

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp504-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

- **Note 1:** This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 of family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 family of 16-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and VSS pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors")
• VCAP

(see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note: The AVDD and AVSS pins must be connected independent of the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVss is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

TABLE 4-7: OUTPUT COMPARE REGISTER MAP

																		-
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Ou	tput Compar	e 1 Seconda	ary Register							xxxx
OC1R	0182								Output Co	ompare 1 Re	gister							XXXX
OC1CON	0184	_	_	OCSIDL	_	_		_	—	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC2RS	0186							Ou	tput Compar	e 2 Seconda	ary Register							XXXX
OC2R	0188								Output Co	ompare 2 Re	gister							XXXX
OC2CON	018A	_	_	OCSIDL	_	_		_	—	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC3RS	018C							Ou	tput Compar	e 3 Seconda	ary Register							XXXX
OC3R	018E								Output Co	ompare 3 Re	gister							XXXX
OC3CON	0190	_	_	OCSIDL	_	_		_	—	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC4RS	0192							Ou	tput Compar	e 4 Seconda	ary Register							XXXX
OC4R	0194								Output Co	ompare 4 Re	gister							XXXX
OC4CON	0196	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
l edend.	v = unk		o on Posot	= unim	lomontod	road as '0	' Posot va	luce are ch	own in hove	docimal				•	•			

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_	-	_	_	-	-	_				Receive	Register				0000
I2C1TRN	0202	_	_	_	_	_	_	_	_				Transmit	Register				OOFF
I2C1BRG	0204	_	_	_	_	_	_	_				Baud Rat	e Generato	r Register				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					Address	Register					0000
I2C1MSK	020C	_	_	_	_	_	-					Address Ma	isk Register					0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	-	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	—	_	UTX8			U	ART Transm	nit Register				XXXX
U1RXREG	0226	_	_	_	_	_	_	_	URX8			U	ART Receive	ed Register				0000
U1BRG	0228							Bau	d Rate Ger	erator Presc	aler							0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
BSRAM	0750	_	_	_			—	-	_	—	_		_	-	IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	_	_	_	—	—	—	-	-	—	—	—	—	—	IW_SSR	IR_SSR	RL_SSR	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not present in devices with 32K Flash (PIC24HJ32GP302/304).

TABLE 4-33: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	—	—	—	—	_	ERASE	_	-		NVMO	P<3:0>		0000
NVMKEY	0766		—	_	—	—	—						NVMKE	EY<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PMD REGISTER MAP

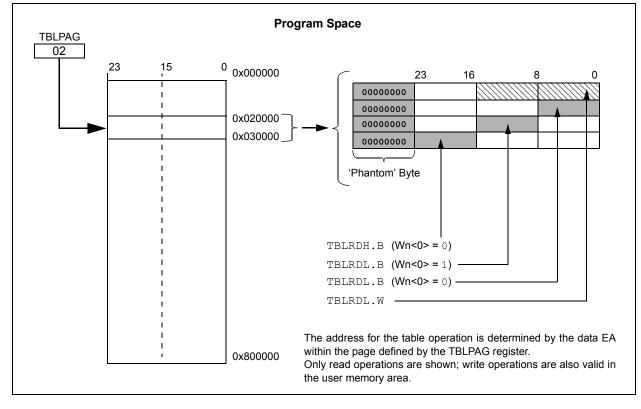
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	_	_	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	_	_	_	_	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	RTCCMD	PMPMD	CRCMD	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>), is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-7: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

