

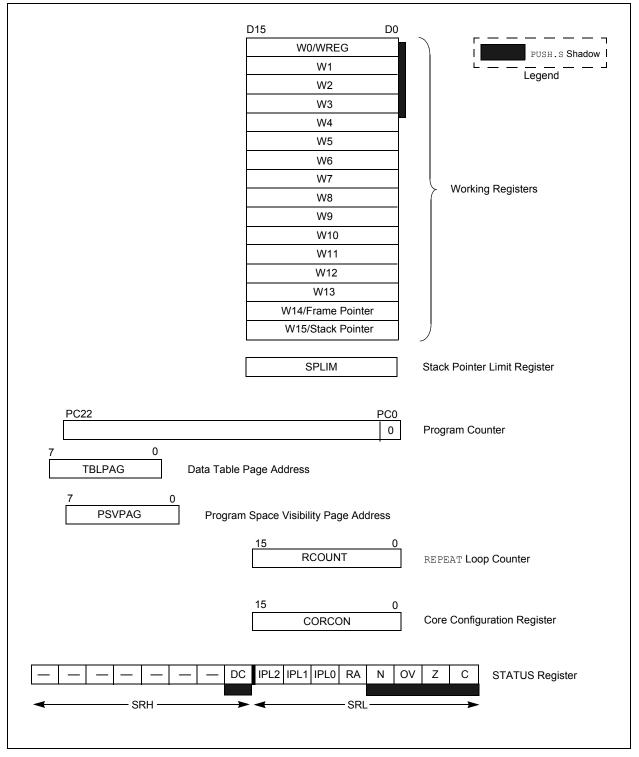
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp504t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-2: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04 PROGRAMMER'S MODEL

4.0 MEMORY ORGANIZATION

Note:	This data sheet summarizes the features
	of the PIC24HJ32GP302/304,
	PIC24HJ64GPX02/X04 and
	PIC24HJ128GPX02/X04 families of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	Section 4. "Program Memory"
	(DS70203) of the "dsPIC33F/PIC24H
	Family Reference Manual", which is avail-
	able from the Microchip web site
	(www.microchip.com).

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices is shown in Figure 4-1.

	PIC24HJ32GP302/304	PIC24HJ64GPX02/X04	PIC24HJ128GPX02/X04
4	GOTO Instruction	GOTO Instruction	GOTO Instruction 0x000000 Reset Address 0x000002
	Reset Address	Reset Address	0x000004
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table 0x0000FE
	Reserved	Reserved	<u>Reserved</u> 0x000100 0x000104
	Alternate Vector Table	Alternate Vector Table	Alternate vector rable 0x0001FE
2000	User Program Flash Memory (11264 instructions)	User Program Flash Memory	0x000200 0x0057FE 0x0057FE 0x005800
	Unimplemented		User Program Flash Memory (44032 instructions)
	(Read '0's)	Unimplemented	0x0157FE
		(Read '0's)	0x015800
			Unimplemented (Read '0's) 0x7FFFE
	Reserved	Reserved	0x800000 Reserved
	Device Configuration Registers	Device Configuration Registers	Device Configuration 0xF7FFE Device Configuration 0xF80000 Registers 0xF80017
	Reserved	Reserved	Care Contraction (0xF80017) 0xF80018 Reserved
0			DEVID (2)
	Reserved	Reserved	0xFF0002 Reserved 0xFFFFE

NVMCON: FLASH MEMORY CONTROL REGISTER

5.6 Flash Memory Control Registers

REGISTER 5-1:

