

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	833MHz
Co-Processors/DSP	Communications; CPM, Security; SEC
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8555evtapf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

— Two full-duplex fast communications controllers (FCCs) that support the following protocols:

- ATM protocol through two UTOPIA level 2 interfaces
- IEEE Std 802.3TM/Fast Ethernet (10/100)
- HDLC
- Totally transparent operation
- Three full-duplex serial communications controllers (SCCs) support the following protocols:
 - High level/synchronous data link control (HDLC/SDLC)
 - LocalTalk (HDLC-based local area network protocol)
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART (1x clock mode)
 - Binary synchronous communication (BISYNC)
 - Totally transparent operation
 - QMC support, providing 64 channels per SCC using only one physical TDM interface
- Universal serial bus (USB) controller that is full/low-speed compliant (multiplexed on an SCC)
 - USB host mode
 - Supports USB slave mode
- Serial peripheral interface (SPI) support for master or slave
- $I^2 C$ bus controller
- Two serial management controllers (SMCs) supporting:
 - UART
 - Transparent
 - General-circuit interfaces (GCI)
- Time-slot assigner supports multiplexing of data from any of the SCCs and FCCs onto eight time-division multiplexed (TDM) interfaces. The time-slot assigner supports the following TDM formats:
 - T1/CEPT lines
 - T3/E3
 - Pulse code modulation (PCM) highway interface
 - ISDN primary rate
 - Freescale interchip digital link (IDL)
 - General circuit interface (GCI)
- User-defined interfaces
- Eight independent baud rate generators (BRGs)
- Four general-purpose 16-bit timers or two 32-bit timers
- General-purpose parallel ports—16 parallel I/O lines with interrupt capability
- 256 Kbytes of on-chip memory
 - Can act as a 256-Kbyte level-2 cache
 - Can act as a 256-Kbyte or two 128-Kbyte memory-mapped SRAM arrays

NP

Electrical Characteristics

- PCI 3.3-V compatible
- Selectable hardware-enforced coherency
- Selectable clock source (SYSCLK or independent PCI_CLK)
- Power management
 - Fully static 1.2-V CMOS design with 3.3- and 2.5-V I/O
 - Supports power save modes: doze, nap, and sleep
 - Employs dynamic power management
 - Selectable clock source (sysclk or independent PCI_CLK)
- System performance monitor
 - Supports eight 32-bit counters that count the occurrence of selected events
 - Ability to count up to 512 counter specific events
 - Supports 64 reference events that can be counted on any of the 8 counters
 - Supports duration and quantity threshold counting
 - Burstiness feature that permits counting of burst events with a programmable time between bursts
 - Triggering and chaining capability
 - Ability to generate an interrupt on overflow
- System access port
 - Uses JTAG interface and a TAP controller to access entire system memory map
 - Supports 32-bit accesses to configuration registers
 - Supports cache-line burst accesses to main memory
 - Supports large block (4-Kbyte) uploads and downloads
 - Supports continuous bit streaming of entire block for fast upload and download
- IEEE Std 1149.1TM-compatible, JTAG boundary scan
- 783 FC-PBGA package

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8555E. The MPC8555E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 Overall DC Electrical Characteristics

This section covers the ratings, conditions, and other characteristics.

Electrical Characteristics

Figure 3 shows the undershoot and overshoot voltage of the PCI interface of the MPC8555E for the 3.3-V signals, respectively.

Figure 3. Maximum AC Waveforms on PCI interface for 3.3-V Signaling

2.1.4 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Programmable Output Impedance (Ω)	Supply Voltage	Notes
Local bus interface utilities signals	25	OV _{DD} = 3.3 V	1
	42 (default)		
PCI signals	25		2
	42 (default)		
DDR signal	20	GV _{DD} = 2.5 V	
TSEC/10/100 signals	42	LV _{DD} = 2.5/3.3 V	
DUART, system control, I2C, JTAG	42	OV _{DD} = 3.3 V	

Table 3. Output Drive Capability

Notes:

1. The drive strength of the local bus interface is determined by the configuration of the appropriate bits in PORIMPSCR.

