

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	AVR
Core Size	8-Bit
Speed	12MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	28
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-TQFP
Supplier Device Package	32-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/attiny48-au

1.1 Pin Descriptions

1.1.1 VCC

Digital supply voltage.

1.1.2 AVCC

 AV_{CC} is the supply voltage pin for the A/D converter and a selection of I/O pins. This pin should be externally connected to V_{CC} even if the ADC is not used. If the ADC is used, it is recommended this pin is connected to V_{CC} through a low-pass filter, as described in "Analog Noise Canceling Techniques" on page 172.

The following pins receive their supply voltage from AV_{CC}: PC7, PC[5:0] and (in 32-lead packages) PA[1:0]. All other I/O pins take their supply voltage from V_{CC} .

1.1.3 GND

Ground.

1.1.4 Port A (PA3:0)

Port A is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PA[3:0] output buffers have symmetrical drive characteristics with both sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

This port is available in 32-lead TQFP, 32-pad QFN and 32-ball UFBGA packages, only.

1.1.5 Port B (PB7:0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the internal clock operating circuit.

The various special features of Port B are elaborated in "Alternate Functions of Port B" on page 69.

1.1.6 Port C (PC7, PC5:0)

Port C is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC7 and PC[5:0] output buffers have symmetrical drive characteristics with both sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

1.1.7 PC6/RESET

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.

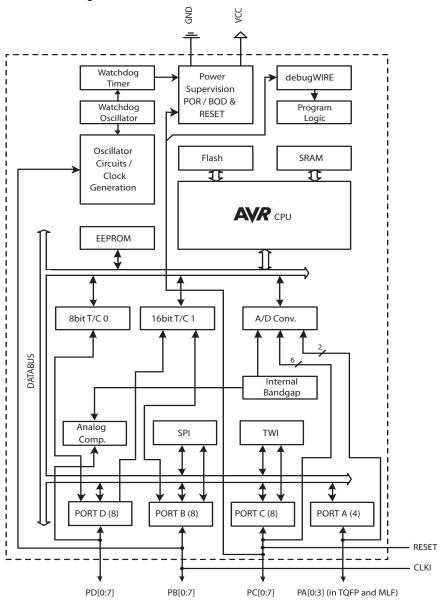
If the RSTDISBL Fuse is unprogrammed, PC6 is used as a reset input. A low level on this pin for longer than the minimum pulse width will generate a reset, even if the clock is not running. The

minimum pulse length is given in Table 22-3 on page 209. Shorter pulses are not guaranteed to generate a reset.

The various special features of Port C are elaborated in "Alternate Functions of Port C" on page 72.

1.1.8 Port D (PD7:0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PD[7:4] output buffers have symmetrical drive characteristics with both sink and source capabilities, while the PD[3:0] output buffers have high sink capabilities. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.


The various special features of Port D are elaborated in "Alternate Functions of Port D" on page 75.

2. Overview

The ATtiny48/88 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny48/88 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

3. General Information

3.1 Resources

A comprehensive set of development tools, application notes and datasheets are available for download at http://www.atmel.com/avr.

3.2 About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

For I/O Registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

3.3 Capacitive Touch Sensing

Atmel QTouch Library provides a simple to use solution for touch sensitive interfaces on Atmel AVR microcontrollers. The QTouch Library includes support for QTouch® and QMatrix® acquisition methods.

Touch sensing is easily added to any application by linking the QTouch Library and using the Application Programming Interface (API) of the library to define the touch channels and sensors. The application then calls the API to retrieve channel information and determine the state of the touch sensor.

The QTouch Library is free and can be downloaded from the Atmel website. For more information and details of implementation, refer to the QTouch Library User Guide – also available from the Atmel website.