REGISTER 7	-5: IFS0:	INTERRUPT	FLAG STAT	US REGISTE	R U		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF
pit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF
bit 7	00211	10211	Division		00111	10111	bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at P		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own
bit 15	Unimplemer	nted: Read as '	0'				
bit 14	DMA1IF: DM	1A Channel 1 D	ata Transfer C	omplete Interru	upt Flag Status	bit	
	1 = Interrupt	request has oc request has no	curred				
bit 13	AD1IF: ADC	1 Conversion C	complete Interr	upt Flag Status	bit		
		request has oc request has no					
bit 12	•	RT1 Transmitte		s Status hit			
21C 12		request has oc		g olalas bit			
		request has no					
bit 11	U1RXIF: UA	RT1 Receiver I	nterrupt Flag S	Status bit			
	•	request has oc					
	-	request has no					
oit 10		Event Interrup	•	bit			
		request has oc request has no					
bit 9	-	11 Error Interru		bit			
		request has oc					
	0 = Interrupt	request has no	t occurred				
bit 8		Interrupt Flag					
		request has oc					
hit 7		request has no					
bit 7		Interrupt Flag	Status Dit				
		rogulaet hae on					
		request has oc request has no	curred				
bit 6	0 = Interrupt		curred t occurred	upt Flag Status	bit		
bit 6	0 = Interrupt OC2IF: Outp	request has no	curred t occurred nannel 2 Interro	upt Flag Status	bit		
	 0 = Interrupt OC2IF: Outp 1 = Interrupt 0 = Interrupt 	request has no out Compare Ch request has oc request has no	curred t occurred hannel 2 Interru curred t occurred		bit		
	0 = Interrupt OC2IF: Outp 1 = Interrupt 0 = Interrupt IC2IF: Input	request has no out Compare Ch request has oc request has no Capture Chann	curred t occurred nannel 2 Interro curred t occurred el 2 Interrupt F		bit		
	 0 = Interrupt OC2IF: Outp 1 = Interrupt 0 = Interrupt IC2IF: Input 1 = Interrupt 	request has no out Compare Ch request has oc request has no Capture Chann request has oc	curred t occurred hannel 2 Intern curred t occurred el 2 Interrupt F curred		bit		
bit 5	0 = Interrupt OC2IF: Outp 1 = Interrupt 0 = Interrupt IC2IF: Input 0 1 = Interrupt 0 = Interrupt	request has no out Compare Ch request has oc request has no Capture Chann request has oc request has no	curred t occurred hannel 2 Intern curred t occurred el 2 Interrupt F curred t occurred	lag Status bit		bit	
bit 5	0 = Interrupt OC2IF: Outp 1 = Interrupt 0 = Interrupt IC2IF: Input 1 = Interrupt 0 = Interrupt DMA0IF: DM	request has no out Compare Ch request has no Capture Chann request has no request has no IA Channel 0 D	curred t occurred hannel 2 Interru curred t occurred el 2 Interrupt F curred t occurred hata Transfer C	lag Status bit		bit	
bit 6 bit 5 bit 4	0 = Interrupt OC2IF: Outp 1 = Interrupt 0 = Interrupt IC2IF: Input 1 = Interrupt 0 = Interrupt DMA0IF: DM 1 = Interrupt	request has no out Compare Ch request has oc request has no Capture Chann request has oc request has no	curred t occurred hannel 2 Interru curred t occurred el 2 Interrupt F curred t occurred hata Transfer C curred	lag Status bit		bit	
bit 5	0 = Interrupt OC2IF: Outp 1 = Interrupt 0 = Interrupt IC2IF: Input 1 = Interrupt 0 = Interrupt DMA0IF: DM 1 = Interrupt 0 = Interrupt	request has no out Compare Ch request has no Capture Chann request has no request has no IA Channel 0 D request has no	curred t occurred hannel 2 Intern curred t occurred el 2 Interrupt F curred t occurred ata Transfer C curred t occurred	lag Status bit		bit	

