

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp504-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device specific information for the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices.

Table 1-1lists the functions of the various pinsshown in the pinout diagrams.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address, as shown in Figure 4-2.

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in Section 7.1 "Interrupt Vector Table".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

TABLE 4-7: OUTPUT COMPARE REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180		Output Compare 1 Secondary Register										XXXX					
OC1R	0182		Output Compare 1 Register										XXXX					
OC1CON	0184	_	OCSIDL OCFLT OCTSEL OCM<2:0>										0000					
OC2RS	0186							Οι	utput Compai	re 2 Seconda	ary Register							XXXX
OC2R	0188								Output Co	ompare 2 Re	gister							XXXX
OC2CON	018A	—	_	OCSIDL		—	_	—	—	_	_		OCFLT	OCTSEL		OCM<2:0>		0000
OC3RS	018C							Οι	utput Compai	re 3 Seconda	ary Register							XXXX
OC3R	018E								Output Co	ompare 3 Re	gister							XXXX
OC3CON	0190	—		OCSIDL		—	_		_	_	—		OCFLT	OCTSEL		OCM<2:0>		0000
OC4RS	0192							Οι	utput Compai	re 4 Seconda	ary Register							XXXX
OC4R	0194		Output Compare 4 Register								XXXX							
OC4CON	0196	_		OCSIDL		_	_	_	_		_		OCFLT	OCTSEL		OCM<2:0>		0000
														1				<u> </u>

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	—	_	-	-	—	-	—				Receive	Register				0000
I2C1TRN	0202	_	_	_	_	_	_	_	_	Transmit Register							OOFF	
I2C1BRG	0204	_	_	_	_	_	_	_				Baud Ra	te Generato	r Register				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_			Address Register 00							0000	
I2C1MSK	020C	_	_	_	_	_	_					Address Ma	ask Register					0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_	UTX8			U	ART Transn	nit Register				XXXX
U1RXREG	0226	_	_	_	_	_	_	_	URX8			U,	ART Receive	ed Register				0000
U1BRG	0228		Baud Rate Generator Prescaler 0000									0000						

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1BOR: Brown-out Reset Flag bit1 = A Brown-out Reset has occurred0 = A Brown-out Reset has not occurredbit 0POR: Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	RTCIF	DMA5IF	_	_	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15	Unimplemen	ted: Read as '	O'				
bit 14	RTCIF: Real-	Time Clock and	d Calendar Int	errupt Flag Sta	atus bit		
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	t occurred				
bit 13	DMA5IF: DM	A Channel 5 Da	ata Transfer C	omplete Interr	upt Flag Status	bit	

- 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 12-0 Unimplemented: Read as '0'

11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See **"Pin Diagrams"** for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The AD1PCFGL and TRIS registers control the operation of the analog-to-digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

The AD1PCFGL register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP, as shown in Example 11-1.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the PIC24HJ32GP302/304, PIC24HJ64GPX02/ X04 and PIC24HJ128GPX02/X04 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 21 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-of-state.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

MOV	0xFF00, W0	; Configure PORTB<15:8> as inputs
MOV	WO, TRISBB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
btss	PORTB, #13	; Next Instruction

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

11.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24H devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- · Continuous state monitoring
- Configuration bit pin select lock

11.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) the IOLOCK bit as a single operation.

Note:	MPLAB [®] C30 provides built-in C
	language functions for unlocking the
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)
	See MPLAB Help for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

11.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset is triggered.

11.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY Configuration bit (FOSC<5>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the peripheral pin select registers.

18.3 UART Control Registers

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	—	USIDL	IREN ⁽²⁾	RTSMD	—	UEN	<1:0>
bit 15							bit 8

R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL<1:0>		STSEL
bit 7							bit 0