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾								
WR	R/W-000	WRERR	U-0	U-0	U-0	U-0	U-0			
	WREN	WRERR	—	_	—					
bit 15							bit 8			
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾			
_	ERASE		_		NVMOP	<3:0> ⁽²⁾				
bit 7	·						bit 0			
Legend:		SO = Settal	ole only bit							
R = Readable	bit	W = Writabl	e bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at F	POR	'1' = Bit is s	et	'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	WR: Write Con	trol bit								
	1 = Initiates a	Flash memor	y program or	erase operation	on. The operatio	on is self-timed	and the bit is			
		hardware on								
	0 = Program of	•	tion is comple	ete and inactive	9					
bit 14	WREN: Write E									
	1 = Enable Fla									
h:: 40	0 = Inhibit Flas		-	IS						
bit 13	WRERR: Write Sequence Error Flag bit 1 = An improper program or erase sequence attempt or termination has occurred (bit is set									
		er program or Illy on any se			termination has	occurred (bit i	s set			
	0 = The progra				/					
bit 12-7	Unimplemente									
bit 6										
2.00	ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command									
					><3:0> on the network					
bit 5-4	Unimplemente	d: Read as ')'							
bit 3-0	NVMOP<3:0>:	NVM Operati	on Select bits	_S (2)						
	If ERASE = 1:									
	1111 = Memor	•	operation							
	1110 = Reserv									
	1101 = Erase General Segment									
	1100 = Erase Secure Segment 1011 = Reserved									
	0011 = Reserved									
	0010 = Memory page erase operation									
	0001 = No operation									
	0000 = Erase a	a single Confi	guration regis	ster byte						
	If ERASE = 0:									
	1111 = No ope									
	1110 = Reserved									
	1101 = No operation 1100 = No operation									
	1011 = Reserv									
	0011 = Memor	y word progra	m operation							
	0010 = No ope	ration								
	0001 = Memory									
	0000 = Progra r	n a single Co	nfiguration re	gister byte						
Note 1: The	ese bits can only	be reset on a	POR.							
2: All	other combination	ns of NVMOF	<3:0> are un	implemented						

2: All other combinations of NVMOP<3:0> are unimplemented.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		U2TXIP<2:0>		—		U2RXIP<2:0>						
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—		INT2IP<2:0>				T5IP<2:0>						
bit 7							bit (
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimple	emented bit, rea	ad as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown					
bit 15	Unimpleme	ented: Read as '	0'									
bit 14-12	-	0>: UART2 Trans		upt Prioritv bits								
		rupt is priority 7 (
	•											
	•											
	001 = Interrupt is priority 1											
	000 = Interr	upt source is dis	abled									
bit 11	Unimpleme	ented: Read as '	0'									
bit 10-8	U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•	•										
	•											
	001 = Interrupt is priority 1											
	000 = Interr	000 = Interrupt source is disabled										
bit 7	Unimpleme	ented: Read as '	0'									
bit 6-4		>: External Inter										
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
		rupt is priority 1 rupt source is dis	abled									
bit 3	Unimpleme	ented: Read as '	0'									
bit 2-0	T5IP<2:0>:	Timer5 Interrupt	Priority bits									
	111 = Interr •	rupt is priority 7 (highest prior	ity interrupt)								
	•											
	•	and the method of the state										
		rupt is priority 1										

000 = Interrupt source is disabled

9.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

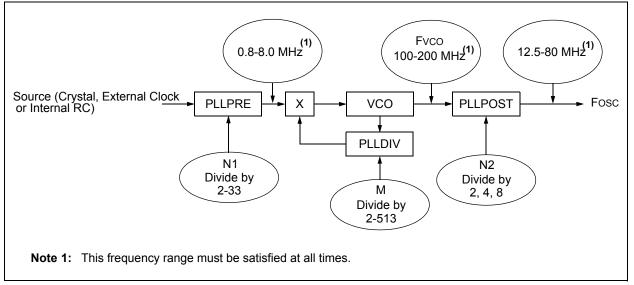
The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS. For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by:

EQUATION 9-2: Fosc CALCULATION

$$FOSC = FIN \bullet \left(\frac{M}{N1 \bullet N2}\right)$$


For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL.