IEGA, INTERDURT EL AC STATUS DECISTER A

REGISTER 7-12:	IEC2: INTERRUPT ENABLE CONTROL REGISTER 2
----------------	---

U-0 — bit 7 Legend: R = Readable bi n = Value at PC bit 15 bit 14	DR Unimplement DMA4IE: DM/	'1' = Bit is set			R/W-0 C1RXIE ⁽¹⁾		R/W-0 SPI2EIE bit
— bit 7 Legend: R = Readable bi n = Value at PC bit 15 bit 14	— it DR Unimplement DMA4IE: DM/	— W = Writable '1' = Bit is set	DMA3IE	C1IE ⁽¹⁾ U = Unimpler	C1RXIE ⁽¹⁾	SPI2IE	R/W-0 SPI2EIE
— bit 7 Legend: R = Readable bi n = Value at PC bit 15 bit 14	— it DR Unimplement DMA4IE: DM/	— W = Writable '1' = Bit is set	DMA3IE	C1IE ⁽¹⁾ U = Unimpler	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE
— bit 7 Legend: R = Readable bi n = Value at PC bit 15 bit 14	U-0 U-0 R/W-0 R/W-0 R/W-0 — — DMA3IE C1IE ⁽¹⁾ C1RXIE ⁽¹⁾ SPI2IE bit W = Writable bit U = Unimplemented bit, read as '0'				SPI2EIE		
bit 14	DR Unimplement DMA4IE: DM/	'1' = Bit is set	bit	U = Unimpler			
R = Readable bi -n = Value at PC bit 15 bit 14	DR Unimplement DMA4IE: DM/	'1' = Bit is set			nented bit, read	25 '0'	
R = Readable bi n = Value at PC bit 15 bit 14	DR Unimplement DMA4IE: DM/	'1' = Bit is set			mented bit, read	ae 'O'	
bit 15 bit 14	Unimplement DMA4IE: DM/				,	as u	
bit 15 bit 14	Unimplement DMA4IE: DM/				ared	x = Bit is unkr	nown
pit 14	DMA4IE: DMA	ed: Read as '					
			0'				
	1 = Interrupt r	A Channel 4 D	ata Transfer C	Complete Interr	upt Enable bit		
	⊥ – interrupt i	equest enable	d	-	-		
	0 = Interrupt r	equest not ena	abled				
bit 13	PMPIE: Parall	el Master Port	Interrupt Ena	ble bit			
	•	•					
	-						
				complete Interr	upt Enable bit		
		•)			
bit 2	C1RXIE: ECA	N1 Receive D	ata Ready Inte	errupt Enable b	oit ⁽¹⁾		
	1 = Interrupt r	equest enable	d				
1	0 = Interrupt r	equest not ena	abled				
	•	•					
	•	equest not ena					
		2 Error Interrup					
	•	equest enable equest not ena					

Note 1: Interrupts disabled on devices without ECAN[™] modules.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		CRCIP<2:0>		_		U2EIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		U1EIP<2:0>					
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	-	nted: Read as '					
bit 14-12		CRC Generate			ty bits		
	111 = Interro	upt is priority 7 (highest priorit	ty interrupt)			
	•						
	•						
		upt is priority 1 upt source is dis	abled				
bit 11		nted: Read as '					
bit 10-8	-	: UART2 Error I		ity bite			
DIL 10-0		upt is priority 7 (•			
	•		nightest phone	ly interrupt)			
	•						
	•						
		upt is priority 1 upt source is dis	abled				
bit 7		nted: Read as '					
bit 6-4	-	UART1 Error I		itv bits			
		upt is priority 7 (-	-			
	•	· · · · · · · · · · · · · · ·	5	- J			
	•						
	•	upt is priority 1					

bit 3-0 Unimplemented: Read as '0'

9.1 CPU Clocking System

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices provide seven system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (PLL)
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- · Low-Power RC (LPRC) Oscillator
- · FRC Oscillator with postscaler

9.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- Crystal (XT): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- High-Speed Crystal (HS): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- External Clock (EC): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The Low-Power RC (LPRC) internal oscillator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip PLL to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.3 "PLL Configuration**".

The FRC frequency depends on the FRC accuracy (see Table 28-19) and the value of the FRC Oscillator Tuning register (see Register 9-4).

9.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 25.1 "Configuration Bits" for further details.) The Initial Oscillator FNOSC<2:0> Selection Configuration bits, (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) Fosc is divided by 2 to generate the device instruction clock (FcY) and the peripheral clock time base (FP). FcY defines the operating speed of the device, and speeds up to 40 MHz are supported by the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 architecture.

Instruction execution speed or device operating frequency, FCY, is given by:

EQUATION 9-1: DEVICE OPERATING FREQUENCY

$$FCY = \frac{FOSC}{2}$$

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15							bit
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DST<1:0>	—			PLLPRE<4:0	>	
bit 7							bit
Legend:		y = Value set f	rom Configu	ration bits on PC	R		
R = Readabl	e bit	W = Writable I	oit	U = Unimplem	ented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	own
bit 15	1 = Interrup 0 = Interrup	er on Interrupt bi ts clears the DO ts have no effect	ZEN bit and on the DOZ	EN bit	ock/peripheral	clock ratio is se	et to 1:1
bit 14-12	111 = Fcy/1 110 = Fcy/6 101 = Fcy/3 100 = Fcy/1 011 = Fcy/8 010 = Fcy/4 001 = Fcy/2 000 = Fcy/1	4 2 6 (default)		Select Dits			
bit 11	1 = The DO	ZE Mode Enable ZE<2:0> bits spe or clock/periphe	ecify the ratio		eripheral clock	s and the proces	ssor clocks
bit 10-8)>: Internal Fast					
	110 = FRC (101 = FRC (100 = FRC (011 = FRC (010 = FRC (001 = FRC (divide by 32 divide by 16 divide by 8 divide by 4	ult)				
bit 7-6	PLLPOST<7 11 = Output 10 = Reserv 01 = Output 00 = Output	ed ⁄4 (default)	Dutput Divide	er Select bits (als	o denoted as	'N2', PLL postso	caler)
bit 5		- nted: Read as '0)'				
bit 4-0	-	0>: PLL Phase [it Divider bits (al	so denoted as	'N1', PLL presc	aler)
	•	1/0					
	00001 = Inp	ut/3					

