

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Ξ·ϽϚϜ

Product Status	Active
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	667MHz
Co-Processors/DSP	Communications; CPM, Security; SEC
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8555epxalf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Public Key Execution Unit (PKEU) supporting the following:
 - RSA and Diffie-Hellman
 - Programmable field size up to 2048-bits
 - Elliptic curve cryptography
 - F2m and F(p) modes
 - Programmable field size up to 511-bits
- Data Encryption Standard Execution Unit (DEU)
 - DES, 3DES
 - Two key (K1, K2) or Three Key (K1, K2, K3)
 - ECB and CBC modes for both DES and 3DES
- Advanced Encryption Standard Unit (AESU)
 - Implements the Rinjdael symmetric key cipher
 - Key lengths of 128, 192, and 256 bits. Two key
 - ECB, CBC, CCM, and Counter modes
- ARC Four execution unit (AFEU)
 - Implements a stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
- Message Digest Execution Unit (MDEU)
 - SHA with 160-bit or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
- Random Number Generator (RNG)
- 4 Crypto-channels, each supporting multi-command descriptor chains
 - Static and/or dynamic assignment of crypto-execution units via an integrated controller
 - Buffer size of 256 Bytes for each execution unit, with flow control for large data sizes
- High-performance RISC CPM operating at up to 333 MHz
 - CPM software compatibility with previous PowerQUICC families
 - One instruction per clock
 - Executes code from internal ROM or instruction RAM
 - 32-bit RISC architecture
 - Tuned for communication environments: instruction set supports CRC computation and bit manipulation.
 - Internal timer
 - Interfaces with the embedded e500 core processor through a 32-Kbyte dual-port RAM and virtual DMA channels for each peripheral controller
 - Handles serial protocols and virtual DMA

MPC8555E PowerQUICC™ III Integrated Communications Processor Hardware Specification, Rev. 4.2

Overview

— Two full-duplex fast communications controllers (FCCs) that support the following protocols:

- ATM protocol through two UTOPIA level 2 interfaces
- IEEE Std 802.3TM/Fast Ethernet (10/100)
- HDLC
- Totally transparent operation
- Three full-duplex serial communications controllers (SCCs) support the following protocols:
 - High level/synchronous data link control (HDLC/SDLC)
 - LocalTalk (HDLC-based local area network protocol)
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART (1x clock mode)
 - Binary synchronous communication (BISYNC)
 - Totally transparent operation
 - QMC support, providing 64 channels per SCC using only one physical TDM interface
- Universal serial bus (USB) controller that is full/low-speed compliant (multiplexed on an SCC)
 - USB host mode
 - Supports USB slave mode
- Serial peripheral interface (SPI) support for master or slave
- $I^2 C$ bus controller
- Two serial management controllers (SMCs) supporting:
 - UART
 - Transparent
 - General-circuit interfaces (GCI)
- Time-slot assigner supports multiplexing of data from any of the SCCs and FCCs onto eight time-division multiplexed (TDM) interfaces. The time-slot assigner supports the following TDM formats:
 - T1/CEPT lines
 - T3/E3
 - Pulse code modulation (PCM) highway interface
 - ISDN primary rate
 - Freescale interchip digital link (IDL)
 - General circuit interface (GCI)
- User-defined interfaces
- Eight independent baud rate generators (BRGs)
- Four general-purpose 16-bit timers or two 32-bit timers
- General-purpose parallel ports—16 parallel I/O lines with interrupt capability
- 256 Kbytes of on-chip memory
 - Can act as a 256-Kbyte level-2 cache
 - Can act as a 256-Kbyte or two 128-Kbyte memory-mapped SRAM arrays