- If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.
- If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.
- If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

EQUATION 9-3: XT WITH PLL MODE EXAMPLE

$$F_{CY} = \frac{F_{OSC}}{2} = \frac{1}{2} \left(\frac{10000000 \bullet 32}{2 \bullet 2} \right) = 40 MIPS$$

FIGURE 9-2: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04 PLL BLOCK DIAGRAM

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<4:0>
Timer5 External Clock	T5CK	RPINR4	T5CKR<4:0>
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 7	IC7	RPINR10	IC7R<4:0>
Input Capture 8	IC8	RPINR10	IC8R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<4:0>
UART2 Receive	U2RX	RPINR19	U2RXR<4:0>
UART2 Clear To Send	U2CTS	RPINR19	U2CTSR<4:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<4:0>
SPI1 Clock Input	SCK1	RPINR20	SCK1R<4:0>
SPI1 Slave Select Input	SS1	RPINR21	SS1R<4:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<4:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<4:0>
SPI2 Slave Select Input	SS2	RPINR23	SS2R<4:0>
ECAN1 Receive	CIRX	RPINR26	CIRXR<4:0>

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)⁽¹⁾

Note 1: Unless otherwise noted, all inputs use Schmitt input buffers.

REGISTER 11-7: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		-	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			OCFAR<4:0>		
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	t is cleared x = Bit is unknown		
•							

bit 15-5 Unimplemented: Read as '0'

bit 4-0	OCFAR<4:0>: Assign Output Compare A (OCFA) to the corresponding RPn pin
DIL 4 -0	OCIAN 4.0/. Assign Output Compare A (OCIA) to the corresponding IV in pin

11111 = Input tied to Vss 11001 = Input tied to RP25

.

• 00001 = Input tied to RP1 00000 = Input tied to RP0

REGISTER 11-11: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

bit 7	-	÷					bit C
					SS1R<4:0>		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
bit 15							bit 8
_	—	—	_	—	_	—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

bit 15-5 Unimplemented: Read as '0'

bit 4-0

SS1R<4:0>: Assign SPI1 Slave Select Input (SS1) to the corresponding RPn pin 11111 = Input tied to Vss 11001 = Input tied to RP25