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

2: This register is reset only on a Power-on Reset (POR).

10.2.2 IDLE MODE

The following occur in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2 to 4 cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific PIC MCU variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

11.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24H devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- · Continuous state monitoring
- Configuration bit pin select lock

11.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) the IOLOCK bit as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)
	See MPLAB Help for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

11.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset is triggered.

11.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY Configuration bit (FOSC<5>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

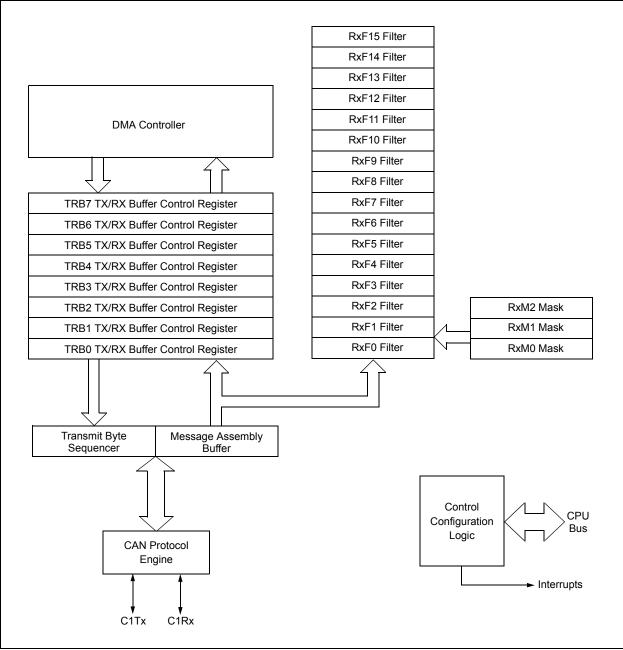
In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the peripheral pin select registers.

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	_			SCK2R<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			SDI2R<4:0>	>	
bit 7	·						bit C
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	11111 = Inpu 11001 = Inpu •	ut tied to RP25					
		ut tied to RP1 ut tied to RP0					
bit 7-5	Unimplemer	nted: Read as ')'				
bit 4-0	11111 = Inpu 11001 = Inpu •	ut tied to RP25	ata Input (SE	I2) to the corre	sponding RPr	pin	
		ut tied to RP1 ut tied to RP0					

16.3 SPI Registers

REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER


R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
SPIEN	—	SPISIDL	—	—	—	—	—
bit 15							bit 8

U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0
—	SPIROV	—	_	_	—	SPITBF	SPIRBF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	SPIEN: SPIx Enable bit
	1 = Enables module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables module
bit 14	Unimplemented: Read as '0'
bit 13	SPISIDL: Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12-7	Unimplemented: Read as '0'
bit 6	 SPIROV: Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded. The user software has not read the previous data in the SPIxBUF register 0 = No overflow has occurred.
bit 5-2	Unimplemented: Read as '0'
bit 1	SPITBF: SPIx Transmit Buffer Full Status bit
	 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit
	 1 = Receive complete, SPIxRXB is full 0 = Receive is not complete, SPIxRXB is empty Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
69	ULNK	ULNK		Unlink Frame Pointer	1	1	None
70	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
71	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units	Units Conditions					
Operating Cur	rent (IDD) ⁽¹⁾								
DC20d	18	21	mA	-40°C					
DC20a	18	22	mA	+25°C	3.3V	10 MIPS			
DC20b	18	22	mA	+85°C	3.3V				
DC20c	18	25	mA	+125°C					
DC21d	30	35	mA	-40°C					
DC21a	30	34	mA	+25°C	3.3V	16 MIPS			
DC21b	30	34	mA	+85°C	3.3V	TO IVITES			
DC21c	30	36	mA	+125°C					
DC22d	34	42	mA	-40°C					
DC22a	34	41	mA	+25°C	2.21/				
DC22b	34	42	mA	+85°C	- 3.3V	20 MIPS			
DC22c	35	44	mA	+125°C					
DC23d	49	58	mA	-40°C					
DC23a	49	57	mA	+25°C	2.21/				
DC23b	49	57	mA	+85°C	- 3.3V	30 MIPS			
DC23c	49	60	mA	+125°C	1				
DC24d	63	75	mA	-40°C					
DC24a	63	74	mA	+25°C	2.21/				
DC24b	63	74	mA	+85°C	- 3.3V	40 MIPS			
DC24c	63	76	mA	+125°C	1				