3.4 Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

3.5 Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBE)	TWHSR	_	_	_	_	_	_	_	TWHS	160
(0xBD)	TWAMR	TWAM6	TWAM5	TWAM4	TWAM3	TWAM2	TWAM1	TWAM0	-	160
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	156
(0xBB)	TWDR		4		2-wire Serial Inter			!		159
(0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	159
(0xB9)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	_	TWPS1	TWPS0	158
(0xB8)	TWBR				2-wire Serial Interfa	ce Bit Rate Regis	ster		•	156
(0xB7)	Reserved	-	-	-	-	-	-	-	_	
(0xB6)	Reserved	-	-	-	-	-	-	-	-	
(0xB5)	Reserved	-	-	-	-	-	-	-	-	
(0xB4)	Reserved	-	-	-	-	-	-	-	_	
(0xB3)	Reserved	-	-	-	-	-	_	-	_	
(0xB2)	Reserved	-	-	-	-	_	-	-	-	
(0xB1)	Reserved	-	-	-	-	-	-	-	-	
(0xB0)	Reserved	_	_	_	-	_	_	_	-	
(0xAF)	Reserved	_	_	_	_	_	_	_	_	
(0xAE) (0xAD)	Reserved Reserved	_	_		_		_	_	_	
(0xAD)	Reserved	_	_	_		_	_	_		
(0xAB)	Reserved	_				_		_	_	
(0xAA)	Reserved	_	_	_	_	_	_	_	_	
(0xA9)	Reserved	_	-	_	-	_	-	_	-	
(0xA8)	Reserved	-	-	_	-	-	-	-	-	
(0xA7)	Reserved	-	_	_	-	_	-	_	-	
(0xA6)	Reserved	-	-	-	-	-	-	-	-	
(0xA5)	Reserved	-	-	_	_	-	-	_	-	
(0xA4)	Reserved	-	-	-	-	-	-	-	-	
(0xA3)	Reserved	-	-	-	-	-	-	-	-	
(0xA2)	Reserved	-	-	-	-	-	-	-	-	
(0xA1)	Reserved	-	-	-	-	-	-	-	-	
(0xA0)	Reserved	-	-	-	-	_	-	-	_	
(0x9F)	Reserved	-	-	-	-	_	-	-	-	
(0x9E)	Reserved	_	_	_	-	_	_	_	_	
(0x9D)	Reserved		-	-	_	_	-		_	
(0x9C) (0x9B)	Reserved	_	_	_	_	_	_	_	_	
(0x9A)	Reserved Reserved		_	_	_			_		
(0x99)	Reserved	_	_			_	_	_	_	
(0x98)	Reserved	_	_	_	_	_	_	_	_	
(0x97)	Reserved	_	_	_	_	_	_	_	_	
(0x96)	Reserved	_	_	_	_	_	_	_	_	
(0x95)	Reserved	-	-	_	_	-	_	-	_	
(0x94)	Reserved	-	-	-	-	_	_	-	_	
(0x93)	Reserved	-	-	-	-	-	_	-	_	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	-	-	-	_	-	-	-	
(0x8F)	Reserved	-	-	-	-	-	-	-	-	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	Reserved	-	_	_	_	_	_	_	-	
(0x8C)	Reserved	-	-	Timor/Co	untor1 = Output C	- Pagistar	P High Puto	-	-	44.4
(0x8B)	OCR1BH				unter1 — Output C					114
(0x8A) (0x89)	OCR1BL OCR1AH				unter1 — Output C unter1 — Output C					114 114
(0x89) (0x88)	OCR1AL				unter1 — Output C					114
(0x87)	ICR1H				Counter1 - Input		•			114
(0x87)	ICR1L				Counter1 — Input					114
(0x85)	TCNT1H				er/Counter1 — Cou					113
(0x84)	TCNT1L				er/Counter1 — Co		•			113
(0x83)	Reserved	-	_	-	-	-	-	_	-	
(0x82)	TCCR1C	FOC1A	FOC1B	-	-	=	=	-	-	113
(0x81)	TCCR1B	ICNC1	ICES1	_	WGM13	WGM12	CS12	CS11	CS10	112
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	_	-	WGM11	WGM10	110
(0x7F)	DIDR1	-	-	-	-	-	=	AIN1D	AIN0D	163
(0x7E)	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	180
		_	_	_	_	_	_	_	_	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7C)	ADMUX	-	REFS0	ADLAR		MUX3	MUX2	MUX1	MUX0	176
(0x7C) (0x7B)	ADCSRB		ACME	ADLAN –	_	- WOAS	ADTS2	ADTS1	ADTS0	162, 179
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADTO1	ADPS0	178
(0x79)	ADCH					gister High byte				179
(0x78)	ADCL				ADC Data Re	gister Low byte				179