00001 = Input tied to RP1 00000 = Input tied to RP0

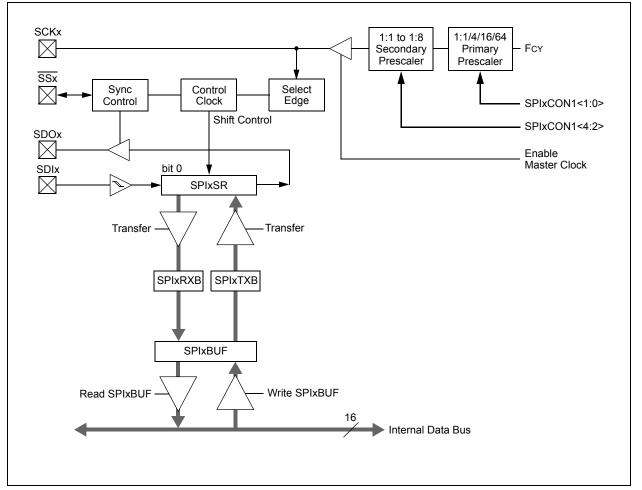
15.3 Output Compare Control Registers

REGISTER 15-1: OCxCON: OUTPUT COMPAREX CONTROL REGISTER (x = 1, 2, 3 OR 4)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
	—	OCSIDL	_	—		—	—		
bit 15							bit 8		
U-0	U-0	U-0	R-0 HC	R/W-0	R/W-0	R/W-0	R/W-0		
	—	—	OCFLT	OCTSEL		OCM<2:0>	1:10		
bit 7							bit 0		
Legend: HC = Cleared in Hardware			HS = Set in H	Hardware					
R = Readab	ole bit	W = Writable bi	t	U = Unimple	mented bit, rea	d as '0'			
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown		
bit 13 bit 12-5 bit 4 bit 3	1 = Output Co 0 = Output Co Unimplemen OCFLT: PWM 1 = PWM Fau 0 = No PWM (This bit is on OCTSEL: Ou	Unimplemented: Read as '0' OCSIDL: Stop Output Compare in Idle Mode Control bit 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode Unimplemented: Read as '0' OCFLT: PWM Fault Condition Status bit 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (This bit is only used when OCM<2:0> = 111) OCTSEL: Output Compare Timer Select bit 1 = Timer3 is the clock source for Compare x							
bit 2-0	OCM<2:0>:0 111 = PWM n 110 = PWM n 101 = Initializ 100 = Initializ 011 = Compa 010 = Initializ 001 = Initializ	Output Compare mode on OCx, F mode on OCx, F ze OCx pin low, g are event toggles ze OCx pin high, ze OCx pin low, g t compare chann	Mode Select b ault pin enable ault pin disable generate contir generate single s OCx pin compare event	oits ed huous output p output pulse t forces OCx p	on OCx pin bin low	bin			

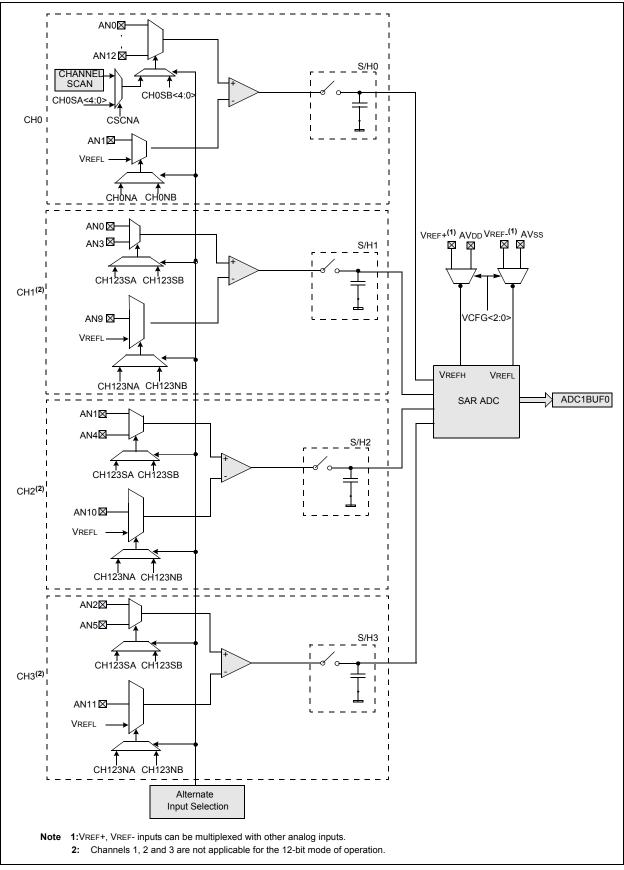
16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP.

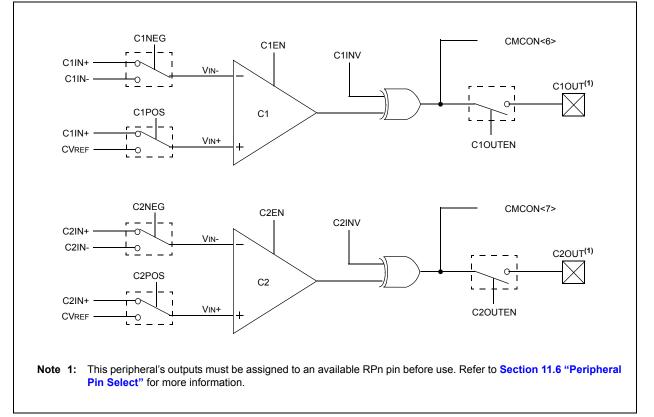
Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:


- · SDIx (serial data input)
- SDOx (serial data output)
- <u>SCKx</u> (shift clock input or output)
- SSx (active-low slave select)

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM


21.0 COMPARATOR MODULE

- **Note 1:** This data sheet summarizes the features the PIC24HJ32GP302/304. of PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 34. "Comparator" (DS70212) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Comparator module provides a set of dual input comparators. The inputs to the comparator can be configured to use any one of the four pin inputs (C1IN+, C1IN-, C2IN+ and C2IN-) as well as the Comparator Voltage Reference Input (CVREF).

