

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	8-Bit
Speed	12MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	24
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VFQFN Exposed Pad
Supplier Device Package	28-VQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/attiny88-mmur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Pin Configurations

Figure 1-1. Pinout of ATtiny48/88

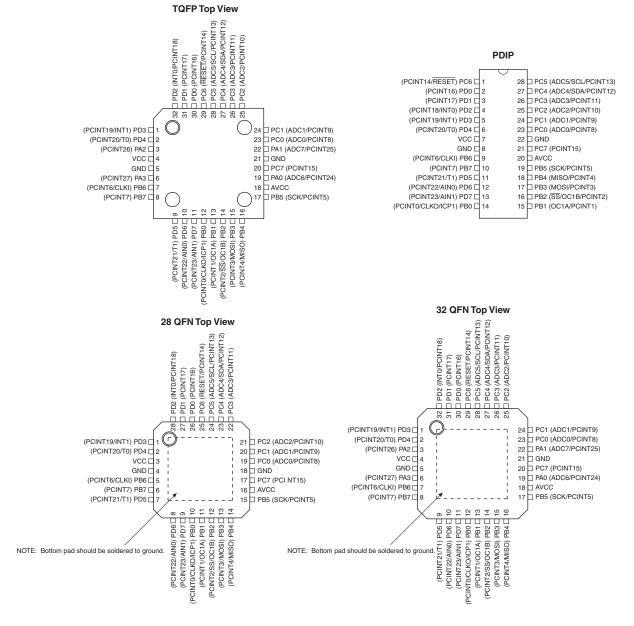


Table 1-1.32 UFBGA Top View. See page 288.

	1	2	3	4	5	6
Α	PD2	PD1	PC6	PC4	PC2	PC1
В	PD3	PD4	PD0	PC5	PC3	PC0
С	GND	PA2			PA1	GND
D	VCC	PA3			PC7	PA0
E	PB6	PD6	PB0	PB2	AVCC	PB5
F	PB7	PD5	PD7	PB1	PB3	PB4

ATtiny48/88

1.1 Pin Descriptions

1.1.1 VCC

Digital supply voltage.

1.1.2 AVCC

 AV_{CC} is the supply voltage pin for the A/D converter and a selection of I/O pins. This pin should be externally connected to V_{CC} even if the ADC is not used. If the ADC is used, it is recommended this pin is connected to V_{CC} through a low-pass filter, as described in "Analog Noise Canceling Techniques" on page 172.

The following pins receive their supply voltage from AV_{CC}: PC7, PC[5:0] and (in 32-lead packages) PA[1:0]. All other I/O pins take their supply voltage from V_{CC} .

1.1.3 GND

Ground.

1.1.4 Port A (PA3:0)

Port A is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PA[3:0] output buffers have symmetrical drive characteristics with both sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

This port is available in 32-lead TQFP, 32-pad QFN and 32-ball UFBGA packages, only.

1.1.5 Port B (PB7:0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the internal clock operating circuit.

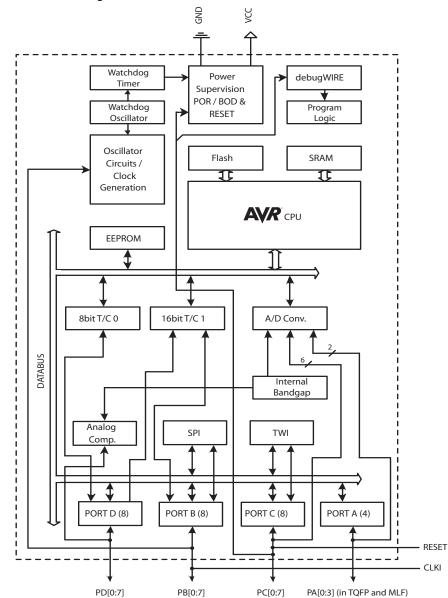
The various special features of Port B are elaborated in "Alternate Functions of Port B" on page 69.

1.1.6 Port C (PC7, PC5:0)

Port C is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC7 and PC[5:0] output buffers have symmetrical drive characteristics with both sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

1.1.7 PC6/RESET

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.