TABLE 28-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode, no PLL until 10 MIPS, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero)
- CPU executing while (1) statement
- JTAG is disabled
- **2:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** These parameters are characterized but not tested in manufacturing.

DC CHARACT	ERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units	ts Conditions				
Idle Current (II	DLE): Core OF	F Clock ON	Base Curren	t ⁽¹⁾				
DC40d	8	10	mA	-40°C				
DC40a	8	10	mA	+25°C		10 MIPS		
DC40b	9	10	mA	+85°C	3.3V	IU MIFS		
DC40c	10	13	mA	+125°C				
DC41d	13	15	mA	-40°C				
DC41a	13	15	mA	+25°C	3.3V	16 MIPS		
DC41b	13	16	mA	+85°C	5.50	10 1011-5		
DC41c	13	19	mA	+125°C				
DC42d	15	18	mA	-40°C				
DC42a	16	18	mA	+25°C	3.3∨	20 MIPS		
DC42b	16	19	mA	+85°C	3.3V	20 MIP3		
DC42c	17	22	mA	+125°C				
DC43a	23	27	mA	+25°C				
DC43d	23	26	mA	-40°C	3.3V	30 MIPS		
DC43b	24	28	mA	+85°C	3.3V	30 MIP3		
DC43c	25	31	mA	+125°C]			
DC44d	31	42	mA	-40°C				
DC44a	31	36	mA	+25°C	2 2 1/			
DC44b	32	39	mA	+85°C	- 3.3V	40 MIPS		
DC44c	34	43	mA	+125°C]			

TABLE 28-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base IIDLE current is measured as follows:

 CPU core is off (i.e., Idle mode), oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- External Secondary Oscillator disabled (i.e., SOSCO and SOSCI pins configured as digital I/O inputs)
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero)
- JTAG is disabled
- **2:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: These parameters are characterized but not tested in manufacturing.

TABLE 28-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low		2.40	_	2.55	V	Vdd
Note 1	Decemptors are for design guideness only and are not tested in manufacturing							

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 28-12: DC CHARACTERISTICS: PROGRAM MEMORY

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)							
DC CHA	RACTER	ISTICS	Operating temperature			-40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended				
Param No.	Symbol	Characteristic	naracteristic Min Typ ⁽¹⁾ Max U				Conditions			
		Program Flash Memory								
D130a	Eр	Cell Endurance	10,000	—	_	E/W	-40° C to +125° C			
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage			
D132B	VPEW	VDD for Self-Timed Write	VMIN	—	3.6	V	VMIN = Minimum operating voltage			
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated			
D135	IDDP	Supply Current during Programming	-	10	—	mA	_			
D136a	Trw	Row Write Time	1.32	—	1.74	ms	Trw = 11064 FRC cycles, Ta = +85°C, See Note 2			
D136b	Trw	Row Write Time	1.28	—	1.79	ms	Trw = 11064 FRC cycles, Ta = +125°C, See Note 2			
D137a	Тре	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2			
D137b	Тре	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +125°C, See Note 2			
D138a	Tww	Word Write Cycle Time	42.3	—	55.9	μs	Tww = 355 FRC cycles, TA = +85°C, See Note 2			
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, TA = +125°C, See Note 2			

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 28-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

TABLE 28-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

	Standard Operating Conditions (unless otherwise stated): Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol Characteristics Min Typ Max Units Comments								
_	- CEFC External Filter Capacitor 4.7 10 - μF Capacitor must be low series resistance (< 5 Ohms)								

Note 1: Typical VCAP voltage = 2.5V when VDD \ge VDDMIN.