Note: This peripheral contains output functions that may need to be configured by the peripheral pin select feature. For more information, see Section 11.6 "Peripheral Pin Select".

FIGURE 21-1: COMPARATOR I/O OPERATING MODES

21.2 Comparator Control Register

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CMIDL	_	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN ⁽¹⁾	C1OUTEN ⁽²			
bit 15		•					bit 8			
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
C2OUT	C1OUT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS			
bit 7							bit (
Legend:										
R = Readable I	oit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	iown			
bit 15	CMIDL: Stop									
					nerate interrup	ots. Module is stil	ll enabled			
L:1 4 4		normal modul	-	Idle mode						
bit 14	-	ted: Read as '								
bit 13	C2EVT: Comparator 2 Event 1 = Comparator output changed states									
		tor output did		ates						
bit 12	C1EVT: Comparator 1 Event									
		tor output chai tor output did i		ates						
bit 11	C2EN: Compa	arator 2 Enable	9							
	1 = Compara 0 = Compara	tor is enabled tor is disabled								
bit 10	C1EN: Compa	arator 1 Enable	Э							
	1 = Comparator is enabled									
	0 = Comparator is disabled									
bit 9		omparator 2 C	-							
	 1 = Comparator output is driven on the output pad 0 = Comparator output is not driven on the output pad 									
bit 8										
Sit 0	C1OUTEN: Comparator 1 Output Enable ⁽²⁾ 1 = Comparator output is driven on the output pad									
		tor output is no								
bit 7	C2OUT: Com	parator 2 Outp	ut bit							
	When C2INV = 0:									
	1 = C2 VIN+2 0 = C2 VIN+2									
	When C2INV									
		001/00								
	0 = C2 VIN+ 2 1 = C2 VIN+ 2									

REGISTER 21-1: CMCON: COMPARATOR CONTROL REGISTER

- Section 11.6 "Peripheral Pin Select" for more information.
 If C10UTEN = 1, the C10UT peripheral output must be configured to an available RPX pin. See
 - 2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.

22.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70301) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices, and its operation.

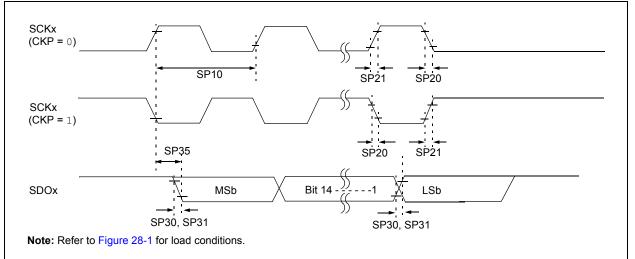
Some of the key features of this module are:

- Time: hours, minutes and seconds
- 24-hour format (military time)
- · Calendar: weekday, date, month and year
- Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- BCD format for compact firmware
- Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.


FIGURE 22-1: RTCC BLOCK DIAGRAM

© 2007-2012 Microchip Technology Inc.