Legend:	HC = Hardware cleared					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	UARTEN: UARTx Enable bit ⁽¹⁾
	 1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0> 0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption minimal
bit 14	Unimplemented: Read as '0'
bit 13	USIDL: Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾
	 1 = IrDA encoder and decoder enabled 0 = IrDA encoder and decoder disabled
bit 11	RTSMD: Mode Selection for UxRTS Pin bit
	 1 = UxRTS pin in Simplex mode 0 = UxRTS pin in Flow Control mode
bit 10	Unimplemented: Read as '0'
bit 9-8	UEN<1:0>: UARTx Enable bits
	 11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by port latches
bit 7	WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit
	 1 = UARTx continues to sample the UxRX pin; interrupt generated on falling edge; bit cleared in hardware on following rising edge 0 = No wake-up enabled
bit 6	LPBACK: UARTx Loopback Mode Select bit
	 1 = Enable Loopback mode 0 = Loopback mode is disabled
bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enable baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion a Baud rate measurement disabled or completed
Note 1:	Refer to Section 17. "UART" (DS70232) in the <i>"dsPIC33F/PIC24H Family Reference Manual"</i> for information on enabling the UART module for receive or transmit operation.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

REGISTER 1	19-2: CiQ	CTRL2: ECAN™	CONTROL	REGISTER 2	2		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		—	—	_	—	—	_
bit 15							bit 8
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	_	—			DNCNT<4:0>		
bit 7							bit 0
r							
Legend:		C = Writeable	e bit, but only '	0' can be writte	en to clear the b	it	
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-5	Unimple	mented: Read as	'0'				

bit 4-0	DNCNT<4:0>: DeviceNet [™] Filter Bit Number bits
	10010-11111 = Invalid selection 10001 = Compare up to data byte 3, bit 6 with EID<17>
	•
	•
	•
	00001 = Compare up to data byte 1, bit 7 with EID<0> 00000 = Do not compare data bytes

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

REGISTER 19-8: CIEC: ECAN[™] TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
TERRCNT<7:0>										
bit 15 bit a										
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
	RERRCNT<7:0>									
bit 7							bit 0			
Legend:		C = Writeable I	bit, but only	'0' can be written	to clear the	bit				
R = Readable bit		W = Writable b	it	U = Unimplemented bit, read as '0'						
-n = Value at POR	R	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						

bit 15-8	TERRCNT<7:0>: Transmit Error Count bits
bit 7-0	RERRCNT<7:0> : Receive Error Count bits

REGISTER 19-9: CiCFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	_	—	_	—	_	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW	<1:0>			BRP<5:0>			
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'				
bit 7-6	SJW<1:0>: Synchronization Jump Width bits				
	11 = Length is 4 x TQ				
	10 = Length is 3 x TQ				
	01 = Length is 2 x TQ				
	00 = Length is 1 x TQ				
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits				
	11 1111 = TQ = 2 x 64 x 1/FCAN				
	•				
	•				
	•				
	00 0010 = TQ = 2 x 3 x 1/FCAN				
	00 0001 = Tq = 2 x 2 x 1/Fcan				
	00 0000 = Tq = 2 x 1 x 1/Fcan				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F15M	SK<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12MS	K<1:0>		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F11M	SK<1:0>	F10MS	K<1:0>	F9MS	K<1:0>	F8MS	K<1:0>		
bit 7							bit 0		
Legend:		C = Writeable	bit, but only '	0' can be writte	n to clear the b	bit			
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read		d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-14	F15MSK<1:0	>: Mask Sourc	e for Filter 15	bit					
	11 = No masl	k							
	10 = Accepta	nce Mask 2 reg	gisters contain	i mask					
	01 = Accepta	nce Mask Tre	gisters contain	n mask					
hit 13-12		> Mask Source	e for Filter 14	hit (same valu	as as hit 15-14	`			
bit 13-12	E13MSK<1:0	>: Mask Source	e for Filter 13	bit (same value	-5 as bit 15-14)			
	FISNISK 1.0	>. Mask Source	e for Filter 13	bit (same value	= 5 a 5 b 1 (10-14))			
DIT 9-8	F12M5K<1:0	>: Mask Sourc	e for Filter 12	bit (same value	es as bit 15-14)			
bit 7-6	F11MSK<1:0	>: Mask Sourc	e for Filter 11	bit (same value	es as bit 15-14)				
bit 5-4	F10MSK<1:0	>: Mask Sourc	e for Filter 10	bit (same value	es as bit 15-14)			
bit 3-2	F9MSK<1:0>	F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bit 15-14)							