TABLE 29-14: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions	
Reference Inputs								
HAD08	IREF	Current Drain		250 —	600 50	μΑ μΑ	ADC operating, See Note 1 ADC off, See Note 1	

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 29-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
ADC Accuracy (12-bit Mode) – Measurements with External VREF+/VREF- ⁽¹⁾								
HAD20a	Nr	Resolution ⁽³⁾	1	12 data bits		bits	_	
HAD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
HAD22a	DNL	Differential Nonlinearity	> -1		< 1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
HAD23a	Gerr	Gain Error	-2		10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
HAD24a	EOFF	Offset Error	-3	_	5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
	AD	C Accuracy (12-bit Mode	e) – Meas	uremen	ts with In	ternal V	/REF+/VREF- ⁽¹⁾	
HAD20a	Nr	Resolution ⁽³⁾	1	12 data bits		bits	—	
HAD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD22a	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD23a	Gerr	Gain Error	2	_	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD24a	EOFF	Offset Error	2	_	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
Dynamic Performance (12-bit Mode) ⁽²⁾								
HAD33a	Fnyq	Input Signal Bandwidth	—	—	200	kHz	—	

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

INDEX

Α

A/D Converter	
DMA	
Initialization	
Key Features	
AC Characteristics	
ADC Module	
ADC Module (10-bit Mode)	
ADC Module (12-bit Mode)	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC11 Register Map	
Alternate Interrupt Vector Table (AIVT)	
Arithmetic Logic Unit (ALU)	
Assembler	
MPASM Assembler	

В

Block Diagrams
16-bit Timer1 Module 161
A/D Module
Connections for On-Chip Voltage Regulator
Device Clock 119, 121
ECAN Module
Input Capture 171
Output Compare 175
PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and
PIC24HJ128GPX02/X0410
PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and
PIC24HJ128GPX02/X04 CPU Core
PLL
Reset System59
Shared Port Structure
SPI 179
Timer2 (16-bit) 165
Timer2/3 (32-bit) 167
UART
Watchdog Timer (WDT)278

С

C Compilers	
MPLAB C18	
Clock Switching	128
Enabling	128
Sequence	
Code Examples	
Erasing a Program Memory Page	57
Initiating a Programming Sequence	
Loading Write Buffers	
Port Write/Read	
PWRSAV Instruction Syntax	
Code Protection	
Configuration Bits	
Configuration Register Map	
Configuring Analog Port Pins	
CPU	
Control Register	21
CPU Clocking System	120
PLL Configuration	121
Selection	
Sources	120
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

Data Address Space	27
Alignment	
Memory Map for PIC24HJ128GP202/204 and	
PIC24HJ64GP202/204 Devices	
with 8 KB RAM	29
Memory Map for PIC24HJ32GP302/304 Devices	
with 4 KB RAM	28
Near Data Space	
Software Stack	
Width	27
DC and AC Characteristics	
Graphs and Tables	355
DC Characteristics	
Doze Current (IDOZE)	
High Temperature	
I/O Pin Input Specifications	
I/O Pin Output	
I/O Pin Output Specifications	
Idle Current (IDOZE)	
Idle Current (IIDLE)	299
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Power-Down Current (IPD)	
Power-down Current (IPD)	
Program Memory	347
Temperature and Voltage	
Temperature and Voltage Specifications	
Thermal Operating Conditions	346
Development Support	
DMA Module	
DMA Register Map	37
DMAC Registers	
DMAXCNT	109
DMAxCON	109
DMAxPAD	109
DMAxREQ	109
DMAxSTA	109
DMAxSTB	109
Doze Mode	130

Ε

ECAN Module	
CiBUFPNT1 register 2	13
CiBUFPNT2 register2	14
CiBUFPNT3 register2	14
CiBUFPNT4 register 2	15
CiCFG1 register2	11
CiCFG2 register2	12
CiCTRL1 register	
CiCTRL2 register	
CiEC register	11
CiFCTRL register	07
CiFEN1 register	13
CiFIFO register	08
CiFMSKSEL1 register2	17
CiFMSKSEL2 register	18
CiINTE register	10
CiINTF register	09
CiRXFnEID register	17
CiRXFnSID register	16
CiRXFUL1 register	
CiRXFUL2 register	20
CiRXMnEID register	19
CiRXMnSID register2	
CiRXOVF1 register 22	21

© 2007-2012 Microchip Technology Inc.