

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp502-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.1 Reset Resources

Many useful resources related to Resets are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en534555

6.1.1 KEY RESOURCES

- Section 8. "Resets" (DS70192)
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

Vector Number	IVT Address	AIVT Address	Interrupt Source	
55-68	0x000072-0x00008C	0x000172-0x00018C	Reserved	
69	0x00008E	0x00018E	DMA5 – DMA Channel 5	
70	0x000090	0x000190	RTCC – Real Time Clock	
71-72	0x000092-0x000094	0x000192-0x000194	Reserved	
73	0x000096	0x000196	U1E – UART1 Error	
74	0x000098	0x000198	U2E – UART2 Error	
75	0x00009A	0x00019A	CRC – CRC Generator Interrupt	
76	0x00009C	0x00019C	DMA6 – DMA Channel 6	
77	0x00009E	0x00019E	DMA7 – DMA Channel 7	
78	0x0000A0	0x0001A0	C1TX – ECAN1 TX Data Request	
79-126	0x0000A2-0x0000FE	0x0001A2-0x0001FE	Reserved	

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

REGISTER	/-/: IFS2:1	NIERRUPI	FLAG STAT	US REGISTI	ER Z						
U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
_	DMA4IF	PMPIF				_	_				
bit 15	÷						bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	—	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF				
bit 7							bit 0				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14	DMA4IF: DM	A Channel 4 D	ata Transfer C	complete Interr	upt Flag Status	bit					
	1 = Interrupt r	1 = Interrupt request has occurred									
L:1 4 0		equest has no	t occurred	Otatus 1:1							
DIT 13		lei Master Por		Status bit							
	1 = Interrupt r 0 = Interrupt r	equest has oc equest has no	t occurred								
bit 12-5	Unimplemen	ted: Read as '	0'								
bit 4	DMA3IF: DM	A Channel 3 D	ata Transfer C	complete Interr	rupt Flag Status I	bit					
	1 = Interrupt r	equest has oc	curred								
	0 = Interrupt r	equest has no	t occurred								
bit 3	C1IF: ECAN1	Event Interru	ot Flag Status	bit ⁽¹⁾							
	1 = Interrupt request has occurred										
	0 = Interrupt r	request has no	toccurred		(1)						
bit 2	C1RXIF: ECA	N1 Receive D	ata Ready Inte	errupt Flag Sta	itus bit ⁽¹⁾						
	1 = Interrupt r	1 = Interrupt request has occurred									
hit 1	SPI2IE: SPI2	Event Interrun	t Flag Status h	hit							
	1 = Interrupt r	request has oc	curred								
	0 = Interrupt r	equest has no	t occurred								
bit 0	SPI2EIF: SPI	2 Error Interru	pt Flag Status	bit							
	1 = Interrupt r	equest has oc	curred								
	0 = Interrupt r	equest has no	t occurred								

----. _

Note 1: Interrupts disabled on devices without ECAN[™] modules.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE				
bit 15							bit 8				
											
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
IC8IE	IC7IE	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE				
bit 7							bit 0				
Logond:											
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit read	d as '0'					
-n = Value at F	POR	'1' = Bit is set		0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	U2TXIE: UAF	RT2 Transmitte	r Interrupt En	able bit							
	1 = Interrupt r	request enable	d								
	0 = Interrupt r	request not ena	abled								
bit 14	U2RXIE: UAF	RT2 Receiver li	nterrupt Enab	le bit							
	1 = Interrupt r	request enable	d abled								
bit 13	INT2IF: Exter	rnal Interrupt 2	Enable bit								
	1 = Interrupt r	1 = Interrupt request enabled									
	0 = Interrupt r	request not ena	abled								
bit 12	T5IE: Timer5	Interrupt Enab	le bit								
	1 = Interrupt r	request enable	d								
bit 11	0 = Interrupt 1	Interrunt Enab	lo bit								
	1 = Interrupt r	request enable	d								
	0 = Interrupt r	request not ena	abled								
bit 10	OC4IE: Output	ut Compare Ch	annel 4 Interi	upt Enable bit							
	1 = Interrupt r	request enable	d								
h # 0		request not ena	abled	unt Enchla hit							
DIL 9		UC3IE: Output Compare Channel 3 Interrupt Enable bit									
	0 = Interrupt request enabled										
bit 8	DMA2IE: DM	A Channel 2 D	ata Transfer (Complete Inter	rupt Enable bit						
	1 = Interrupt request enabled										
	0 = Interrupt request not enabled										
bit 7	IC8IE: Input Capture Channel 8 Interrupt Enable bit										
	$\perp = \text{Interrupt r}$ 0 = Interrupt r	request enable	u abled								
bit 6	IC7IE: Input (Capture Chann	el 7 Interrupt	Enable bit							
	1 = Interrupt r	request enable	d								
	0 = Interrupt r	request not ena	abled								
bit 5	Unimplemen	ted: Read as '	0'								
bit 4	INT1IE: Exter	rnal Interrupt 1	Enable bit								
	1 = Interrupt r	request enable	a abled								
bit 3	CNIE: Input C	Change Notifica	ation Interrupt	Enable bit							
	1 = Interrupt r	request enable	d								
	0 = Interrupt r	request not ena	abled								