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	_	-	-	-	-	-	
(0x75)	Reserved	-	-	-	-	-	-	-	-	
(0x74)	Reserved	_	-	-	-	-	_	-	_	
(0x73) (0x72)	Reserved Reserved	_	_	_	-	_	_	_	_	
(0x72) (0x71)	Reserved		_		_	_			_	
(0x70)	Reserved	_	_	_	_	_	_	_	_	
(0x6F)	TIMSK1	_	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	114
(0x6E)	TIMSK0	_	-	_	_	-	OCIE0B	OCIE0A	TOIE0	87
(0x6D)	PCMSK2	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	59
(0x6C)	PCMSK1	PCINT15	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	59
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	59
(0x6A)	PCMSK3	_	_	-	-	PCINT27	PCINT26	PCINT25	PCINT24	59
(0x69)	EICRA PCICR	_	_	_	_	ISC11 PCIE3	ISC10 PCIE2	ISC01 PCIE1	ISC00 PCIE0	55 57
(0x68) (0x67)	Reserved	_	_	_	_	POIE3	PCIE2	PCIET	PCIEU -	31
(0x66)	OSCCAL				Oscillator Calil	bration Register				34
(0x65)	Reserved	_	-	-	-	-	_	=	_	-
(0x64)	PRR	PRTWI	-	PRTIM0	_	PRTIM1	PRSPI	-	PRADC	40
(0x63)	Reserved	-	-	_	-	-	-	-	-	
(0x62)	Reserved	_	-	-	-	-	-	_	-	
(0x61)	CLKPR	CLKPCE	_	_	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	34
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	49
0x3F (0x5F) 0x3E (0x5E)	SREG SPH		Т	Н	S	V	N -	Z SP9	C SP8	9
0x3E (0x5E)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	11
0x3C (0x5C)	Reserved	-	-	-	-	-	-	-	-	
0x3B (0x5B)	Reserved	_	_	_	_	-	_	_	_	
0x3A (0x5A)	Reserved	-	-	-	-	-	-	-	-	
0x39 (0x59)	Reserved	-	-	_	-	-	-	-	-	
0x38 (0x58)	Reserved	-		-	-				-	
0x37 (0x57)	SPMCSR	_	RWWSB	_	СТРВ	RFLB	PGWRT	PGERS	SELFPRGEN	186
0x36 (0x56) 0x35 (0x55)	Reserved MCUCR	_	BODS	BODSE	PUD	_	-	_	_	40, 77
0x34 (0x54)	MCUSR		-		-	WDRF	BORF	EXTRF	PORF	49
0x33 (0x53)	SMCR	-	-	_	_	-	SM1	SM0	SE SE	39
0x32 (0x52)	Reserved	-	-	_	-	-	_	-	-	
0x31 (0x51)	DWDR		•		debugWire [Data Register				182
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	162
0x2F (0x4F)	Reserved	-	-	-			-	=	-	
0x2E (0x4E)	SPDR	CDIE	MCCI	_	SPI Data	a Register		_	CDIOY	128
0x2D (0x4D) 0x2C (0x4C)	SPSR SPCR	SPIF SPIE	WCOL SPE	DORD	– MSTR	- CPOL	- CPHA	SPR1	SPI2X SPR0	127 126
0x2B (0x4B)	GPIOR2	OI IL	J OF L	DOND		se I/O Register 2	OLITA	OI III	Oi NO	27
0x2A (0x4A)	GPIOR1					se I/O Register 1				27
0x29 (0x49)	Reserved	-	-	-	-	_	-	ı	-	
0x28 (0x48)	OCR0B			Ti	mer/Counter0 Outp	ut Compare Regi	ster B			87
0x27 (0x47)	OCR0A			Ti	mer/Counter0 Outp		ster A			86
0x26 (0x46)	TCNT0					inter0 (8-bit)	I			86
0x25 (0x45)	TCCR0A	-	_	-	-	CTC0	CS02	CS01	CS00	85
0x24 (0x44) 0x23 (0x43)	Reserved GTCCR	TSM	_	_	-	_	_	-	PSRSYNC	118
0x23 (0x43) 0x22 (0x42)	Reserved	1 SMI	_	_	_	_	_		ranativo	110
0x22 (0x42) 0x21 (0x41)	EEARL		_	_	EEPROM Address	Register Low Rv			_	25
0x20 (0x40)	EEDR					Data Register				25
0x1F (0x3F)	EECR	ı	-	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	25
0x1E (0x3E)	GPIOR0				General Purpos	se I/O Register 0				27
0x1D (0x3D)	EIMSK	-	-	-	-	-	-	INT1	INT0	56
0x1C (0x3C)	EIFR	-	-	-	-	_	-	INTF1	INTF0	56
0x1B (0x3B)	PCIFR	=	-	_	-	PCIF3	PCIF2	PCIF1	PCIF0	58