- Can be partitioned into 128-Kbyte L2 cache plus 128-Kbyte SRAM
- Full ECC support on 64-bit boundary in both cache and SRAM modes
- SRAM operation supports relocation and is byte-accessible
- Cache mode supports instruction caching, data caching, or both
- External masters can force data to be allocated into the cache through programmed memory ranges or special transaction types (stashing).
- Eight-way set-associative cache organization (1024 sets of 32-byte cache lines)
- Supports locking the entire cache or selected lines
 - Individual line locks set and cleared through Book E instructions or by externally mastered transactions
- Global locking and flash clearing done through writes to L2 configuration registers
- Instruction and data locks can be flash cleared separately
- Read and write buffering for internal bus accesses
- Address translation and mapping unit (ATMU)
 - Eight local access windows define mapping within local 32-bit address space
 - Inbound and outbound ATMUs map to larger external address spaces
 - Three inbound windows plus a configuration window on PCI
 - Four inbound windows
 - Four outbound windows plus default translation for PCI
- DDR memory controller
 - Programmable timing supporting first generation DDR SDRAM
 - 64-bit data interface, up to MHz data rate
 - Four banks of memory supported, each up to 1 Gbyte
 - DRAM chip configurations from 64 Mbits to 1 Gbit with x8/x16 data ports
 - Full ECC support
 - Page mode support (up to 16 simultaneous open pages)
 - Contiguous or discontiguous memory mapping
 - Sleep mode support for self refresh DDR SDRAM
 - Supports auto refreshing
 - On-the-fly power management using CKE signal
 - Registered DIMM support
 - Fast memory access via JTAG port
 - 2.5-V SSTL2 compatible I/O
- Programmable interrupt controller (PIC)
 - Programming model is compliant with the OpenPIC architecture
 - Supports 16 programmable interrupt and processor task priority levels
 - Supports 12 discrete external interrupts
 - Supports 4 message interrupts with 32-bit messages

- 10 Mbps IEEE 802.3 MII
- 1000 Mbps IEEE 802.3z TBI
- 10/100/1000 Mbps RGMII/RTBI
- Full- and half-duplex support
- Buffer descriptors are backwards compatible with MPC8260 and MPC860T 10/100 programming models
- 9.6-Kbyte jumbo frame support
- RMON statistics support
- 2-Kbyte internal transmit and receive FIFOs
- MII management interface for control and status
- Programmable CRC generation and checking
- OCeaN switch fabric
 - Three-port crossbar packet switch
 - Reorders packets from a source based on priorities
 - Reorders packets to bypass blocked packets
 - Implements starvation avoidance algorithms
 - Supports packets with payloads of up to 256 bytes
- Integrated DMA controller
 - Four-channel controller
 - All channels accessible by both local and remote masters
 - Extended DMA functions (advanced chaining and striding capability)
 - Support for scatter and gather transfers
 - Misaligned transfer capability
 - Interrupt on completed segment, link, list, and error
 - Supports transfers to or from any local memory or I/O port
 - Selectable hardware-enforced coherency (snoop/no-snoop)
 - Ability to start and flow control each DMA channel from external 3-pin interface
 - Ability to launch DMA from single write transaction
- PCI Controllers
 - PCI 2.2 compatible
 - One 64-bit or two 32-bit PCI ports supported at 16 to 66 MHz
 - Host and agent mode support, 64-bit PCI port can be host or agent, if two 32-bit ports, only one can be an agent
 - 64-bit dual address cycle (DAC) support
 - Supports PCI-to-memory and memory-to-PCI streaming
 - Memory prefetching of PCI read accesses
 - Supports posting of processor-to-PCI and PCI-to-memory writes

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

Cha	aracteristic	Symbol	Max Value	Unit	Notes
Core supply voltage		V _{DD}	-0.3 to 1.32 0.3 to 1.43 (for 1 GHz only)	V	
PLL supply voltage		AV _{DD}	-0.3 to 1.32 0.3 to 1.43 (for 1 GHz only)	V	
DDR DRAM I/O voltage		GV _{DD}	-0.3 to 3.63	V	
Three-speed Ethernet I/O, MII management voltage		LV _{DD}	-0.3 to 3.63 -0.3 to 2.75	V	
CPM, PCI, local bus, DUART, system control and power management, I ² C, and JTAG I/O voltage		OV _{DD}	-0.3 to 3.63	V	3
Input voltage	DDR DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	DDR DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	Three-speed Ethernet signals	LV _{IN}	–0.3 to (LV _{DD} + 0.3)	V	4, 5
CPM, Local bus, DUART, SYSCLK, system control and power management, I ² C, and JTAG signals		OV _{IN}	-0.3 to (OV _{DD} + 0.3)1	V	5
	PCI	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	6
Storage temperature range	·	T _{STG}	-55 to 150	°C	