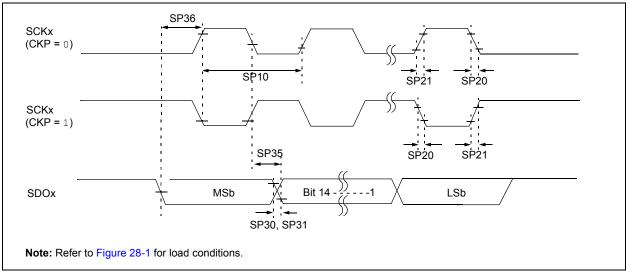
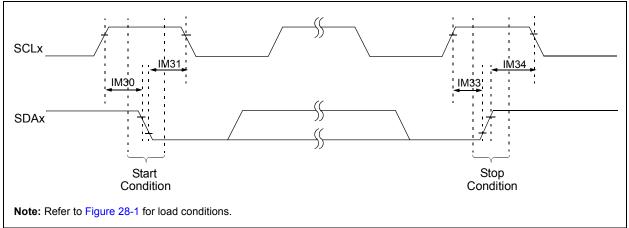

AC CHARAC	CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industri -40°C ≤TA ≤+125°C for Extended			
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP
15 MHz	Table 28-29	—	_	0,1	0,1	0,1
9 MHz	—	Table 28-30	—	1	0,1	1
9 MHz	—	Table 28-31	—	0	0,1	1
15 MHz	_	_	Table 28-32	1	0	0
11 MHz	_	—	Table 28-33	1	1	0
15 MHz	_	—	Table 28-34	0	1	0
11 MHz	_	—	Table 28-35	0	0	0

TABLE 28-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY


FIGURE 28-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

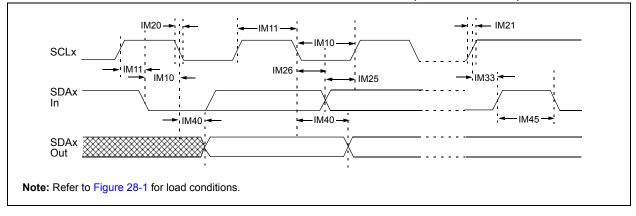
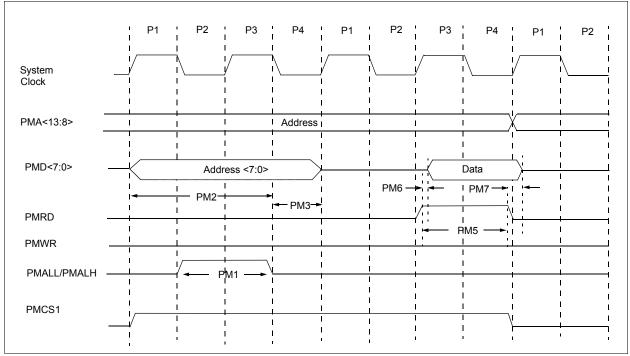

FIGURE 28-10: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS

TABLE 28-45: COMPARATOR MODULE SPECIFICATIONS

DC CHA		STICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industri $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			85°C for Industrial	
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
D300	VIOFF	Input Offset Voltage ⁽¹⁾	—	±10	_	mV	—
D301	VICM	Input Common Mode Voltage ⁽¹⁾	0	—	AVDD-1.5V	V	—
D302	CMRR	Common Mode Rejection Ratio ⁽¹⁾	-54	—	—	dB	—

Note 1: Parameters are characterized but not tested.


TABLE 28-46: COMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS

AC CHA	RACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industri $-40^{\circ}C \le TA \le +125^{\circ}C$ for External			85°C for Industrial	
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
VR310	TSET	Settling Time ⁽¹⁾	—	—	10	μs	

Note 1: Setting time measured while CVRR = 1 and CVR3:CVR0 bits transition from '0000' to '1111'.