2. The drive strength of the PCI interface is determined by the setting of the PCI_GNT1 signal at reset.

3 Power Characteristics

The estimated typical power dissipation for this family of PowerQUICC III devices is shown in Table 4.

CCB Frequency (MHz)	Core Frequency (MHz)	V _{DD}	Typical Power ⁽³⁾⁽⁴⁾ (W)	Maximum Power ⁽⁵⁾ (W)
200	400	1.2	4.9	6.6
	500	1.2	5.2	7.0
	600	1.2	5.5	7.3
267	533	1.2	5.4	7.2
	667	1.2	5.9	7.7
	800	1.2	6.3	9.1
333	667	1.2	6.0	7.9
	833	1.2	6.5	9.3
	1000 ⁽⁶⁾	1.3	9.6	12.8

Table 4. Power Dissipation^{(1) (2)}

Notes:

1. The values do not include I/O supply power (OV_{DD}, LV_{DD} , GV_{DD}) or AV_{DD} .

- 2. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Any customer design must take these considerations into account to ensure the maximum 105 degrees junction temperature is not exceeded on this device.
- 3. Typical power is based on a nominal voltage of V_{DD} = 1.2V, a nominal process, a junction temperature of T_j = 105° C, and a Dhrystone 2.1 benchmark application.
- 4. Thermal solutions likely need to design to a value higher than Typical Power based on the end application, T_A target, and I/O power
- 5. Maximum power is based on a nominal voltage of V_{DD} = 1.2V, worst case process, a junction temperature of T_j = 105° C, and an artificial smoke test.
- 6. The nominal recommended V_{DD} = 1.3V for this speed grade.

Notes:

- 1.
- 2.
- 3.
- 5.
- 4.
- 5.
- 6.

4 Clock Timing

4.1 System Clock Timing

Table 6 provides the system clock (SYSCLK) AC timing specifications for the MPC8555E.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
SYSCLK frequency	f _{SYSCLK}	_	_	166	MHz	1
SYSCLK cycle time	^t sysclk	6.0	_		ns	_
SYSCLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	1.2	ns	2
SYSCLK duty cycle	t _{KHK} /t _{SYSCLK}	40	_	60	%	3
SYSCLK jitter	—	_	_	+/- 150	ps	4, 5

Table 6. SYSCLK AC Timing Specifications

Notes:

1. **Caution:** The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies.

2. Rise and fall times for SYSCLK are measured at 0.6 and 2.7 V.

3. Timing is guaranteed by design and characterization.

4. This represents the total input jitter-short term and long term-and is guaranteed by design.

5. For spread spectrum clocking, guidelines are $\pm 1\%$ of the input frequency with a maximum of 60 kHz of modulation regardless of the input frequency.

4.2 TSEC Gigabit Reference Clock Timing

Table 7 provides the TSEC gigabit reference clock (EC_GTX_CLK125) AC timing specifications for the MPC8555E.

Table 7. EC	_GTX_	CLK125	AC .	Timing	Specifications
-------------	-------	--------	------	--------	----------------

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
EC_GTX_CLK125 frequency	f _{G125}	—	125	_	MHz	
EC_GTX_CLK125 cycle time	t _{G125}	—	8	_	ns	_
EC_GTX_CLK125 rise time	t _{G125R}	—	—	1.0	ns	1
EC_GTX_CLK125 fall time	t _{G125F}	—	—	1.0	ns	1
EC_GTX_CLK125 duty cycle GMII, TBI RGMII, RTBI	t _{G125H} /t _{G125}	45 47	_	55 53	%	1, 2

Notes:

1. Timing is guaranteed by design and characterization.

2. EC_GTX_CLK125 is used to generate GTX clock for TSEC transmitter with 2% degradation. EC_GTX_CLK125 duty cycle can be loosened from 47/53% as long as PHY device can tolerate the duty cycle generated by GTX_CLK of TSEC.