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1A (0x3A)	Reserved	-	-	-	-	-	-	-	-	
0x19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0x18 (0x38)	Reserved	-	-	-	-	-	-	-	-	
0x17 (0x37)	Reserved	-	_	-	-	-	-	-	-	
0x16 (0x36)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	115
0x15 (0x35)	TIFR0	П	-	-	-	П	OCF0B	OCF0A	TOV0	87
0x14 (0x34)	Reserved	-	-	-	=	ı	-	-	-	
0x13 (0x33)	Reserved	П	-	-	-	П	-	П	-	
0x12 (0x32)	PORTCR	BBMD	BBMC	BBMB	BBMA	PUDD	PUDC	PUDB	PUDA	77
0x11 (0x31)	Reserved	-	-	-	=	-	-	-	-	
0x10 (0x30)	Reserved	П	-	-	-	П	-	П	-	
0x0F (0x2F)	Reserved	-	-	-	=	-	-	-	_	
0x0E (0x2E)	PORTA	-	-	-	=	PORTA3	PORTA2	PORTA1	PORTA0	78
0x0D (0x2D)	DDRA	П	-	-	-	DDA3	DDA2	DDA1	DDA0	78
0x0C (0x2C)	PINA	-	-	-	=	PINA3	PINA2	PINA1	PINA0	78
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	79
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	79
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	79
0x08 (0x28)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	78
0x07 (0x27)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	78
0x06 (0x26)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	79
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	78
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	78
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	78
0x02 (0x22)	Reserved	-	-	-	=	-	-	ı	-	
0x01 (0x21)	Reserved	-	-	-	-	-	-	-	-	
0x00 (0x20)	Reserved	-	-	-	=	=	-	=	-	

Note:

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATtiny48/88 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1 1
BCLR	s	Flag Clear	SREG(s) ← 0	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	T ← Rr(b)	T	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC	110, 5	Set Carry	C ← 1	C	1
CLC		Clear Carry	C ← 0	C	1 1
SEN		Set Negative Flag	N ← 1	N	1 1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 1 Z ← 0	Z	1
		<u> </u>		1	
SEI		Global Interrupt Enable		<u> </u>	1
CLI		Global Interrupt Disable	1←0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET	ļ	Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH	1	Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER	NSTRUCTIONS				
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	Rd ← (Z)	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow \Pi$ $(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	†	$(Y) \leftarrow Rr$		2
		Store Indirect	, ,	None	
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow \operatorname{Rr}, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	(Z + q) ← Rr	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM	ļ	Load Program Memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM		Store Program Memory	(Z) ← R1:R0	None	-
IN	Rd, P	In Port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL IN:	STRUCTIONS				
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
		* *			+
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1