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

REGISTER 8-5:	DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER ⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PAD<15:8>										
bit 15	bit 15 bit 8										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			PAE)<7:0>							
bit 7							bit 0				
Legend:											
R = Readable b	oit	W = Writable I	bit	U = Unimplemented bit, read as '0'							
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown)			nown								

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	—	—	—	—	CNT<	9:8> ⁽²⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at F	lue at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn		nown				
•							

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

REGISTER	10-3: PMD3	: PERIPHER	AL MODULI	E DISABLE C	ONTROL RE	GISTER 3	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—	—	—	CMPMD	RTCCMD	PMPMD
bit 15							bit 8
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
CRCMD	DAC1MD	—	_	—	—	—	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-11	Unimplemen	ted: Read as ')'				
bit 10	CMPMD: Con	nparator Modul	e Disable bit				
	1 = Comparat	or module is di	sabled				
	0 = Comparat	or module is ei	habled				
bit 9	RTCCMD: RI	CC Module Di	sable bit				
	1 = RTCC mo	dule is disable	4				
bit 8	PMPMD: PM	P Module Disat	nle bit				
	$1 = PMP \mod$	ule is disabled					
	0 = PMP mod	ule is enabled					
bit 7	CRCMD: CRO	C Module Disat	ole bit				
	1 = CRC mod	ule is disabled					
	0 = CRC mod	ule is enabled					
bit 6	DAC1MD: DA	C1 Module Dis	sable bit				
	1 = DAC1 mo	dule is disable: dule is enable:	d I				
hit 5-0		tad: Read as "	י ז'				
511 5-0	ommplemen	ieu. Neau as)				

REGISTER 11-21: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTERS 6

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—		RP13R<4:0>					
bit 15							bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—			RP12R<4:0	>			
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			0' = Bit is cleared x = Bit is unknown						
bit 15 13	Unimplomon	tod. Dood on '	`,						

DIT 15-13	Unimplemented: Read as 0
bit 12-8	RP13R<4:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 11-2 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP12R<4:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 11-2 for

REGISTER 11-22: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTERS 7

peripheral function numbers)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP15R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP14R<4:0>				
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 11-2 for peripheral function numbers)

R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0		
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC		
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN		
bit 7							bit 0		
Legend:		U = Unimpler	nented bit, rea	d as '0'					
R = Readable	bit	W = Writable	bit	HS = Set in h	nardware	HC = Cleared	l in hardware		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	I2CEN: I2Cx	Enable bit							
	1 = Enables t 0 = Disables t	the I2Cx modul	e and configur le. All I ² C pins	are controlled	and SCLX pins a I by port functio	as seriai port pii ns	ns		
bit 14	Unimplemen	ted: Read as '	0'		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
bit 13	I2CSIDL: Sto	p in Idle Mode	bit						
	1 = Discontin	ue module ope	ration when de	evice enters a	n Idle mode				
	0 = Continue	module operat	ion in Idle mod	le					
bit 12	SCLREL: SC	Lx Release Co	ontrol bit (when	operating as	I ² C slave)				
	1 = Release S	SCLx clock							
		.x CIOCK IOW (CI	JCK Stretch)						
	Bit is R/W (i.e	<u>.</u> e., software car	n write '0' to ini	tiate stretch a	nd write '1' to re	elease clock). H	lardware clear		
	at beginning o	of slave transm	ission. Hardwa	are clear at en	d of slave rece	ption.			
	If STREN = 0	<u>:</u>					<i>.</i> .		
	Bit is R/S (i.e.	., software can	only write '1' t	o release cloc	k). Hardware cl	ear at beginning	g of slave		
bit 11	IPMIEN: Intel	ligent Peripher	al Managemer	nt Interface (IF	MI) Enable bit				
	1 = IPMI mod	le is enabled; a	all addresses A	cknowledged					
	0 = IPMI mod	node disabled							
bit 10	A10M: 10-bit	Slave Address	s bit						
	1 = I2CxADD	is a 10-bit slav	/e address						
hit 0		IS a 7-DIT SIAVE	e address						
DIL 9	1 = Slew rate	LW: Disable Slew Rate Control bit							
	0 = Slew rate	control enable	ed						
bit 8	SMEN: SMBI	us Input Levels	bit						
	1 = Enable I/O pin thresholds compliant with SMBus specification								
	0 = Disable S	MBus input the	resholds	2					
bit 7	GCEN: Gene	ral Call Enable	bit (when ope	rating as I ² C s	slave)	DOD			
	1 = Enable in (module is	terrupt when a	general call a	adress is rece	ived in the I2Cx	RSR			
	0 = General c	all address dis	abled						
bit 6	STREN: SCL	x Clock Stretch	n Enable bit (w	hen operating	as I ² C slave)				
	Used in conju	Inction with SC	LREL bit.	· · ·	,				
	1 = Enable so	oftware or rece	ive clock streto	ching					
	0 = Disable s	ottware or rece	eive clock strete	ching					