If the RSTDISBL Fuse is unprogrammed, PC6 is used as a reset input. A low level on this pin for longer than the minimum pulse width will generate a reset, even if the clock is not running. The



2. Overview

The ATtiny48/88 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny48/88 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATtiny48/88 provides the following features:

- 4/8K bytes of In-System Programmable Flash
- 64/64 bytes EEPROM
- 256/512 bytes SRAM
- 24 general purpose I/O lines
 - 28 in 32-lead TQFP, 32-pad QFN, and 32-ball UFBGA packages
- 32 general purpose working registers
- Two flexible Timer/Counters with compare modes
- Internal and external interrupts
- A byte-oriented, 2-wire serial interface
- An SPI serial port
- A 6-channel, 10-bit ADC
 - 8 in 32-lead TQFP, 32-pad QFN, and 32-ball UFBGA packages
- A programmable Watchdog Timer with internal oscillator
- Three software selectable power saving modes.

The device includes the following modes for saving power:

- Idle mode: stops the CPU while allowing the timer/counter, ADC, analog comparator, SPI, TWI, and interrupt system to continue functioning
- ADC Noise Reduction mode: minimizes switching noise during ADC conversions by stopping the CPU and all I/O modules except the ADC
- Power-down mode: registers keep their contents and all chip functions are disabled until the next interrupt or hardware reset

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an on-chip boot program running on the AVR core. The boot program can use any interface to download the application program in the Flash memory. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATtiny48/88 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATtiny48/88 AVR is supported by a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators and evaluation kits.

2.2 Comparison Between ATtiny48 and ATtiny88

The ATtiny48 and ATtiny88 differ only in memory sizes, as summarised in Table 2-1, below.

Device	Flash	EEPROM	RAM
ATtiny48	4K Bytes	64 Bytes	256 Bytes
ATtiny88	8K Bytes	64 Bytes	512 Bytes

