

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

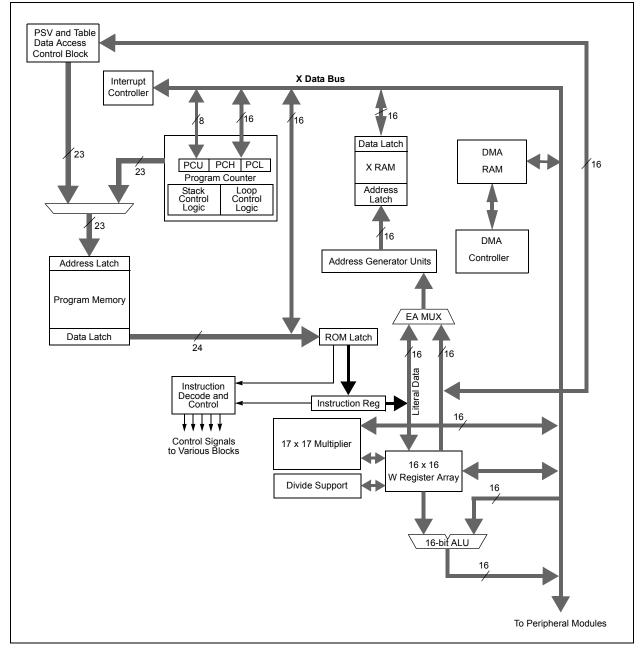
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp504t-i-pt

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Special MCU Features

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 features a 17-bit by 17bit, single-cycle multiplier. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication makes mixed-sign multiplication possible. The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices support 16/16 and 32/16 integer divide operations. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A multi-bit data shifter is used to perform up to a 16-bit, left or right shift in a single cycle.

FIGURE 3-1: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04 CPU CORE BLOCK DIAGRAM

TABLE 4-10: UART2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE	0230	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_	UTX8			U	ART Transm	nit Register				XXXX
U2RXREG	0236	_	_	_	_	_	_	_	URX8			U	ART Receiv	e Register				0000
U2BRG	0238	Baud Rate Generator Prescaler C							0000									

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	—	—	—	_	_	—	SPIROV	—	_	—	—	SPITBF	SPIRBF	0000
SPI1CON1	0242	—	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	—	—	—	-	-	—	_	—		_	—	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Trans	mit and Red	ceive Buffer	Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SPI2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	SPIEN	—	SPISIDL	_	—	—		—	—	SPIROV	—	_	—		SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	-	—	_	_	—	_	_	—	FRMDLY	—	0000
SPI2BUF	0268		SPI2 Transmit and Receive Buffer Register 000						0000									