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

REGISTER 17-3:	I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER
----------------	--

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_	—	—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown		

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

19.3 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization mode
- Disable mode
- Normal Operation mode
- Listen Only mode
- Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module does not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The user application has access to Configuration registers that are access restricted in other modes. The module protects the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The ECAN module is not allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- · All Module Control registers
- Baud Rate and Interrupt Configuration registers
- Bus Timing registers
- Identifier Acceptance Filter registers
- Identifier Acceptance Mask registers

19.3.2 DISABLE MODE

In Disable mode, the ECAN module does not transmit or receive. The module can set the WAKIF bit due to bus activity, however, any pending interrupts remains and the error counters retains their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module enters the Module Disable mode. If the module is active, the module waits for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins reverts to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the ECAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the ECAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins assumes the CAN bus functions. The module transmits and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = 111. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module connects the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

REGISTER	19-5: CiFIF	FO: ECAN™ FI	FO STATUS	S REGISTER			
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_			FBP	<5:0>		
bit 15							bit 8
11-0	11-0	R-0	R-0	R-0	R-0	R-0	R-0
			110	FNR	3<5:0>	110	110
bit 7					5 0.0		bit (
Legend:		C = Writable I	oit, but only '0	' can be written	to clear the l	bit	
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, re	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7-6 bit 5-0	011111 = F 011110 = F 000001 = T 000000 = T Unimpleme FNRB<5:0> 011111 = F 011110 = F	RB1 buffer RB1 buffer RB0 buffer ented: Read as ' FIFO Next Rea RB31 buffer RB30 buffer	0' ad Buffer Poin	iter bits			
	000001 = T 000000 = T	RB1 buffer RB0 buffer					

REGISTER 19	9-6: CilNTF	ECAN™ IN	TERRUPT	FLAG REGIS	STER		
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	—	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15		•					bit 8
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit 0
Legend:		C = Writeable	bit, but only	0' can be writt	en to clear the b	it	
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	IOWN
			- 1				
Dit 15-14		ted: Read as		L :4			
DIT 13	1 = Transmitte	mitter in Error 3 er is in Rus Off	state Bus Off	DIT			
	0 = Transmitte	er is not in Bus	Off state				
bit 12	TXBP: Transr	mitter in Error §	State Bus Pas	sive bit			
	1 = Transmitte	er is in Bus Pa	ssive state				
	0 = Transmitte	er is not in Bus	Passive state	e 			
bit 11	RXBP: Receiver	ver in Error Sta	ite Bus Passiv	ve bit			
	0 = Receiver i	is not in Bus Passi	assive state				
bit 10	TXWAR: Tran	smitter in Erro	r State Warnii	ng bit			
	1 = Transmitte	er is in Error W	arning state	0			
	0 = Transmitte	er is not in Erro	or Warning sta	ate			
bit 9	RXWAR: Rec	eiver in Error S	State Warning	bit			
	\perp = Receiver i	is in Error vvari	ning state Narning state				
bit 8	EWARN: Tran	nsmitter or Rec	eiver in Frror	State Warning	ı bit		
2.1.0	1 = Transmitte	er or Receiver	is in Error Sta	te Warning sta	ate		
	0 = Transmitte	er or Receiver	is not in Error	State Warning	g state		
bit 7	IVRIF: Invalid	Message Rec	eived Interrup	ot Flag bit			
	1 = Interrupt F	Request has or	curred				
bit 6		Wake-un Activi	tv Interrunt Fl	ag bit			
Sit 0	1 = Interrupt F	Request has or	curred	ag bit			
	0 = Interrupt F	Request has no	ot occurred				
bit 5	ERRIF: Error	Interrupt Flag	bit (multiple s	ources in CilN	TF<13:8> registe	er)	
	1 = Interrupt F	Request has or	curred				
L:1 4	0 = Interrupt F	Request has no					
DIT 4		ted: Read as	U torrupt Elog b	:+			
DIL 3	1 = Interrupt F	Request has or	curred	π			
	0 = Interrupt F	Request has no	ot occurred				
bit 2	RBOVIF: RX	Buffer Overflov	v Interrupt Fla	ag bit			
	1 = Interrupt F	Request has or	curred				
1. 11. A	0 = Interrupt F	Request has no	ot occurred				
dit 1	1 = Interrunt F	Ter Interrupt Fl	ag bit courred				
	0 = Interrupt F	Request has no	ot occurred				
bit 0	TBIF: TX Buff	fer Interrupt Fla	ag bit				
	1 = Interrupt F	Request has or	curred				
	0 = Interrupt F	Request has no	ot occurred				