Table 2-1.Memory Size Summary

4. Register Summary

Address		D:4 7	Dit C	Dia c		Dit 0	DH 0	D:4 4	DH 0	Dawa
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-	-	-	-	-	-	-	-	
(0xFE)	Reserved	-	_	-	-	-	_	_	-	
(0xFD)	Reserved	-	-	-	-	-	-	-	-	
(0xFC)	Reserved	-	-	-	-	-	-	-	-	
(0xFB)	Reserved	-	-	-	-	-	-	-	-	
(0xFA)	Reserved	-	-	-	-	-	-	-	-	
(0xF9)	Reserved	-	-	-	-	-	-	-	-	
(0xF8)	Reserved	-	-	-	-	-	-	-	-	
(0xF7)	Reserved	-	-	-	-	-	-	_	-	
(0xF6)	Reserved	-	-	-	-	-	-	-	-	
(0xF5)	Reserved	-	-	-	-	-	-	-	-	
(0xF4)	Reserved	-	-	-	-	-	-	-	-	
(0xF3)	Reserved	-	-	-	-	-	-	-	-	
(0xF2)	Reserved	-	-	-	-	-	-	-	-	
(0xF1)	Reserved	-	-	-	-	-	-	-	-	
(0xF0)	Reserved	-	-	-	-	-	-	-	-	
(0xEF)	Reserved	-	-	-	-	-	-	-	-	
(0xEE)	Reserved	-	-	-	-	-	-	-	-	
(0xED)	Reserved	-	-	-	-	-	-	-	-	
(0xEC)	Reserved	_	_	_	-	-	-	_	_	
(0xEB)	Reserved	_	-	-	-	-	-	-	-	
(0xEA)	Reserved	_	-	-	-	-	-	-	-	
(0xE9)	Reserved	_	-	-	-	-	-	-	-	
(0xE8)	Reserved	_	-	_	-	-	-	-	-	
(0xE7)	Reserved	-	-	-	-	-	-	-	-	
(0xE6)	Reserved	-	-	-	-	-	-	-	-	
(0xE5)	Reserved	-	-	-	-	-	-	-	-	
(0xE4)	Reserved	-	-	-	-	-	-	-	-	
(0xE3)	Reserved	-	-	-	-	-	-	-	-	
(0xE2)	Reserved	-	-	-	-	-	-	-	-	
(0xE1)	Reserved	-	-	-	-	-	-	-	-	
(0xE0)	Reserved	-	-	-	-	-	-	-	-	
(0xDF)	Reserved	-	-	-	-	-	-	-	-	
(0xDE)	Reserved	-	-	-	-	-	-	-	-	
(0xDD)	Reserved	-	_	-	-	-	_	_	-	
(0xDC)	Reserved	-	-	-	-	-	-	_	-	
(0xDB)	Reserved	-	-	-	-	-	-	-	-	
(0xDA)	Reserved	-	-	-	-	-	-	-	-	
(0xD9)	Reserved	-	-	-	-	-	-	-	-	
(0xD8)	Reserved	-	-	-	-	-	-	-	-	
(0xD7)	Reserved	-	-	-	-	-	-	-	-	
(0xD6)	Reserved	-	-	-	-	-	-	-	-	
(0xD5)	Reserved	-	-	-	-	-	-	-	-	
(0xD4)	Reserved	-	-	-	-	-	-	-	-	
(0xD3)	Reserved	-	-	-	-	-	-	-	-	
(0xD2)	Reserved	_	_	_	-	-	-	_	_	
(0xD1)	Reserved	_	_	_	-	-	-	_	_	
(0xD0)	Reserved	-	-	-	-	-	-	-	-	
(0xCF)	Reserved	_	_	_	-	-	-	_	_	
(0xCE)	Reserved	_	_	_	-	-	-	_	_	
(0xCD)	Reserved	_	-	-	-	-	-	-	-	
(0xCC)	Reserved	-	-	-	-	-	-	-	-	
(0xCB)	Reserved	_	-	-	-	-	-	-	-	
(0xCA)	Reserved	_	-	-	-	-	-	-	-	
(0xC9)	Reserved	_	-	-	-	-	-	-	-	
(0xC8)	Reserved	_	-	-	-	-	-	-	-	
(0xC7)	Reserved	_	-	-	-	-	-	-	-	
(0xC6)	Reserved	-	-	-	-	-	-	-	-	
(0xC5)	Reserved	-	-	-	-	-	-	-	-	
(0xC4)	Reserved	-	-	-	-	-	-	-	-	
(0xC3)	Reserved	-	-	-	-	-	-	-	-	
(0xC2)	Reserved	-	-	-	-	-	-	-	-	
(0xC1)	Reserved	-	-	-	-	-	-	-	-	
(0xC0)	Reserved	-	-	-	-	-	-	-	-	
(0xBF)	Reserved	_	_	-	-	-	-	-	-	

