIP) Plastic Small Outline - Wide - 300 mil body (SOIC) Plastic Quad, No Lead Package - 8x8 mm body (QFN) Plastic Quad, No Lead Package - 6x6x0.9 mm body (QFN-S) Plastic Thin Quad Flatpack - 10x10x1 mm body (TQFP)	