Table 1. Absolute Maximum Ratings ¹

Notes:

- 1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 3. Caution: OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. Caution: LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 5. (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- 6. OV_{IN} on the PCI interface may overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 3.

2.1.2 Power Sequencing

The MPC8555Erequires its power rails to be applied in a specific sequence in order to ensure proper device operation. These requirements are as follows for power up:

- 1. V_{DD} , AV_{DDn}
- 2. GV_{DD}, LV_{DD}, OV_{DD} (I/O supplies)

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8555E.

1. Note that $t_{\mbox{\scriptsize SYS}}$ refers to the clock period associated with the $\mbox{\scriptsize SYSCLK}$ signal.

Figure 2. Overshoot/Undershoot Voltage for GV_{DD}/OV_{DD}/LV_{DD}

The MPC8555E core voltage must always be provided at nominal 1.2 V (see Table 2 for actual recommended core voltage). Voltage to the processor interface I/Os are provided through separate sets of supply pins and must be provided at the voltages shown in Table 2. The input voltage threshold scales with respect to the associated I/O supply voltage. OV_{DD} and LV_{DD} based receivers are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR SDRAM interface uses a single-ended differential receiver referenced the externally supplied MV_{REF} signal (nominally set to $GV_{DD}/2$) as is appropriate for the SSTL2 electrical signaling standard.

4 Clock Timing

4.1 System Clock Timing

Table 6 provides the system clock (SYSCLK) AC timing specifications for the MPC8555E.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
SYSCLK frequency	f _{SYSCLK}	_	_	166	MHz	1
SYSCLK cycle time	^t sysclk	6.0	_		ns	_
SYSCLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	1.2	ns	2
SYSCLK duty cycle	t _{KHK} /t _{SYSCLK}	40	_	60	%	3
SYSCLK jitter	—	_	_	+/- 150	ps	4, 5

Table 6. SYSCLK AC Timing Specifications

Notes:

1. **Caution:** The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies.

2. Rise and fall times for SYSCLK are measured at 0.6 and 2.7 V.

3. Timing is guaranteed by design and characterization.

4. This represents the total input jitter-short term and long term-and is guaranteed by design.

5. For spread spectrum clocking, guidelines are $\pm 1\%$ of the input frequency with a maximum of 60 kHz of modulation regardless of the input frequency.

4.2 TSEC Gigabit Reference Clock Timing

Table 7 provides the TSEC gigabit reference clock (EC_GTX_CLK125) AC timing specifications for the MPC8555E.

Table 7. EC	_GTX_	CLK125	AC .	Timing	Specifications
-------------	-------	--------	------	--------	----------------

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
EC_GTX_CLK125 frequency	f _{G125}	—	125	_	MHz	
EC_GTX_CLK125 cycle time	t _{G125}	—	8	_	ns	_
EC_GTX_CLK125 rise time	t _{G125R}	—	—	1.0	ns	1
EC_GTX_CLK125 fall time	t _{G125F}	—	—	1.0	ns	1
EC_GTX_CLK125 duty cycle GMII, TBI RGMII, RTBI	t _{G125H} /t _{G125}	45 47	_	55 53	%	1, 2

Notes:

1. Timing is guaranteed by design and characterization.

2. EC_GTX_CLK125 is used to generate GTX clock for TSEC transmitter with 2% degradation. EC_GTX_CLK125 duty cycle can be loosened from 47/53% as long as PHY device can tolerate the duty cycle generated by GTX_CLK of TSEC.