REGISTER 19-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

bit 1-0 **F8MSK<1:0>:** Mask Source for Filter 8 bit (same values as bit 15-14)

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

'0' = Bit is cleared

x = Bit is unknown

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0
bit 7							bit 0
Legend:		C = Writeable	bit, but only '(D' can be writte	en to clear the b	it	
R = Readable	ble bit W = Writable bit U = Unimplemented bit, read as '0'						

bit 15-0

-n = Value at POR

RXOVF<15:0>: Receive Buffer n Overflow bits

'1' = Bit is set

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

REGISTER 19-25: CIRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writeable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

NOTES:

25.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/PIC24H Family Reference Manual"*. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices include the following features that are intended to maximize application flexibility and reliability, and minimize cost through elimination of external components:

- · Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

25.1 Configuration Bits

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices provide nonvolatile memory implementation for device configuration bits. Refer to **Section 25. "Device Configuration"** (DS70194), in the *"dsPIC33F/PIC24H Family Reference Manual"* for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 25-1.

Note that address 0xF80000 is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

The Device Configuration register map is shown in Table 25-1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	RBS<	:1:0>		_		BSS<2:0>	BSS<2:0>	
0xF80002	FSS ⁽¹⁾	RSS<	:1:0>	_	_		SSS<2:0>		SWRP
0xF80004	FGS	—	—	_	_	— GSS<1		:0>	GWRP
0xF80006	FOSCSEL	IESO	_		— — FNOSC		SC<2:0>		
0xF80008	FOSC	FCKSM	1<1:0>	IOL1WAY	DL1WAY — — OSCIOFNC POS		POSCN	ID<1:0>	
0xF8000A	FWDT	FWDTEN	WINDIS	DIS – WDTPRE WDT		WDTPOST«	TPOST<3:0>		
0xF8000C	FPOR		Reserved ⁽	(2)	ALTI2C	_	FPWRT<2:0>		
0xF8000E	FICD	Reserv	ved ⁽³⁾	JTAGEN	_	_	—	ICS<	:1:0>
0xF80010	FUID0		User Unit ID Byte 0						
0xF80012	FUID1		User Unit ID Byte 1						
0xF80014	FUID2		User Unit ID Byte 2						
0xF80016	FUID3		User Unit ID Byte 3						

TABLE 25-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, read as '0'.

Note 1: This Configuration register is not available and reads as 0xFF on PIC24HJ32GP302/304 devices.

2: These bits are reserved and always read as '1'.

3: These bits are reserved for use by development tools and must be programmed as '1'.

TABLE 28-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions				Conditions
Operating Voltage							
DC10	Supply Voltage						
	Vdd		3.0	_	3.6	V	Industrial and Extended
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_	—	V	—
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	_	Vss	V	_
DC17	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	_	—	V/ms	0-3.0V in 0.1s

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

TABLE 28-17:	PLL CLOCK TIMING SPECIFICATIONS ((VDD = 3.0V TO 3.6V)
		(

AC CHARACTERISTICS		Standard Operating	Operating temperat	g Conditio ure -40° -40°	ons: 3.0V °C ≤ TA ≤ + °C ≤ TA ≤ +	′ to 3.6V ⊦85°C fo ⊦125°C f	(unless otherwise stated) r Industrial or Extended	
Param No.	Symbol	Characteris	stic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8	_	8	MHz	ECPLL, HSPLL, XTPLL modes
OS51	Fsys	On-Chip VCO Syster Frequency	m	100	—	200	MHz	—
OS52	TLOCK	PLL Start-up Time (L	ock Time)	0.9	1.5	3.1	mS	—
OS53	DCLK	CLKO Stability (Jitter	r)	-3	0.5	3	%	Measured over 100 ms period

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: Fosc = 32 MHz, DCLK = 3%, SPI bit rate clock, (i.e., SCK) is 2 MHz.

$$SPI SCK Jitter = \left[\frac{D_{CLK}}{\sqrt{\left(\frac{32 \ MHz}{2 \ MHz}\right)}}\right] = \left[\frac{3\%}{\sqrt{16}}\right] = \left[\frac{3\%}{4}\right] = 0.75\%$$