8

ATtiny48/88

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
					Dit 4					
(0xBE) (0xBD)	TWHSR TWAMR	– TWAM6	– TWAM5	– TWAM4	– TWAM3	– TWAM2	– TWAM1	– TWAM0	TWHS	160 160
(0xBD) (0xBC)	TWAMR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	- I WAIVIO	– TWIE	156
(0xBC) (0xBB)	TWDR	TVVIINT	IWLA	IWSIA	2-wire Serial Inter			_		159
(0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	159
(0xB9)	TWSR	TWA0	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	158
(0xB8)	TWBR				2-wire Serial Interfa					156
(0xB7)	Reserved	_	-	_	-	_	_	_	-	
(0xB6)	Reserved	-	-	-	-	-	-	_	-	
(0xB5)	Reserved	-	-	-	-	-	-	-	-	
(0xB4)	Reserved	-	-	-	-	-	-	-	-	
(0xB3)	Reserved	-	-	-	-	-	-	_	-	
(0xB2)	Reserved	-	-	-	-	-	-	-	-	
(0xB1)	Reserved	-	-	-	-	-	-	_	-	
(0xB0)	Reserved	-	-	-	-	-	-	-	-	
(0xAF)	Reserved	-	-	-	-	-	-	-	-	
(0xAE)	Reserved	-	-	-	-	-	-	-	-	
(0xAD)	Reserved	-	-	-	-	-	-	-	-	
(0xAC)	Reserved	-	-	-	-	-	-	-	-	
(0xAB)	Reserved	-	-	-	-	-	-	-	-	
(0xAA)	Reserved	-	-	-	-	-	-	-	-	
(0xA9)	Reserved	-	-	-	-	-	-	-	-	
(0xA8)	Reserved	-	-	-	-	-	-	-	-	
(0xA7)	Reserved	-	-	-	-	-	-	_	-	
(0xA6)	Reserved	-	-	-	-	-	-	-	-	
(0xA5)	Reserved	-	-	-	-	-	-	-	-	
(0xA4)	Reserved	-	-	-	-	-	-	-	-	
(0xA3)	Reserved	-	-	-	-	-	-	-	-	
(0xA2)	Reserved	-	_	_	-	_	-	_	-	
(0xA1) (0xA0)	Reserved Reserved	_			_		_			
(0xA0) (0x9F)	Reserved	_	_	_	_	_	_	_	_	
(0x9E)	Reserved			_				_		
(0x9D)	Reserved	_	_	_	_	_	_	_	_	
(0x9C)	Reserved	_	_	_	_	_	_	_	_	
(0x9B)	Reserved	_	_	_	_	_	_	_	_	
(0x9A)	Reserved	-	-	-	-	-	-	_	-	·
(0x99)	Reserved	-	-	-	-	-	-	_	-	
(0x98)	Reserved	_	-	-	_	-	-	_	_	
(0x97)	Reserved	-	-	-	-	-	-	-	-	
(0x96)	Reserved	-	-	-	-	-	-	_	-	
(0x95)	Reserved	-	-	-	-	-	-	-	-	
(0x94)	Reserved	-	-	-	-	-	-	-	-	
(0x93)	Reserved	-	-	-	-	-	-	-	-	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	-	-	-	-	-	-	-	
(0x8F)	Reserved	-	-	-	-	-	-	-	-	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	Reserved	-	-	-	-	-	-	-	-	
(0x8C)	Reserved	-	-	- Timer/Co		-	–	-	-	444
(0x8B)	OCR1BH				unter1 - Output C		· · ·			114
(0x8A)	OCR1BL				unter1 - Output C					114
(0x89)	OCR1AH				unter1 - Output C					114 114
(0x88) (0x87)	OCR1AL ICR1H				ounter1 - Output C					114
(0x87) (0x86)	ICR1H				Counter1 — Input (Counter1 — Input					114
(0x86) (0x85)	TCNT1H				er/Counter1 — Co					114
(0x83) (0x84)	TCNT1L				er/Counter1 — Co	, , ,				113
(0x84) (0x83)	Reserved	_	_	-				_	-	110
(0x82)	TCCR1C	FOC1A	FOC1B	_	_	_	-	_	_	113
(0x81)	TCCR1B	ICNC1	ICES1	_	WGM13	WGM12	CS12	CS11	CS10	112
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	110
	DIDR1	_	-	-	-	_	-	AIN1D	AINOD	163
(0x7F)										
(0x7F) (0x7E)	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	180

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1A (0x3A)	Reserved	_	-	-	-	_	_	-	-	
0x19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0x18 (0x38)	Reserved	-	-	-	-	-	-	-	-	
0x17 (0x37)	Reserved	-	-	-	-	-	-	-	-	
0x16 (0x36)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	115
0x15 (0x35)	TIFR0	-	-	-	-	-	OCF0B	OCF0A	TOV0	87
0x14 (0x34)	Reserved	-	-	-	-	-	-	-	-	
0x13 (0x33)	Reserved	-	-	-	-	-	-	-	-	
0x12 (0x32)	PORTCR	BBMD	BBMC	BBMB	BBMA	PUDD	PUDC	PUDB	PUDA	77
0x11 (0x31)	Reserved	-	-	-	-	-	-	-	-	
0x10 (0x30)	Reserved	-	-	-	-	-	-	-	-	
0x0F (0x2F)	Reserved	-	-	-	-	-	-	-	-	
0x0E (0x2E)	PORTA	-	-	-	-	PORTA3	PORTA2	PORTA1	PORTA0	78
0x0D (0x2D)	DDRA	-	-	-	-	DDA3	DDA2	DDA1	DDA0	78
0x0C (0x2C)	PINA	-	-	-	-	PINA3	PINA2	PINA1	PINA0	78
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	79
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	79
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	79
0x08 (0x28)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	78
0x07 (0x27)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	78
0x06 (0x26)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	79
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	78
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	78
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	78
0x02 (0x22)	Reserved	-	-	-	-	_	-	-	-	
0x01 (0x21)	Reserved	-	-	-	-	-	-	-	-	
0x00 (0x20)	Reserved	-	-	-	-	-	-	-	-	