6.2 ATtiny88

Speed (MHz)	Power Supply	Ordering Code ⁽¹⁾	Package ⁽²⁾	Operational Range
12	1.8 – 5.5V	ATtiny88-MMU ATtiny88-MMUR ATtiny88-MMH ATtiny88-MMHR ATtiny88-PU ATtiny88-AU ATtiny88-AUR ATtiny88-CCU ATtiny88-CCUR ATtiny88-MU ATtiny88-MU ATtiny88-MU	28M1 28M1 28M1 28M1 28P3 32A 32A 32CC1 32CC1 32M1-A 32M1-A	Industrial (-40°C to +85°C) ⁽³⁾

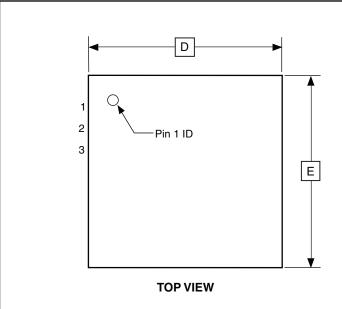
Notes: 1. Code indicators:

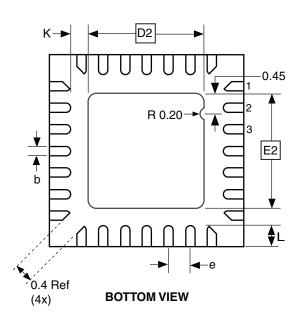
- H: NiPdAu lead finish

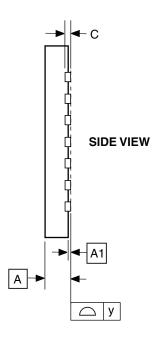
- U: matte tin

- R: tape & reel

- 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard-ous Substances (RoHS).
- 3. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.


	Package Type
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm, Quad Flat No-Lead (QFN)
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
32CC1	32-ball (6 x 6 Array), 0.50 mm Pitch, 4 x 4 x 0.6 mm, Ultra Thin, Fine-Pitch Ball Grid Array Package (UFBGA)
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm, Quad Flat No-Lead (QFN)




7. Packaging Information

7.1 28M1

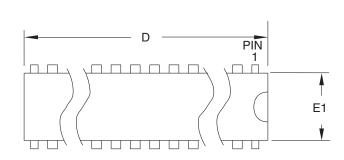
Note: The terminal #1 ID is a Laser-marked Feature.

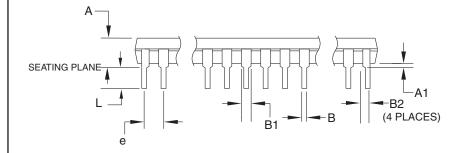
COMMON DIMENSIONS

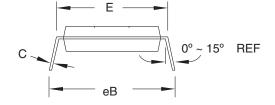
(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE		
Α	0.80	0.90	1.00			
A1	0.00	0.02	0.05			
b	0.17	0.22	0.27			
С		0.20 REF				
D	3.95	4.00	4.05			
D2	2.35	2.40	2.45			
E	3.95	4.00	4.05			
E2	2.35	2.40	2.45			
е		0.45				
L	0.35	0.40	0.45			
у	0.00	_	0.08			
K	0.20	_	_			

10/24/08




Package Drawing Contact: packagedrawings@atmel.com


TITLE 28M1, 28-pad, 4 x 4 x 1.0 mm Body, Lead Pitch 0.45 mm, 2.4 x 2.4 mm Exposed Pad, Thermally Enhanced Plastic Very Thin Quad Flat No Lead Package (VQFN)

GPC	DRAWING NO.	REV.
ZBV	28M1	В

7.2 28P3

Note: 1. Dimensions D and E1 do not include mold Flash or Protrusion.

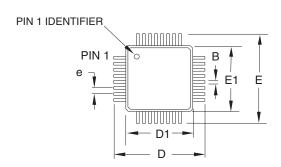

Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").