6 DDR SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8555E.

6.1 DDR SDRAM DC Electrical Characteristics

Table 11 provides the recommended operating conditions for the DDR SDRAM component(s) of the MPC8555E.

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	—
Output leakage current	I _{OZ}	-10	10	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-15.2	—	mA	—
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	—	mA	—
MV _{REF} input leakage current	I _{VREF}	—	5	μA	—

Table 11. DDR SDRAM DC Electrical Characteristics

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

- MV_{REF} is expected to be equal to 0.5 × GV_{DD}, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.
- 3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.
- 4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Table 12 provides the DDR capacitance.

Table 12. DDR SDRAM Capacitance

Parameter/Condition	Symbol	Min	Max	Unit	Notes
Input/output capacitance: DQ, DQS, MSYNC_IN	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 2.5 V ± 0.125 V, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak to peak) = 0.2 V.

Ethernet: Three-Speed, MII Management

7.2 DUART AC Electrical Specifications

Table 17 provides the AC timing parameters for the DUART interface of the MPC8555E.

Parameter	Value	Unit	Notes
Minimum baud rate	f _{CCB_CLK} / 1048576	baud	3
Maximum baud rate	f _{CCB_CLK} / 16	baud	1, 3
Oversample rate	16	_	2, 3

Table 17. DUART AC Timing Specifications

Notes:

1. Actual attainable baud rate is limited by the latency of interrupt processing.

- The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.
- 3. Guaranteed by design.

8 Ethernet: Three-Speed, MII Management

This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.

8.1 Three-Speed Ethernet Controller (TSEC) (10/100/1000 Mbps)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all GMII (gigabit media independent interface), the MII (media independent interface), TBI (ten-bit interface), RGMII (reduced gigabit media independent interface), and RTBI (reduced ten-bit interface) signals except MDIO (management data input/output) and MDC (management data clock). The RGMII and RTBI interfaces are defined for 2.5 V, while the GMII and TBI interfaces can be operated at 3.3 V or 2.5 V. Whether the GMII, MII, or TBI interface is operated at 3.3 or 2.5 V, the timing is compliant with the IEEE 802.3 standard. The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

8.1.1 TSEC DC Electrical Characteristics

All GMII, MII, TBI, RGMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 18 and Table 19. The potential applied to the input of a GMII, MII, TBI, RGMII, or RTBI receiver may exceed the potential of the receiver's power supply (for example, a GMII driver powered from a 3.6-V supply driving V_{OH} into a GMII receiver powered from a 2.5-V supply). Tolerance for dissimilar GMII driver and receiver supply potentials is implicit in these specifications. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage 3.3 V	LV _{DD}	—		3.13	3.47	V
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	$LV_{DD} = Min$	2.40	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	LV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	—	—	1.70	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	—	-0.3	0.90	V
Input high current	IIH	$V_{IN}^{1} = LV_{DD}$		—	40	μΑ
Input low current	Ι _{ΙL}	V _{IN} ¹ = 0	GND	-600	—	μΑ

Table 18. GMII, MII, and TBI DC Electrical Characteristics

Note:

1. The symbol V_{IN} in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

Table 19. GMII, MII, RGMII RTBI, and TBI DC Electrical Characteristics

Parameters	Symbol	Min	Мах	Unit
Supply voltage 2.5 V	LV _{DD}	2.37	2.63	V
Output high voltage ($LV_{DD} = Min, I_{OH} = -1.0 mA$)	V _{OH}	2.00	LV _{DD} + 0.3	V
Output low voltage (LV _{DD} = Min, I _{OL} = 1.0 mA)	V _{OL}	GND – 0.3	0.40	V
Input high voltage (LV _{DD} = Min)	V _{IH}	1.70	LV _{DD} + 0.3	V
Input low voltage (LV _{DD} = Min)	V _{IL}	-0.3	0.70	V
Input high current (V _{IN} ¹ = LV _{DD})	I _{IH}	—	10	μΑ
Input low current (V _{IN} ¹ = GND)	۱ _{IL}	-15	—	μΑ

Note:

1. Note that the symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.2.2.1 GMII Receive AC Timing Specifications

Table 21 provides the GMII receive AC timing specifications.