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. I/O Registers within the address range 0x00 – 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

- Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATtiny48/88 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

ATtiny48/88

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	Ν	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	← 1	1	1
CLI		Global Interrupt Disable	I ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER I	NSTRUCTIONS			-	
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow \operatorname{Rr}, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	$(Z) \leftarrow Rr$	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	$(k) \leftarrow Rr$	None	2
LPM		Load Program Memory	$R0 \leftarrow (Z)$	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z + 1$	None	3
SPM		Store Program Memory	(Z) ← R1:R0	None	-
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	$P \leftarrow Rr$	None	1
PUSH	Rr	Push Register on Stack		None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL INS			1		
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

6. Ordering Information

6.1 ATtiny48

Speed (MHz)	Power Supply	Ordering Code ⁽¹⁾	Package ⁽²⁾	Operational Range
12	1.8 – 5.5V	ATtiny48-MMU ATtiny48-MMUR ATtiny48-MMH ATtiny48-PU ATtiny48-PU ATtiny48-AU ATtiny48-AUR ATtiny48-AUR ATtiny48-CCU ATtiny48-MU ATtiny48-MU	28M1 28M1 28M1 28P3 32A 32A 32CC1 32CC1 32CC1 32M1-A 32M1-A	Industrial (-40°C to +85°C) ⁽³⁾

Notes: 1. Code indicators:

- H: NiPdAu lead finish
- U: matte tin
- R: tape & reel
- 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS).
- 3. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

	Package Type
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm, Quad Flat No-Lead (QFN)
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
32CC1	32-ball (6 x 6 Array), 0.50 mm Pitch, 4 x 4 x 0.6 mm, Ultra Thin, Fine-Pitch Ball Grid Array Package (UFBGA)
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm, Quad Flat No-Lead (QFN)