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: ADC1 REGISTER MAP FOR PIC24HJ64GP202/502, PIC24HJ128GP202/502 AND PIC24HJ32GP302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Da	ta Buffer 0								XXXX
AD1CON1	0320	ADON	_	ADSIDL	ADDMABM	—	AD12B	FOR	M<1:0>	;	SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	V	'CFG<2:0	>	_	_	CSCNA	CHP	S<1:0>	BUFS	_		SMPI	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	_		S	AMC<4:0>						ADCS	<7:0>				0000
AD1CHS123	0326	_	_	_	_	_	CH123N	NB<1:0>	CH123SB	_	_	_	_	_	CH123N	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	_	_		C	H0SB<4:0	>		CH0NA	_	_		С	H0SA<4:0	>		0000
AD1PCFGL	032C	_	_	_	PCFG12	PCFG11	PCFG10	PCFG9	_	_	_	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	—	_	—	CSS12	CSS11	CSS10	CSS9	—	—	_	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_			_	—	-		_		_	_		_	[DMABL<2:	0>	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: ADC1 REGISTER MAP FOR PIC24HJ64GP204/504, PIC24HJ128GP204/504 AND PIC24HJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Da	ata Buffer 0								xxxx
AD1CON1	0320	ADON	—	ADSIDL	ADDMABM	—	AD12B	FOR	M<1:0>	:	SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	V	'CFG<2:0	>	_	_	CSCNA	CHP	S<1:0>	BUFS	_		SMP	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	_		S	AMC<4:0>						ADCS	<7:0>				0000
AD1CHS123	0326	_	_	_	_	_	CH123N	IB<1:0>	CH123SB	_	_	_	_	_	CH123	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	_	_		C	+0SB<4:0>	`		CH0NA	_	_		С	H0SA<4:0	>		0000
AD1PCFGL	032C	_	_	_	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	_	_	_	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_		_	_		_	_	_	_	_	_		_	I	DMABL<2:	0>	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		C1IP<2:0> ⁽¹⁾		_		C1RXIP<2:0>(1)	
bit 15	•						bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		SPI2IP<2:0>		_		SPI2EIP<2:0>	
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable b	oit	U = Unimple	mented bit, re	ead as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as '0	,				
bit 14-12	C1IP<2:0>:	ECAN1 Event In	terrupt Priori	ty bits ⁽¹⁾			
	111 = Interr	rupt is priority 7 (h	nighest priori	ty interrupt)			
	•						
	•						
		rupt is priority 1					
		rupt source is disa					
bit 11		ented: Read as '0					
bit 10-8		0>: ECAN1 Rece			riority bits ⁽¹⁾		
	111 = Interr	rupt is priority 7 (h	highest priori	ty interrupt)			
	•						
	•						
		rupt is priority 1					
h:+ 7		rupt source is disa					
bit 7	-	ented: Read as '0					
bit 6-4		SPI2 Event Int rupt is priority 7 (h	-	-			
	•		lighest phon	ly interrupt)			
	•						
	•	unt in priority 1					
		rupt is priority 1 rupt source is disa	abled				
bit 3		ented: Read as '0					
bit 2-0	-	:0>: SPI2 Error In		tv bits			
		rupt is priority 7 (h		•			
	•		-				
	•						
	001 = Interr	rupt is priority 1					
		rupt io priority i rupt course is die					

000 = Interrupt source is disabled

Note 1: Interrupts disabled on devices without ECAN[™] modules.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		CRCIP<2:0>		_		U2EIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		U1EIP<2:0>					
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	-	nted: Read as '					
bit 14-12		CRC Generate			ty bits		
	111 = Interro	upt is priority 7 (highest priorit	ty interrupt)			
	•						
	•						
		upt is priority 1 upt source is dis	abled				
bit 11		nted: Read as '					
bit 10-8	-	: UART2 Error I		ity bite			
DIL 10-0		upt is priority 7 (•			
	•		nightest phone	ly interrupt)			
	•						
	•						
		upt is priority 1 upt source is dis	abled				
bit 7		nted: Read as '					
bit 6-4	-	UART1 Error I		itv bits			
		upt is priority 7 (-	-			
	•	· · · · · · · · · · · · · · ·	5	- J			
	•						
	•	upt is priority 1					

bit 3-0 Unimplemented: Read as '0'

8.3 DMA Control Registers

D 2 1 1	D *** *	D # • * •	D # • * *	D #14.4			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW		—	
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
	—	AMOD	E<1:0>			MODE	<1:0>
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own
bit 15	CHEN: Char	nel Enable bit					
	1 = Channel	enabled					
	0 = Channel	disabled					
bit 14	SIZE: Data T	ransfer Size bit					
	1 = Byte						
	0 = Word		<i></i>		~		
bit 13		r Direction bit (s			-		
		m DMA RAM ao m peripheral ad					
bit 12		Block Transfer					
51172		lock transfer co	•	•		een moved	
		lock transfer co					
bit 11		I Data Periphera					
	1 = Null data	write to periphe	eral in addition	n to DMA RAM	write (DIR bit r	nust also be clea	ar)
	0 = Normal c	peration					
bit 10-6	Unimplemer	nted: Read as '	0'				
bit 5-4	AMODE<1:0	>: DMA Chann	el Operating I	Mode Select bi	ts		
		ed (acts as Peri			node)		
		eral Indirect Add					
		r Indirect withou r Indirect with F					
bit 3-2	0	nted: Read as '		it mode			
bit 0 2 bit 1-0		: DMA Channel		ode Select hits			
bit i o						each DMA RAM	buffer)
		ious, Ping-Pong					building
	01 = One-Sh	ot, Ping-Pong r	nodes disable	ed			
	00 = Continu	ious, Ping-Pong	modes disat	bled			