Table 21. GMII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period	t _{GRX}	—	8.0	—	ns
RX_CLK duty cycle	t _{GRXH} /t _{GRX}	40	—	60	%
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	^t GRDVKH	2.0	—	—	ns
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK	^t GRDXKH	0.5	—	—	ns
RX_CLK clock rise and fall time	$t_{GRXR}, t_{GRXF}^{2,3}$	_	_	1.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{GRDVKH} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{RX} clock reference (K) going to the high state (H) or setup time. Also, t_{GRDXKL} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{GRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GRX} represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3. Guaranteed by design.

Figure 8 provides the AC test load for TSEC.

Figure 8. TSEC AC Test Load

Figure 9 shows the GMII receive AC timing diagram.

Figure 9. GMII Receive AC Timing Diagram

8.2.4.2 TBI Receive AC Timing Specifications

Table 25 provides the TBI receive AC timing specifications.

Table 25. TBI Receive	e AC Timing	Specifications
-----------------------	-------------	----------------

At recommended operating conditions with LV_{DD} of 3.3 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period	t _{TRX}		16.0		ns
RX_CLK skew	^t SKTRX	7.5	_	8.5	ns
RX_CLK duty cycle	t _{TRXH} /t _{TRX}	40	_	60	%
RCG[9:0] setup time to rising RX_CLK	t _{TRDVKH}	2.5	_	—	ns
RCG[9:0] hold time to rising RX_CLK	t _{trdxkh}	1.5	_	—	ns
RX_CLK clock rise time and fall time	t _{TRXR} , t _{TRXF} ^{2,3}	0.7		2.4	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of $t_{(first two letters of functional block)(signal)(state)}$ (reference)(state) for inputs and $t_{(first two letters of functional block)(reference)(state)(signal)(state)}$ for outputs. For example, t_{TRDVKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{TRX} clock reference (K) going to the high (H) state or setup time. Also, t_{TRDXKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) went invalid (X) relative to the t_{TRX} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TRX} represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (TRX).

2. Guaranteed by design.

Figure 13 shows the TBI receive AC timing diagram.

Figure 13. TBI Receive AC Timing Diagram

Figure 15 shows the MII management AC timing diagram.

Figure 15. MII Management Interface Timing Diagram

9 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8555E.

9.1 Local Bus DC Electrical Characteristics

Table 29 provides the DC electrical characteristics for the local bus interface.

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	V _{OUT} ≤ V _{OL} (max)	-0.3	0.8	V
Input current	I _{IN}	V_{IN} ¹ = 0 V or V_{IN} = V_{DD}	—	±5	μA
High-level output voltage	V _{OH}	$OV_{DD} = min,$ $I_{OH} = -2mA$	OV _{DD} -0.2	_	V
Low-level output voltage	V _{OL}	OV _{DD} = min, I _{OL} = 2mA	—	0.2	V

Table 29. Local Bus DC Electrical Characteristics

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

Table 30. Local Bus General Timing Parameters—DLL Enabled (continued)

Parameter	Configuration ⁷	Symbol ¹	Min	Мах	Unit	Notes
Local bus clock to output high impedance for	$\overline{LWE[0:1]} = 00$	t _{LBKHOZ2}	—	2.8	ns	5, 9
	LWE[0:1] = 11 (default)			4.2		

Notes:

 The symbols used for timing specifications herein follow the pattern of t_{(First two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.

- 2. All timings are in reference to LSYNC_IN for DLL enabled mode.
- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of LSYNC_IN for DLL enabled to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- The value of t_{LBOTOT} is defined as the sum of 1/2 or 1 ccb_clk cycle as programmed by LBCR[AHD], and the number of local bus buffer delays used as programmed at power-on reset with configuration pins LWE[0:1].
- Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at OV_{DD}/2.
- 8. Guaranteed by characterization.
- 9. Guaranteed by design.

Table 31 describes the general timing parameters of the local bus interface of the MPC8555E with the DLL bypassed.