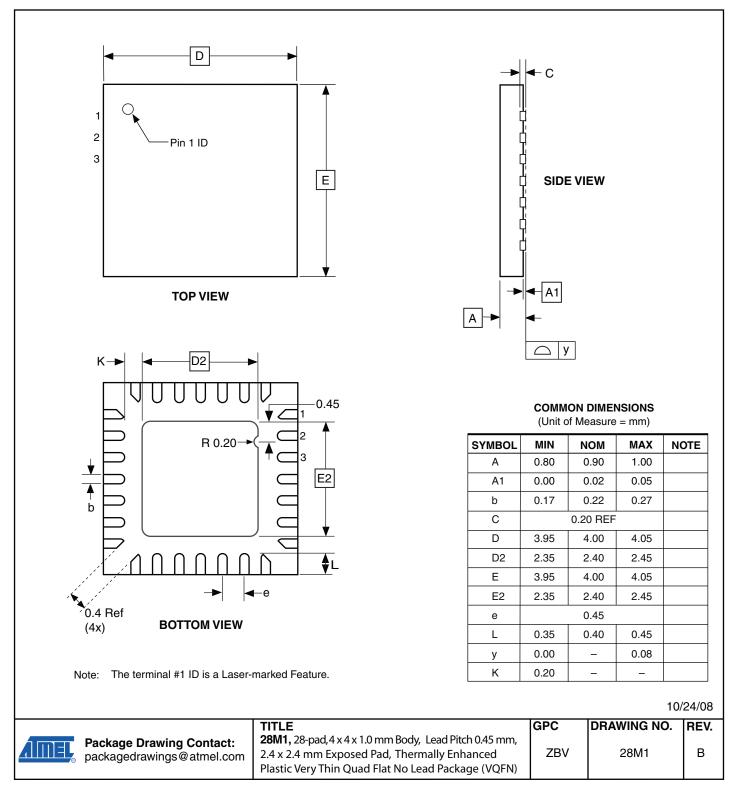
14 ATtiny48/88

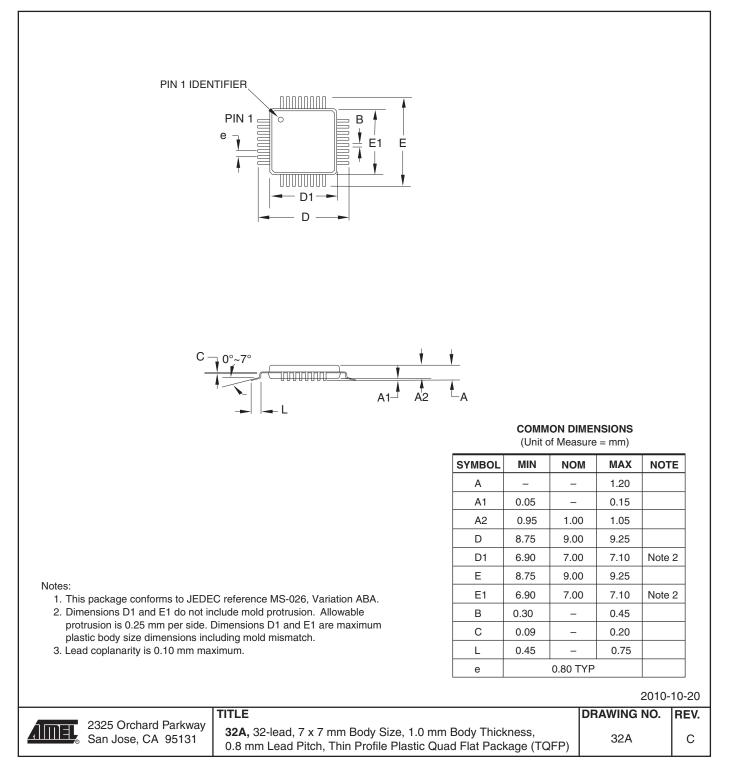
6.2 ATtiny88

Speed (MHz)	Power Supply	Ordering Code ⁽¹⁾	Package ⁽²⁾	Operational Range
12	1.8 – 5.5V	ATtiny88-MMU ATtiny88-MMUR ATtiny88-MMH ATtiny88-PU ATtiny88-PU ATtiny88-AU ATtiny88-AUR ATtiny88-AUR ATtiny88-CCU ATtiny88-CCUR ATtiny88-MU ATtiny88-MUR	28M1 28M1 28M1 28M1 28P3 32A 32A 32CC1 32CC1 32CC1 32M1-A 32M1-A	Industrial (-40°C to +85°C) ⁽³⁾