REGISTER 22-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0	CAL<7:0>: RTC Drift Calibration bits
	11111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute
	•
	•
	•
	10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute 01111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute
	•
	•
	•
	00000001 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute 00000000 = No adjustment

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 22-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0		MTHON	IE<3:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_		DAYTEN<1:0>		DAYONE<3:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 22-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN<1:0>		HRONE<3:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

24.0 PARALLEL MASTER PORT (PMP)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. "Parallel Master Port (PMP)" (DS70299) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be
 - available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory

FIGURE 24-1: PMP MODULE OVERVIEW

devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- Fully Multiplexed Address/Data Mode
- Demultiplexed or Partially Multiplexed Address/ Data Mode:
 - Up to 11 address lines with single Chip Select
 - Up to 12 address lines without Chip Select
- Single Chip Select Line
- Programmable Strobe Options:
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- · Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- Programmable Wait States
- Selectable Input Voltage Levels

27.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 in-circuit debugging on most PIC® enables microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

27.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

27.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

TABLE 28-31:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency		—	9	MHz	-40°C to +125°C and see Note 3
SP20	TscF	SCKx Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_	_		ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	_

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

APPENDIX A: REVISION HISTORY

Revision A (September 2007)

Initial release of this document.

Revision B (March 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text. In addition, redundant information was removed that is now available in the respective chapters of the *dsPIC33F/PIC24H Family Reference Manual*, which can be obtained from the Microchip web site (www.microchip.com).

The major changes are referenced by their respective section in the following table.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Microcontrollers"	Note 1 added to all pin diagrams (see "Pin Diagrams")
	Updated the "PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 Controller Families " table as follows:
	 PIC24HJ128GP804 changed to PIC24HJ128GP504
	 PIC24HJ128GP804 changed to PIC24HJ128GP504
	 Added new column: External Interrupts
	Added Note 3
Section 1.0 "Device Overview"	Updated parameters PMA0, PMA1 and PMD0 through PMPD7 (Table 1-1)
Section 6.0 "Interrupt Controller"	IFS0-IFSO4 changed to IFSx (see Section 6.3.2 "IFSx")
	IEC0-IEC4 changed to IECx (see Section 6.3.3 "IECx")
	IPC0-IPC19 changed to IPCx (see Section 6.3.4 "IPCx")
Section 7.0 "Direct Memory Access (DMA)"	Updated parameter PMP (see Table 7-1)
Section 8.0 "Oscillator Configuration"	Updated the third clock source item (External Clock) in Section 8.1.1 "System Clock Sources"
	Updated TUN<5:0> (OSCTUN<5:0>) bit description (see Register 8-4)
Section 19.0 "10-bit/12-bit Analog-to-Digital Converter (ADC1)"	Added Note 2 to Figure 19-3
Section 24.0 "Special Features"	Added Note 2 to Figure 24-1
	Added Note after second paragraph in Section 24.2 "On-Chip Voltage Regulator"

Revision D (November 2009)

The revision includes the following global update:

• Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Microcontrollers"	Added information on high temperature operation (see " Operating Range: ").
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 "Open-Drain Configuration ".
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 20.0 "10-bit/12-bit Analog-to-Digital Converter (ADC1)"	Updated the ADC block diagrams (see Figure 20-1 and Figure 20-2).
Section 25.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 25.1 "Configuration Bits" .
	Updated the Device Configuration Register Map (see Table 28-1).
Section 28.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Removed parameters DI26, DI28 and DI29 from the I/O Pin Input Specifications (see Table 28-9).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 28-12).
Section 29.0 "High Temperature Electrical Characteristics"	Added new chapter with high temperature specifications.
"Product Identification System"	Added the "H" definition for high temperature.