Parameter	Configuration ⁷	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time		t _{LBK}	6.0	—	ns	2
Internal launch/capture clock to LCLK delay		^t LВКНКТ	1.8	3.4	ns	8
LCLK[n] skew to LCLK[m] or LSYNC_OUT		t _{LBKSKEW}	_	150	ps	7, 9
Input setup to local bus clock (except LUPWAIT)		t _{LBIVKH1}	5.2	_	ns	3, 4
LUPWAIT input setup to local bus clock		t _{LBIVKH2}	5.1	—	ns	3, 4
Input hold from local bus clock (except LUPWAIT)		t _{LBIXKH1}	-1.3	_	ns	3, 4
LUPWAIT input hold from local bus clock		t _{LBIXKH2}	-0.8	—	ns	3, 4
LALE output transition to LAD/LDP output transition (LATCH hold time)		t _{LBOTOT}	1.5	_	ns	6
Local bus clock to output valid (except	<u>LWE[0:1]</u> = 00	t _{LBKLOV1}	_	0.5	ns	3
LAD/LDP and LALE)	<u>LWE[0:1]</u> = 11 (default)			2.0		
Local bus clock to data valid for LAD/LDP	LWE[0:1] = 00	t _{LBKLOV2}	_	0.7	ns	3
	$\overline{LWE[0:1]} = 11$ (default)			2.2		

Table 31. Local Bus General Timing Parameters—DLL Bypassed

Figure 17. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)


```
Local Bus
```


Figure 19. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Enabled)

Local Bus

Figure 22. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 or 8 (DLL Bypass Mode)

10 CPM

This section describes the DC and AC electrical specifications for the CPM of the MPC8555E.

10.1 CPM DC Electrical Characteristics

Table 32 provides the DC electrical characteristics for the CPM.

Characteristic	Symbol	Condition	Min	Мах	Unit	Notes
Input high voltage	V _{IH}		2.0	3.465	V	1
Input low voltage	V _{IL}		GND	0.8	V	1, 2
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V	1
Output low voltage	V _{OL}	l _{OL} = 8.0 mA	—	0.5	V	1
Output high voltage	V _{OH}	I _{OH} = -2.0 mA	2.4	—	V	1
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V	1

Note:

1. This specification applies to the following pins: PA[0-31], PB[4-31], PC[0-31], and PD[4-31].

2. $V_{\text{IL}}(\text{max})$ for the IIC interface is 0.8 V rather than the 1.5 V specified in the IIC standard

10.2 CPM AC Timing Specifications

Table 33 and Table 34 provide the CPM input and output AC timing specifications, respectively.

NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

Table 33.	CPM Inp	out AC	Timing	Specificatio	ns '

Characteristic	Symbol ²	Min ³	Unit
FCC inputs—internal clock (NMSI) input setup time	t _{FIIVKH}	6	ns
FCC inputs—internal clock (NMSI) hold time	t _{FIIXKH}	0	ns
FCC inputs—external clock (NMSI) input setup time	t _{FEIVKH}	2.5	ns
FCC inputs—external clock (NMSI) hold time	t _{FEIXKH} b	2	ns
SCC/SMC/SPI inputs—internal clock (NMSI) input setup time	t _{NIIVKH}	6	ns
SCC/SMC/SPI inputs—internal clock (NMSI) input hold time	t _{NIIXKH}	0	ns
SCC/SMC/SPI inputs—external clock (NMSI) input setup time	t _{NEIVKH}	4	ns
SCC/SMC/SPI inputs—external clock (NMSI) input hold time	t _{NEIXKH}	2	ns
TDM inputs/SI—input setup time	t _{TDIVKH}	4	ns

Figure 32 provides the AC test load for TDO and the boundary-scan outputs of the MPC8555E.

Figure 32. AC Test Load for the JTAG Interface

Figure 33 provides the JTAG clock input timing diagram.

 $VM = Midpoint Voltage (OV_{DD}/2)$

Figure 33. JTAG Clock Input Timing Diagram

Figure 34 provides the TRST timing diagram.