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD	R<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD)R<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	it	U = Unimplemer	ited bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleare	d	x = Bit is unkr	nown

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

REGISTER 11-21: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTERS 6

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_				RP13R<4:0	>	
bit 15							bit 8
			DAMA	D/// 0		DAVO	DAVA
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		_			RP12R<4:0	>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP13R<4:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 11-2 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP12R<4:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-22: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTERS 7

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP15R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP14R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 11-2 for peripheral function numbers)

12.2 Timer1 Control Register

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	—	TSIDL	—	—	—	_	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
—	TGATE	TCKPS<1:0>			TSYNC	TCS	—
bit 7							bit 0

Legend:				
R = Readal	ble bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	TON: Time			
		16-bit Timer1		
bit 11	•	16-bit Timer1		
bit 14	-	nented: Read as '0'		
bit 13		op in Idle Mode bit	on dovice entere Idle mode	
		ue module operation in Idle	en device enters Idle mode	
bit 12-7		nented: Read as '0'		
bit 6	-	imer1 Gated Time Accumul	ation Enable bit	
	When TCS	S = 1:		
	This bit is			
	When TCS			
		time accumulation enabled time accumulation disabled		
bit 5-4				
DIL 3-4	11 = 1:25	:0>: Timer1 Input Clock Pre		
	10 = 1:64			
	01 = 1:8			
	00 = 1:1			
bit 3	-	nented: Read as '0'		
bit 2		ïmer1 External Clock Input	Synchronization Select bit	
	<u>When TCS</u>	<u>S = 1:</u> ronize external clock input		
	•	t synchronize external clock	cinput	
	When TCS	•		
	This bit is			
bit 1	TCS: Time	er1 Clock Source Select bit		
		al clock from pin T1CK (on al clock (Fcy)	the rising edge)	
bit 0	Unimplem	nented: Read as '0'		
	-			

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_	_	_	_	_		_			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0					R/W-0			
IVRIE	WAKIE	ERRIE		FIFOIE	RBOVIE	RBIE	TBIE			
bit 7							bit 0			
Legend:		C = Writeable	bit, but only	'0' can be writte	en to clear the bi	it				
R = Readab	le bit	W = Writable			mented bit, read					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-8		nted: Read as '								
bit 7		d Message Rec		pt Enable bit						
	1 = Interrupt Request Enabled 0 = Interrupt Request not enabled									
L:1 0	•	•		1 h 14						
bit 6		us Wake-up Activity Interrupt Flag bit pt Request Enabled								
		Request not en								
bit 5		r Interrupt Enab								
		= Interrupt Request Enabled								
	0 = Interrupt Request not enabled									
bit 4	Unimpleme	nted: Read as '	0'							
bit 3	FIFOIE: FIFO	O Almost Full In	terrupt Enabl	e bit						
		Request Enable								
	•	Request not en								
bit 2		RBOVIE: RX Buffer Overflow Interrupt Enable bit								
	1 = Interrupt Request Enabled									
bit 1		 0 = Interrupt Request not enabled RBIE: RX Buffer Interrupt Enable bit 								
DILI		Request Enable								
		Request not en								
		iffer Interrupt En								
bit 0			ומטוכ טונ							
bit U		Request Enable								

20.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC1)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 of families devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits
 - described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices have up to 13 ADC input channels.

The AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

20.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 13 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 13 analog input pins, designated AN0 through AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

Block diagrams of the ADC module are shown in Figure 20-1 and Figure 20-2.

20.2 ADC Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>)
 - d) Determine how many S/H channels are used (AD1CON2<9:8> and AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>)
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>)
 - g) Turn on ADC module (AD1CON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the AD1IF bit
 - b) Select ADC interrupt priority

20.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. ADC1 can trigger a DMA data transfer. If ADC1 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF bit gets set as a result of an ADC1 sample conversion sequence.

The SMPI<3:0> bits (AD1CON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (AD1CON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

22.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70301) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices, and its operation.