Table 14. DDR SDRAM Output AC Timing Specifications for Source Synchronous Mode (continued)

At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MCS(n) output hold with respect to MCK 333 MHz 266 MHz 200 MHz	t _{DDKHCX}	2.0 2.65 3.8	_	ns	4
MCK to MDQS 333 MHz 266 MHz 200 MHz	t _{ddkhmh}	-0.9 -1.1 -1.2	0.3 0.5 0.6	ns	5
MDQ/MECC/MDM output setup with respect to MDQS 333 MHz 266 MHz 200 MHz	^t ddkhds, ^t ddklds	900 900 1200	_	ps	6
MDQ/MECC/MDM output hold with respect to MDQS 333 MHz 266 MHz 200 MHz	^t ddkhdx, ^t ddkldx	900 900 1200	_	ps	6
MDQS preamble start	t _{DDKHMP}	$-0.5 \times t_{MCK} - 0.9$	$-0.5 \times t_{MCK} + 0.3$	ns	7
MDQS epilogue end	t _{DDKLME}	-0.9	0.3	ns	7

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
</sub>

- 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
- 3. In the source synchronous mode, MCK/MCK can be shifted in 1/4 applied cycle increments through the Clock Control Register. For the skew measurements referenced for t_{AOSKEW} it is assumed that the clock adjustment is set to align the address/command valid with the rising edge of MCK.
- 4. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks by 1/2 applied cycle. The MCSx pins are separated from the ADDR/CMD (address and command) bus in the HW spec. This was separated because the MCSx pins typically have different loadings than the rest of the address and command bus, even though they have the same timings.
- 5. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). In the source synchronous mode, MDQS can launch later than MCK by 0.3 ns at the maximum. However, MCK may launch later than MDQS by as much as 0.9 ns. t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. In source synchronous mode, this typically is set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these two parameters have been set to the same adjustment value. See the *MPC8555E PowerQUICC™ III Integrated Communications Processor Reference Manual* for a description and understanding of the timing modifications enabled by use of these bits.
- 6. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the MPC8555E.
- 7. All outputs are referenced to the rising edge of MCK(n) at the pins of the MPC8555E. Note that t_{DDKHMP} follows the symbol conventions described in note 1.

Figure 6 provides the AC test load for the DDR bus.

Figure 6. DDR AC Test Load

Fable 15. I	DDR SDRAM	Measurement	Conditions
-------------	-----------	-------------	------------

Symbol	DDR	Unit	Notes
V _{TH}	MV _{REF} ± 0.31 V	V	1
V _{OUT}	$0.5 imes GV_{DD}$	V	2

Notes:

1. Data input threshold measurement point.

2. Data output measurement point.

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8555E.

7.1 DUART DC Electrical Characteristics

Table 16 provides the DC electrical characteristics for the DUART interface of the MPC8555E.

Table 16. DUART DC Electrical Characteristics

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	$V_{OUT} \le V_{OL}$ (max)	-0.3	0.8	V
Input current	I _{IN}	V_{IN} ¹ = 0 V or V_{IN} = V_{DD}	—	±5	μA
High-level output voltage	V _{OH}	OV _{DD} = min, I _{OH} = -100 μA	OV _{DD} - 0.2	_	V
Low-level output voltage	V _{OL}	OV_{DD} = min, I_{OL} = 100 μ A	_	0.2	V

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

Figure 17. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)

Local Bus

Figure 20. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)

Figure 27 shows the SCC/SMC/SPI external clock.

Note: The clock edge is selectable on SCC and SPI.

Figure 28 shows the SCC/SMC/SPI internal clock.

Note: The clock edge is selectable on SCC and SPI.

Figure 28. SCC/SMC/SPI AC Timing Internal Clock Diagram

NOTE

¹ SPI AC timings are internal mode when it is master because SPICLK is an output, and external mode when it is slave.

² SPI AC timings refer always to SPICLK.