TABLE 28-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHA	RACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
	Internal FRC Accuracy @ 7.3728 MHz ⁽¹⁾							
F20	FRC	-2	—	+2	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V	
	FRC	-5	_	+5	%	$-40^\circ C \le T_A \le +125^\circ C$	VDD = 3.0-3.6V	

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

TABLE 28-19: INTERNAL RC ACCURACY

АС СН/	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
	LPRC @ 32.768 kHz ⁽¹⁾							
F21	LPRC	-20	±6	+20	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V	
	LPRC	-30	_	+30	%	$-40^{\circ}C \le TA \le +125^{\circ}C$	VDD = 3.0-3.6V	

Note 1: Change of LPRC frequency as VDD changes.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimens	sion Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

Revision E (January 2011)

This includes typographical and formatting changes throughout the data sheet text. In addition, the Preliminary marking in the footer was removed.

All occurrences of VDDCORE have been removed throughout the document.

All other major changes are referenced by their respective section in the following table.

TABLE A-4: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Microcontrollers"	The high temperature end range was updated to +150°C (see "Operating Range: ").
Section 2.0 "Guidelines for Getting Started with 16-bit Microcontrollers"	The frequency limitation for device PLL start-up conditions was updated in Section 2.7 "Oscillator Value Conditions on Device Start-up".
	The second paragraph in Section 2.9 "Unused I/Os" was updated.
Section 4.0 "Memory Organization"	The All Resets values for the following SFRs in the Timer Register Map were changed (see Table 4-5):
	• TMR3
	• TMR4
	• TMR5
Section 9.0 "Oscillator Configuration"	Added Note 3 to the OSCCON: Oscillator Control Register (see Register 9-1).
	Added Note 2 to the CLKDIV: Clock Divisor Register (see Register 9-2).
	Added Note 1 to the PLLFBD: PLL Feedback Divisor Register (see Register 9-3).
	Added Note 2 to the OSCTUN: FRC Oscillator Tuning Register (see Register 9-4).
Section 20.0 "10-bit/12-bit Analog-to-Digital Converter (ADC1)"	Updated the VREFL references in the ADC1 module block diagrams (see Figure 20-1 and Figure 20-2).
Section 25.0 "Special Features"	Added a new paragraph and removed the third paragraph in Section 25.1 "Configuration Bits".
	Added the column "RTSP Effects" to the dsPIC33F Configuration Bits Descriptions (see Table 25-2).

Peripheral Module Disable (PMD)	130
Pinout I/O Descriptions	11
PMD Module	
Register Map	
PORTA	
Register Map	44, 45
PORTB	
Register Map	
Power-on Reset (POR)	65
Power-Saving Features	129
Clock Frequency and Switching	129
Program Address Space	
Construction	
Data Access from Program Memory	
Using Program Space Visibility	52
Data Access from Program Memory	
Using Table Instructions	51
Data Access from, Address Generation	50
Memory Map	
Table Read Instructions	
TBLRDH	51
TBLRDL	51
Visibility Operation	52
Program Memory	
Interrupt Vector	
Organization	
Reset Vector	

R

Reader Response	. 388
Register Map	
CRC	44
Dual Comparator	44
Parallel Master/Slave Port	43
Real-Time Clock and Calendar	44
Registers	
AD1CHS0 (ADC1 Input Channel 0 Select	. 238
AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select)	. 237
AD1CON1 (ADC1 Control 1)	. 232
AD1CON2 (ADC1 Control 2)	. 234
AD1CON3 (ADC1 Control 3)	. 235
AD1CON4 (ADC1 Control 4)	. 236
AD1CSSL (ADC1 Input Scan Select Low)	. 239
AD1PCFGL (ADC1 Port Configuration Low)	. 239
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)	. 213
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)	. 214
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)	. 214
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer)	. 215
CiCFG1 (ECAN Baud Rate Configuration 1)	. 211
CiCFG2 (ECAN Baud Rate Configuration 2)	. 212
CiCTRL1 (ECAN Control 1)	. 204
CiCTRL2 (ECAN Control 2)	. 205
CIEC (ECAN Transmit/Receive Error Count)	. 211
CIFCTRL (ECAN FIFO Control)	. 207
CiFEN1 (ECAN Acceptance Filter Enable)	. 213
CiFIFO (ECAN FIFO Status)	. 208
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection)	217,
218 O'INTE (EQANI Internet Excelsio)	040
	.210
	. 209
CIRXFIEID (ECAN Acceptance Filter n	o 1 -
Extended Identifier)	. 217
CIRXFINSID (ECAN Acceptance Filter n	
	.216
CIRXFUL1 (ECAN Receive Butter Full 1)	. 220
CIRXFUL2 (ECAN Receive Buffer Full 2)	. 220
CIRXMINEID (ECAN Acceptance Filter Mask n	