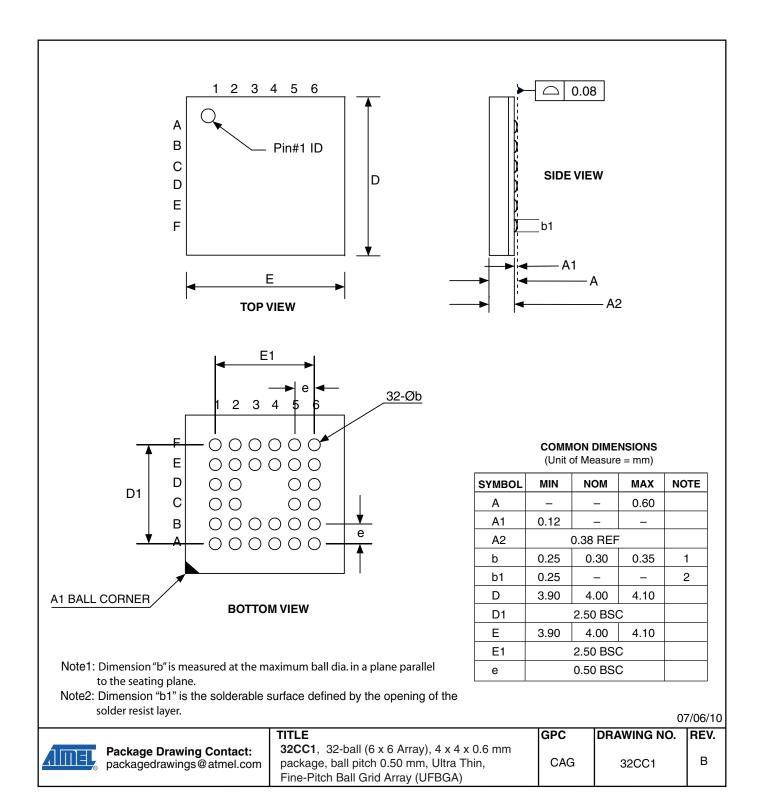
Notes: 1. Code indicators:

- H: NiPdAu lead finish
- U: matte tin
- R: tape & reel
- 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS).
- 3. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

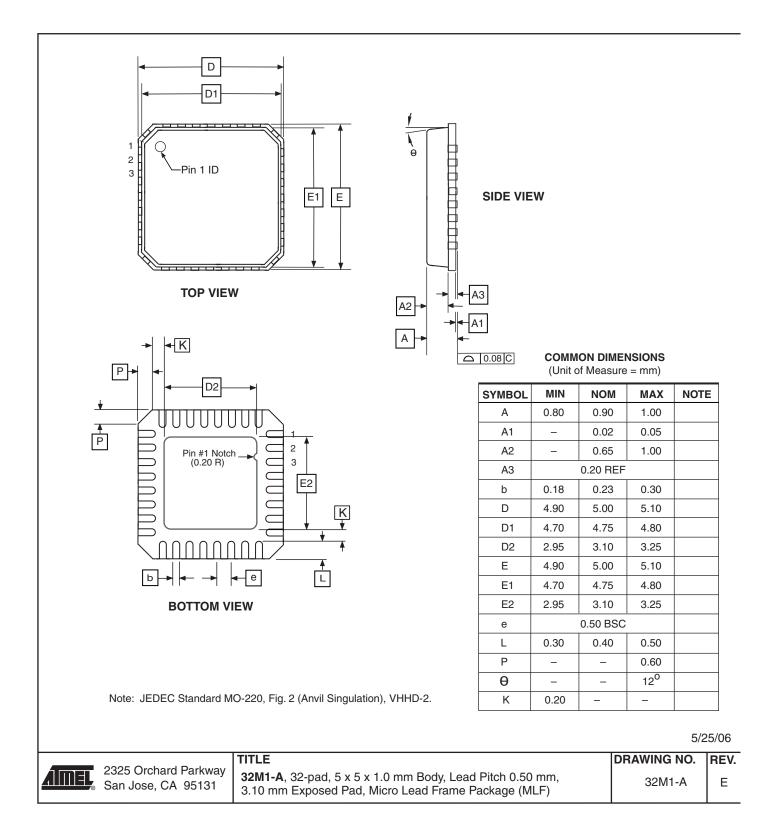

	Package Type
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm, Quad Flat No-Lead (QFN)
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
32CC1	32-ball (6 x 6 Array), 0.50 mm Pitch, 4 x 4 x 0.6 mm, Ultra Thin, Fine-Pitch Ball Grid Array Package (UFBGA)
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm, Quad Flat No-Lead (QFN)


7. Packaging Information

7.1 28M1



7.3 32A


7.4 32CC1

7.5 32M1-A

8. Errata

- 8.1 ATtiny48
- 8.1.1 Rev. C No known errata.
- 8.1.2 Rev. B Not sampled.
- 8.1.3 Rev. A Not sampled.