Some of the key features of this module are:

- Time: hours, minutes and seconds
- 24-hour format (military time)
- · Calendar: weekday, date, month and year
- Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- BCD format for compact firmware
- Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

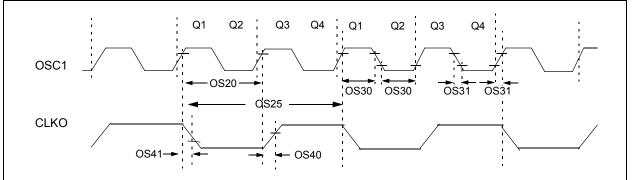
The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 22-1: RTCC BLOCK DIAGRAM

© 2007-2012 Microchip Technology Inc.

TABLE 26-2	INSTRUCTION SET OVERVIEW	(CONTINUED)	


Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
35	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
36	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
37	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
38	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
39	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
40	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
41	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
42	NEG	NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
43	NOP	NOP	-, -	No Operation	1	1	None
		NOPR		No Operation	1	1	None
44	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to	1	2	None
		101.5	ma	W(nd):W(nd + 1)		-	10110
		POP.S		Pop Shadow Registers	1	1	All
45	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
46	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
47	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None

DC CHA	RACTER	ISTICS	Standar (unless Operatir	otherwi	se state	ed) -40°C ≤	:: 3.0V to 3.6V ≤TA ≤+85°C for Industrial ≤TA ≤+125°C for Extended
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - RA2, RA7- RA10, RB10, RB11, RB7, RB4, RC3-RC9	_	_	0.4	V	Io∟ ≤3 mA, Vdd = 3.3V See Note 1
DO10 Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	_	_	0.4	v	IoL ⊴6 mA, VDD = 3.3V See Note 1	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RA3, RA4	_	_	0.4	V	Io∟ ≤10 mA, VDD = 3.3V See Note 1
DO20 Vон	Output High Voltage I/O Pins: 2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	2.4	_	_	v	Іон ≥ -3 mA, VDD = 3.3V See Note 1	
	Vон	Voh I F	Output High Voltage I/O Pins: 4x Source Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	2.4	_	_	V
		Output High Voltage I/O Pins: 8x Source Driver Pins - RA4, RA3	2.4	_	_	v	IOH ≥ -10 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins:	1.5	_	_		IOH ≥ -6 mA, VDD = 3.3V See Note 1
		2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10,	2.0	_	_	V	IOH ≥ -5 mA, VDD = 3.3V See Note 1
		RB11, RC3-RC9	3.0	_	—		IOH ≥ -2 mA, VDD = 3.3V See Note 1
		Output High Voltage 4x Source Driver Pins - RA0,	1.5	-	_		Іон ≥ -12 mA, Voo = 3.3V See Note 1
DO20A	Vон1	RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	2.0	_	_	V	IOH ≥ -11 mA, VDD = 3.3V See Note 1
			3.0	_			IOH ≥ -3 mA, VDD = 3.3V See Note 1
		Output High Voltage	1.5	_	_		IOH ≥ -16 mA, VDD = 3.3V See Note 1
		8x Source Driver Pins - RA3, RA4	2.0	_		V	IOH ≥ -12 mA, VDD = 3.3V See Note 1
			3.0	_	_		IOH ≥ -4 mA, VDD = 3.3V See Note 1

TABLE 28-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

FIGURE 28-2: EXTERNAL CLOCK TIMING

TABLE 28-16: EXTERNAL CLOCK TIMING REQUIREMENTS

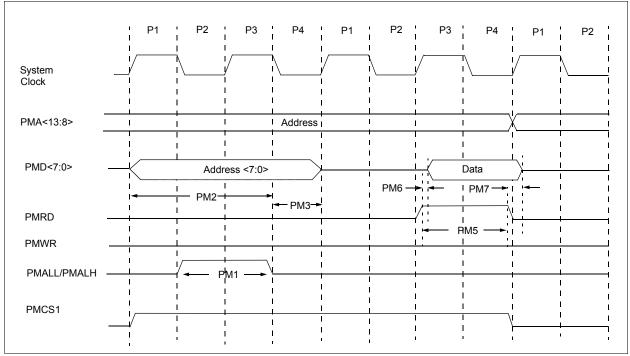
			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symb	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	40	MHz	EC	
		Oscillator Crystal Frequency	3.5 10		10 40 33	MHz MHz kHz	XT HS Sosc	
OS20	Tosc	Tosc = 1/Fosc	12.5		DC	ns		
OS25	TCY	Instruction Cycle Time ⁽²⁾	25		DC	ns		
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	-	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾		5.2		ns	—	
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	—	ns	—	
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Instruction cycle period (TcY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