Figure 34. TRST Timing Diagram

Figure 35 provides the boundary-scan timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost. Several heat sinks offered by Aavid Thermalloy, Alpha Novatech, IERC, Chip Coolers, Millennium Electronics, and Wakefield Engineering offer different heat sink-to-ambient thermal resistances, that allows the MPC8555E to function in various environments.

16.2.1 Recommended Thermal Model

For system thermal modeling, the MPC8555E thermal model is shown in Figure 44. Five cuboids are used to represent this device. To simplify the model, the solder balls and substrate are modeled as a single block 29x29x1.6 mm with the conductivity adjusted accordingly. The die is modeled as 8.7 x 9.3 mm at a thickness of 0.75 mm. The bump/underfill layer is modeled as a collapsed resistance between the die and substrate assuming a conductivity of 4.4 W/m•K in the thickness dimension of 0.07 mm. The lid attach adhesive is also modeled as a collapsed resistance with dimensions of 8.7 x 9.3 x 0.05 mm and the conductivity of 1.07 W/m•K. The nickel plated copper lid is modeled as 11 x 11 x 1 mm.

Conductivity	Value	Unit				
L (11 × 11	id ×1 mm)					
k _x	360	W/(m \times K)		۸	Lid	Adhesive
k _y	360			7	Die	Bump/underfil
k _z	360			2	4	
Lid Adhesive—Co (8.7 × 9.3 x	llapsed resistance < 0.05 mm)			Side	Substrate and solder balls • View of Model (Not to Sca	le)
kz	1.07				·	
D (8.7 × 9.3 :	ie ≺ 0.75 mm)			x	>	
Bump/Underfill—C (8.7 × 9.3 ×	ollapsed resistance × 0.07 mm)					
kz	4.4				Substrate	
Substrate and (25 × 25 x	d Solder Balls ≺ 1.6 mm)				Heat Source	
k _x	14.2		•			
k _y	14.2	1				
kz	1.2	1				
	•	•	У			

Top View of Model (Not to Scale)

Figure 44. MPC8555E Thermal Model

Figure 47. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity

16.2.4.2 Case 2

Every system application has different conditions that the thermal management solution must solve. As an alternate example, assume that the air reaching the component is 85 °C with an approach velocity of 1 m/sec. For a maximum junction temperature of 105 °C at 8 W, the total thermal resistance of junction to case thermal resistance plus thermal interface material plus heat sink thermal resistance must be less than 2.5 °C/W. The value of the junction to case thermal resistance in Table 49 includes the thermal interface resistance of a thin layer of thermal grease as documented in footnote 4 of the table. Assuming that the heat sink is flat enough to allow a thin layer of grease or phase change material, then the heat sink must be less than 1.5 °C/W.

Millennium Electronics (MEI) has tooled a heat sink MTHERM-1051 for this requirement assuming a compactPCI environment at 1 m/sec and a heat sink height of 12 mm. The MEI solution is illustrated in Figure 48 and Figure 49. This design has several significant advantages:

- The heat sink is clipped to a plastic frame attached to the application board with screws or plastic inserts at the corners away from the primary signal routing areas.
- The heat sink clip is designed to apply the force holding the heat sink in place directly above the die at a maximum force of less than 10 lbs.
- For applications with significant vibration requirements, silicone damping material can be applied between the heat sink and plastic frame.

NP

System Design Information

When data is held high, SW1 is closed (SW2 is open) and R_P is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_P then becomes the resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.

Figure 51. Driver Impedance Measurement

The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = 1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

Table 50 summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI	DDR DRAM	Symbol	Unit
R _N	43 Target	25 Target	20 Target	Z ₀	Ω
R _P	43 Target	25 Target	20 Target	Z ₀	Ω
Differential	NA	NA	NA	Z _{DIFF}	Ω

Table 50	Impedance	Characteristics
----------	-----------	-----------------

Note: Nominal supply voltages. See Table 1, $T_i = 105^{\circ}C$.