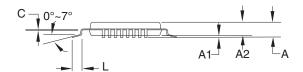
COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	4.5724	
A1	0.508	_	_	
D	34.544	_	34.798	Note 1
E	7.620	_	8.255	
E1	7.112	_	7.493	Note 1
В	0.381	_	0.533	
B1	1.143	_	1.397	
B2	0.762	_	1.143	
L	3.175	_	3.429	
С	0.203	_	0.356	
eВ	_	_	10.160	
е				

09/28/01


TITLE 28P3, 28-lead (0.300"/7.62 mm Wide) Plastic Dual Inline Package (PDIP)

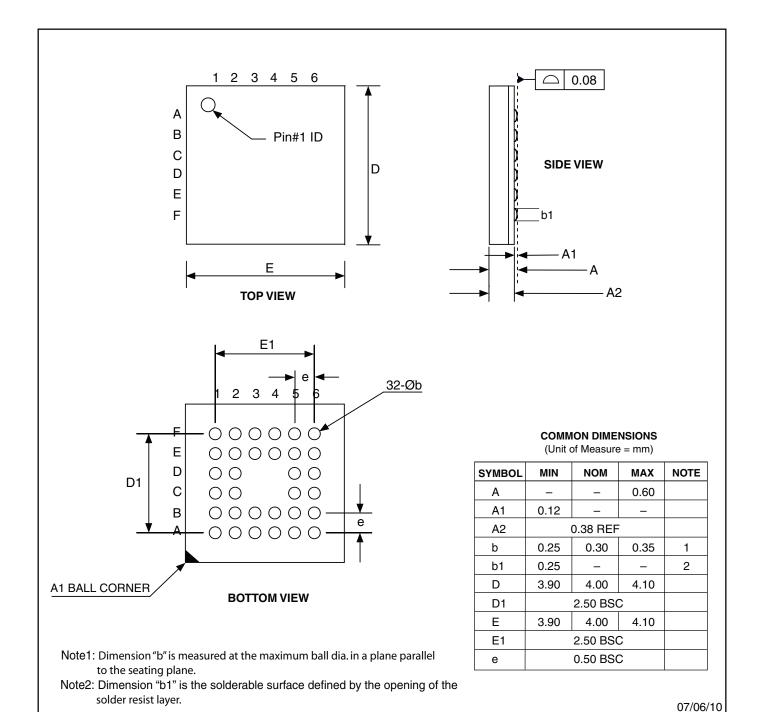

DRAWING NO. REV. 28P3 B

7.3 32A

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	1.20	
A1	0.05	_	0.15	
A2	0.95	1.00	1.05	
D	8.75	9.00	9.25	
D1	6.90	7.00	7.10	Note 2
Е	8.75	9.00	9.25	
E1	6.90	7.00	7.10	Note 2
В	0.30	_	0.45	
С	0.09	_	0.20	
L	0.45	_	0.75	
е		0.80 TYP		


2010-10-20

Notes.

- 1. This package conforms to JEDEC reference MS-026, Variation ABA.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.10 mm maximum.

		_0.0	
0005 Oll Dl.	TITLE	DRAWING NO.	REV.
2325 Orchard Parkway San Jose, CA 95131	32A , 32-lead, 7 x 7 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)	32A	С

7.4 32CC1

		TITLE
AMEL	Package Drawing Contact:	32CC1,
	packagedrawings@atmel.com	packag

32CC1, 32-ball (6 x 6 Array), 4 x 4 x 0.6 mm package, ball pitch 0.50 mm, Ultra Thin, Fine-Pitch Ball Grid Array (UFBGA)

GPC DRAWING NO. REV.

CAG 32CC1 B

7.5 32M1-A

5/25/06

			DRAWING NO.	REV.	
A		2325 Orchard Parkway San Jose, CA 95131	32M1-A , 32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, 3.10 mm Exposed Pad, Micro Lead Frame Package (MLF)	32M1-A	E

8. Errata

8.1 ATtiny48

8.1.1 Rev. C

No known errata.

8.1.2 Rev. B

Not sampled.

8.1.3 Rev. A

Not sampled.