TABLE 28-32:	SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
	REQUIREMENTS


			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	—	_	15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	_	—	ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—			ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—		—	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	—	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	—	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow $ to SCKx \uparrow or SCKx Input	120		—	ns	_	
SP51	TssH2doZ	SSx	10	_	50	ns	—	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	_	_	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

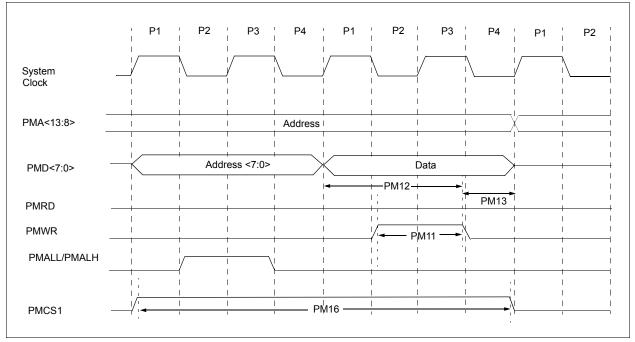

4: Assumes 50 pF load on all SPIx pins.

FIGURE 28-26: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 28-49: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard C (unless oth Operating te	erwise stat	,		
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions
PM1	PMALL/PMALH Pulse Width	—	0.5 TCY	_	ns	—
PM2	Address Out Valid to PMALL/PMALH Invalid (address setup time)	—	0.75 TCY	—	ns	—
PM3	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	0.25 TCY	_	ns	—
PM5	PMRD Pulse Width		0.5 TCY	_	ns	_
PM6	PMRD or PMENB Active to Data In Valid (data setup time)	150	—	_	ns	—
PM7	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	—	5	ns	_

FIGURE 28-27: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 28-50: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

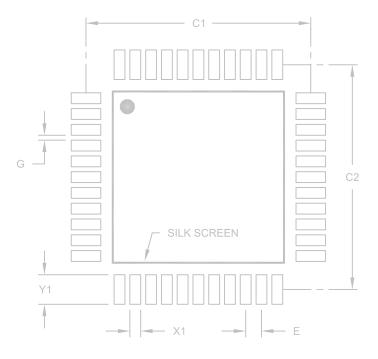

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions
PM11	PMWR Pulse Width	—	0.5 TCY	_	ns	
PM12	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	—	_	ns	_
PM13	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	—	_	ns	_
PM16	PMCSx Pulse Width	Тсү - 5	—	_	ns	—

TABLE 28-51: DMA READ/WRITE TIMING REQUIREMENTS

		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions	
DM1	DMA Read/Write Cycle Time	—	—	1 Tcy	ns	—	

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units			
Dimension Limits		NOM	MAX
E		0.80 BSC	
C1		11.40	
C2		11.40	
X1			0.55
Y1			1.50
G	0.25		
	Limits E C1 C2 X1 Y1	Limits MIN E C1 C2 X1 Y1 Y1	Limits MIN NOM E 0.80 BSC C1 11.40 C2 11.40 X1

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A

Section Name	Update Description
Section 28.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 28-3).
	Updated Min and Max values for parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 28-4).
	Updated Power-Down Current Max values for parameters DC60b and DC60c (see Table 28-7).
	Updated Characteristics for I/O Pin Input Specifications (see Table 28-9).
	Updated Program Memory values for parameters 136, 137 and 138 (renamed to 136a, 137a and 138a), added parameters 136b, 137b and 138b, and added Note 2 (see Table 28-12).
	Added parameter OS42 (GM) to the External Clock Timing Requirements (see Table 28-16).
	Updated Watchdog Timer Time-out Period parameter SY20 (see Table 28-21).