Extended Identifier)	219
CiRXMnSID (ECAN Acceptance Filter Mask n	
Standard Identifier)	219
CiRXOVF1 (ECAN Receive Buffer Overflow 1)	221
CiRXOVF2 (ECAN Receive Buffer Overflow 2)	221
CiTRBnSID (ECAN Buffer n Standard Identifier)	223,
224, 226	
CiTRmnCON (FCAN TX/RX Buffer m Control)	222
CiVEC (ECAN Interrupt Code)	206
CLKDIV (Clock Divisor)	125
CORCON (Core Control)	22 74
DMACS0 (DMA Controller Status 0)	11/
DMACS1 (DMA Controller Status 0)	116
DMACOT (DMA Controller Status 1)	110
DMAXCON (DMA Channel x Centrel)	113
DWAXCON (DWA Channel & Control)	110
DIMAXPAD (DIMA Channel x Peripheral Address)	113
DMAXREQ (DMA Channel X IRQ Select)	111
DMAXSTA (DMA Channel x RAM Start Address A	(). 112
DMAxSTB (DMA Channel x RAM Start Address E	3). 112
DSADR (Most Recent DMA RAM Address)	117
I2CxCON (I2Cx Control)	188
I2CxMSK (I2Cx Slave Mode Address Mask)	192
I2CxSTAT (I2Cx Status)	190
IFS0 (Interrupt Flag Status 0)	77, 84
IFS1 (Interrupt Flag Status 1)	79, 86
IFS2 (Interrupt Flag Status 2)	81, 88
IFS3 (Interrupt Flag Status 3)	82, 89
IFS4 (Interrupt Flag Status 4)	83, 90
INTCON1 (Interrupt Control 1)	75
INTCON2 (Interrupt Control 2)	76
INTTREG Interrupt Control and Status Register	105
IPC0 (Interrupt Priority Control 0)	91
IPC1 (Interrupt Priority Control 1)	
IPC11 (Interrupt Priority Control 11)	101
IPC15 (Interrupt Priority Control 15)	102
IPC16 (Interrupt Priority Control 16)	102
IPC17 (Interrupt Priority Control 17)	104
IPC2 (Interrupt Priority Control 2)	104
IPC3 (Interrupt Priority Control 3)	95
IPC4 (Interrupt Priority Control 4)	94
IPC5 (Interrupt Priority Control 5)	90
IPC6 (Interrupt Priority Control 6)	90
IPC6 (Interrupt Priority Control 7)	97
IPC7 (Interrupt Priority Control 7)	90
IPC8 (Interrupt Priority Control 8)	99
IPC9 (Interrupt Priority Control 9)	100
NVMCON (Flash Memory Control)	55
NVMKEY (Nonvolatile Memory Key)	56
OCXCON (Output Compare x Control)	178
OSCCON (Oscillator Control)	123
OSCTUN (FRC Oscillator Tuning)	127
PLLFBD (PLL Feedback Divisor)	126
PMD1 (Peripheral Module Disable	
Control Register 1)	132
PMD2 (Peripheral Module Disable	
Control Register 2)	133
PMD3 (Peripheral Module Disable	
Control Register 3)	134
RCON (Reset Control)	61
SPIxCON1 (SPIx Control 1)	182
SPIxCON2 (SPIx Control 2)	184
SPIxSTAT (SPIx Status and Control)	181
SR (CPU Status)	21, 74
T1CON (Timer1 Control)	163
TCxCON (Input Capture x Control)	173
TxCON (Type B Time Base Control)	168
TyCON (Type C Time Base Control)	169
UxMODE (UARTx Mode)	195
, , ,	