TABLE 28-47: COMPARATOR REFERENCE VOLTAGE SPECIFICATIONS

DC CHAI	RACTERIS	Standard Operating Conditions: 3.0V to (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}$ $-40^{\circ}C \le TA \le +12^{\circ}$					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions				
VRD310	CVRES	Resolution	CVRSRC/24		CVRSRC/32	LSb	_
VRD311	CVRAA	Absolute Accuracy	—		0.5	LSb	—
VRD312	CVRur	Unit Resistor Value (R)	_	2k	_	Ω	_

FIGURE 28-26: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 28-49: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Co (unless otherwise stat Operating temperature		,		
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions
PM1	PMALL/PMALH Pulse Width	—	0.5 TCY	_	ns	—
PM2	Address Out Valid to PMALL/PMALH Invalid (address setup time)	—	0.75 TCY	—	ns	—
PM3	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	0.25 TCY	_	ns	—
PM5	PMRD Pulse Width		0.5 TCY	_	ns	_
PM6	PMRD or PMENB Active to Data In Valid (data setup time)	150	—	_	ns	—
PM7	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	—	5	ns	_

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

UxSTA (UARTx Status and Control)	197
Reset	
Illegal Opcode	59, 67
Trap Conflict	66, 67
Uninitialized W Register	59, 67
Reset Sequence	69
Resets	59

S

Serial Peripheral Interface (SPI)	
Software Reset Instruction (SWR)	
Software Simulator (MPLAB SIM)	
Software Stack Pointer, Frame Pointer	
CALLL Stack Frame	
Special Features of the CPU	
SPI Module	
SPI1 Register Map	
Symbols Used in Opcode Descriptions	
System Control	
Register Map	

Т

Temperature and Voltage Specifications	
AC	
Timer1161	
Timer2/3	
Timing Characteristics	
CLKO and I/O	
Timing Diagrams	
10-bit A/D Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 0,	
SSRC<2:0> = 000)	
10-bit A/D Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,	
SAMC<4:0> = 00001)	
10-bit A/D Conversion (CHPS<1:0> = 01, SIMSAM = 0,	
ASAM = 1, SSRC<2:0> = 111,	
SAMC<4:0> = 00001)	
12-bit A/D Conversion	
(ASAM = 0, SSRC<2:0> = 000)	
Brown-out Situations66	
ECAN I/O	
External Clock	
I2Cx Bus Data (Master Mode) 328	
I2Cx Bus Data (Slave Mode)	
I2Cx Bus Start/Stop Bits (Master Mode) 328	
I2Cx Bus Start/Stop Bits (Slave Mode)	

Input Capture (CAPx)	. 314
OC/PWM	. 315
Output Compare (OCx)	
Reset, Watchdog Timer, Oscillator Start-up Timer	
and Power-up Timer	. 310
Timer1, 2 and 3 External Clock	. 312
Timing Requirements	
ADC Conversion (10-bit mode)	. 353
ADC Conversion (12-bit Mode)	. 353
CLKO and I/O	. 309
External Clock	. 307
Input Capture	. 314
SPIx Master Mode (CKE = 0)	
SPIx Module Master Mode (CKE = 1)	. 349
SPIx Module Slave Mode (CKE = 0)	. 350
SPIx Module Slave Mode (CKE = 1)	. 350
Timing Specifications	
10-bit A/D Conversion Requirements	. 339
12-bit A/D Conversion Requirements	. 337
CAN I/O Requirements	. 332
I2Cx Bus Data Requirements (Master Mode)	. 329
I2Cx Bus Data Requirements (Slave Mode)	
Output Compare Requirements	
PLL Clock 308	, 348
Reset, Watchdog Timer,	
Oscillator Start-up Timer, Power-up Timer	
and Brown-out Reset Requirements	
Simple OC/PWM Mode Requirements	
Timer1 External Clock Requirements	
Timer2 External Clock Requirements	
Timer3 External Clock Requirements	. 313
U	
UART Module	

UART1 Register Map	34, 35
Universal Asynchronous Receiver Transmitter (UART)	193
Using the RCON Status Bits	67

V

Voltage Regulator	(On-Chip)		27	7
-------------------	-----------	--	----	---

W

Watchdog Time-out Reset (WDTR)	
Watchdog Timer (WDT)	273, 278
Programming Considerations	278
WWW Address	387
WWW, On-Line Support	
www, On-Line Support	3