8.2 ATtiny88
8.2.1 Rev. C

No known errata.
8.2.2 Rev. B

No known errata.

8.2.3 Rev. A

Not sampled.

9. Datasheet Revision History

9.1 Rev. 8008H - 04/11

- 1. Updated:
 - "Ordering Information" on page 283, added tape & reel code -MMUR

9.2 Rev. 8008G - 04/11

- 1. Updated:
 - "Block Diagram" on page 5
 - "Memories" on page 17
 - "Clock System" on page 28
 - "Lock Bits, Fuse Bits and Device Signature" on page 188
 - "External Programming" on page 191
 - "Speed" on page 208
 - "Two-Wire Serial Interface Characteristics" on page 212
- Added:
 - "Capacitive Touch Sensing" on page 7
 - "Register Description" on page 15
 - "Overview" on page 129
 - "Compatibility with SMBus" on page 156
- 3. Changed document status from "Preliminary" to "Final".

9.3 Rev. 8008F - 06/10

- 1. Updated notes 1 and 10 in table in Section 22.2 "DC Characteristics" on page 206.
- 2. Updated package drawing in Section 27.4 "32CC1" on page 288.
- 3. Updated bit syntax throughout the datasheet, e.g. from CS02:0 to CS0[2:0].

9.4 Rev. 8008E - 05/10

- Section 24. "Register Summary" on page 277, added SPH at address 0x3E.
- 2. Section 27.1 "28M1" on page 285 updated with correct package drawing.

9.5 Rev. 8008D - 03/10

- 1. Separated Typical Characteristic plots, added Section 23.2 "ATtiny88" on page 248.
- 2. Updated:
 - Section 1.1 "Pin Descriptions" on page 3, Port D, adjusted texts 'sink and source' and 'high sink'.
 - Table 6-3 on page 28 adjusted, to fix TBD.
 - Section 6.2.3 "Internal 128 kHz Oscillator" on page 31 adjusted, to fix TBD.
 - Section 8.4 "Watchdog Timer" on page 46, updated.
 - Section 22.2 "DC Characteristics" on page 206, updated TBD in notes 5 and 8.
- 3. Added:

- UFBGA package (32CC1) in, "Features" on page 1, "Pin Configurations" on page 2, Section 26. "Ordering Information" on page 283, and Section 27. "Packaging Information" on page 285
- Addresses in all Register Desc. tables, with cross-references to Register Summary
- Tape and reel in Section 26. "Ordering Information" on page 283

9.6 Rev. 8008C - 03/09

- 1. Updated sections:
 - "Features" on page 1
 - "Reset and Interrupt Handling" on page 12
 - "EECR EEPROM Control Register" on page 25
 - "Features" on page 129
 - "Bit Rate Generator Unit" on page 135
 - "TWBR TWI Bit Rate Register" on page 156
 - "TWHSR TWI High Speed Register" on page 160
 - "Analog Comparator" on page 161
 - "Overview" on page 164
 - "Operation" on page 165
 - "Starting a Conversion" on page 166
 - "Programming the Lock Bits" on page 199
 - "Absolute Maximum Ratings*" on page 206
 - "DC Characteristics" on page 206
 - "Speed" on page 208
 - "Register Summary" on page 277
- 2. Added sections
 - "High-Speed Two-Wire Interface Clock clk_{TWIHS}" on page 29
 - "Analog Comparator Characteristics" on page 210
- 3. Updated Figure 6-1 on page 28.
- 4. Updated order codes on page 283 and page 284 to reflect changes in leadframe composition.

9.7 Rev. 8008B - 06/08

- 1. Updated introduction of "I/O-Ports" on page 60.
- 2. Updated "DC Characteristics" on page 206.
- 3. Added "Typical Characteristics" on page 219.

9.8 Rev. 8008A - 06/08

1. Initial revision.

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: (+1)(408) 441-0311 Fax: (+1)(408) 487-2600

International

Atmel Asia Limited

Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG

Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH

Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY

Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621 Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 JAPAN

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

avr@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2011 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, AVR[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.