8.2 ATtiny88

- 8.2.1 Rev. C No known errata.
- 8.2.2 Rev. B No known errata.
- 8.2.3 Rev. A Not sampled.

9. Datasheet Revision History

9.1 Rev. 8008H - 04/11

- 1. Updated:
 - "Ordering Information" on page 283, added tape & reel code -MMUR

9.2 Rev. 8008G - 04/11

- 1. Updated:
 - "Block Diagram" on page 5
 - "Memories" on page 17
 - "Clock System" on page 28
 - "Lock Bits, Fuse Bits and Device Signature" on page 188
 - "External Programming" on page 191
 - "Speed" on page 208
 - "Two-Wire Serial Interface Characteristics" on page 212
- 2. Added:
 - "Capacitive Touch Sensing" on page 7
 - "Register Description" on page 15
 - "Overview" on page 129
 - "Compatibility with SMBus" on page 156
- 3. Changed document status from "Preliminary" to "Final".

9.3 Rev. 8008F - 06/10

- 1. Updated notes 1 and 10 in table in Section 22.2 "DC Characteristics" on page 206.
- 2. Updated package drawing in Section 27.4 "32CC1" on page 288.
- 3. Updated bit syntax throughout the datasheet, e.g. from CS02:0 to CS0[2:0].

9.4 Rev. 8008E - 05/10

- 1. Section 24. "Register Summary" on page 277, added SPH at address 0x3E.
- 2. Section 27.1 "28M1" on page 285 updated with correct package drawing.

9.5 Rev. 8008D - 03/10

- 1. Separated Typical Characteristic plots, added Section 23.2 "ATtiny88" on page 248.
- 2. Updated:
 - Section 1.1 "Pin Descriptions" on page 3, Port D, adjusted texts 'sink and source' and 'high sink'.
 - Table 6-3 on page 28 adjusted, to fix TBD.
 - Section 6.2.3 "Internal 128 kHz Oscillator" on page 31 adjusted, to fix TBD.
 - Section 8.4 "Watchdog Timer" on page 46, updated.
 - Section 22.2 "DC Characteristics" on page 206, updated TBD in notes 5 and 8.
- 3. Added:

- UFBGA package (32CC1) in, "Features" on page 1, "Pin Configurations" on page 2, Section 26. "Ordering Information" on page 283, and Section 27. "Packaging Information" on page 285
- Addresses in all Register Desc. tables, with cross-references to Register Summary
- Tape and reel in Section 26. "Ordering Information" on page 283

9.6 Rev. 8008C - 03/09

- 1. Updated sections:
 - "Features" on page 1
 - "Reset and Interrupt Handling" on page 12
 - "EECR EEPROM Control Register" on page 25
 - "Features" on page 129
 - "Bit Rate Generator Unit" on page 135
 - "TWBR TWI Bit Rate Register" on page 156
 - "TWHSR TWI High Speed Register" on page 160
 - "Analog Comparator" on page 161
 - "Overview" on page 164
 - "Operation" on page 165
 - "Starting a Conversion" on page 166
 - "Programming the Lock Bits" on page 199
 - "Absolute Maximum Ratings*" on page 206
 - "DC Characteristics" on page 206
 - "Speed" on page 208
 - "Register Summary" on page 277
- 2. Added sections
 - "High-Speed Two-Wire Interface Clock clk_{TWIHS} " on page 29
 - "Analog Comparator Characteristics" on page 210
- 3. Updated Figure 6-1 on page 28.
- 4. Updated order codes on page 283 and page 284 to reflect changes in leadframe composition.

9.7 Rev. 8008B - 06/08

- 1. Updated introduction of "I/O-Ports" on page 60.
- 2. Updated "DC Characteristics" on page 206.
- 3. Added "Typical Characteristics" on page 219.

9.8 Rev. 8008A - 06/08

1. Initial revision.

²⁴ **ATtiny48/88**

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1)(408) 441-0311 Fax: (+1)(408) 487-2600

International

Atmel Asia Limited Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 JAPAN Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com Technical Support avr@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNTIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© 2011 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, AVR[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.