Figure 36 provides the test access port timing diagram.

VM = Midpoint Voltage (OV_{DD}/2) Figure 36. Test Access Port Timing Diagram

12 I²C

This section describes the DC and AC electrical characteristics for the I²C interface of the MPC8555E.

12.1 I²C DC Electrical Characteristics

Table 39 provides the DC electrical characteristics for the I^2C interface of the MPC8555E.

Table 39. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V \pm 5%.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	
Input low voltage level	V _{IL}	-0.3	$0.3 imes OV_{DD}$	V	
Low level output voltage	V _{OL}	0	$0.2 \times \text{OV}_{\text{DD}}$	V	1
Output fall time from $V_{IH}(\text{min})$ to $V_{IL}(\text{max})$ with a bus capacitance from 10 to 400 pF	t _{I2KLKV}	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	3
Input current each I/O pin (input voltage is between 0.1 \times OV_{DD} and 0.9 \times OV_{DD}(max)	I	-10	10	μA	4
Capacitance for each I/O pin	CI	—	10	pF	

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. C_B = capacitance of one bus line in pF.

3. Refer to the MPC8555E PowerQUICC[™] III Integrated Communications Processor Reference Manual for information on the digital filter used.

4. I/O pins obstruct the SDA and SCL lines if $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ is switched off.

Figure 40 shows the PCI input AC timing conditions.

Figure 40. PCI Input AC Timing Measurement Conditions

Figure 41 shows the PCI output AC timing conditions.

Figure 41. PCI Output AC Timing Measurement Condition

14 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions.

14.1 Package Parameters for the MPC8555E FC-PBGA

The package parameters are as provided in the following list. The package type is $29 \text{ mm} \times 29 \text{ mm}$, 783 flip chip plastic ball grid array (FC-PBGA).

Die size	$8.7 \text{ mm} \times 9.3 \text{ mm} \times 0.75 \text{ mm}$
Package outline	$29 \text{ mm} \times 29 \text{ mm}$
Interconnects	783
Pitch	1 mm
Minimum module height	3.07 mm
Maximum module height	3.75 mm
Solder Balls	62 Sn/36 Pb/2 Ag
Ball diameter (typical)	0.5 mm

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes					
IRQ[0:7]	AA18, Y18, AB18, AG24, AA21, Y19, AA19, AG25	I	OV _{DD}	—					
IRQ8	AB20	I	OV _{DD}	9					
IRQ9/DMA_DREQ3	Y20	I	OV _{DD}	1					
IRQ10/DMA_DACK3	AF26	I/O	OV _{DD}	1					
IRQ11/DMA_DDONE3	AH24	I/O	OV _{DD}	1					
IRQ_OUT	AB21	0	OV _{DD}	2, 4					
	Ethernet Management Interface								
EC_MDC	F1	0	OV _{DD}	5, 9					
EC_MDIO	E1	I/O	OV _{DD}	—					
Gigabit Reference Clock									
EC_GTX_CLK125	E2	I	LV _{DD}	—					
Three-Speed Ethernet Controller (Gigabit Ethernet 1)									
TSEC1_TXD[7:4]	A6, F7, D7, C7	0	LV _{DD}	—					
TSEC1_TXD[3:0]	B7, A7, G8, E8	0	LV _{DD}	9, 18					
TSEC1_TX_EN	C8	0	LV _{DD}	11					
TSEC1_TX_ER	B8	0	LV _{DD}	—					
TSEC1_TX_CLK	C6	I	LV _{DD}	—					
TSEC1_GTX_CLK	B6	0	LV _{DD}	—					
TSEC1_CRS	C3	I	LV _{DD}	—					
TSEC1_COL	G7	I	LV _{DD}						
TSEC1_RXD[7:0]	D4, B4, D3, D5, B5, A5, F6, E6	I	LV _{DD}	—					
TSEC1_RX_DV	D2	I	LV _{DD}						
TSEC1_RX_ER	E5	I	LV _{DD}						
TSEC1_RX_CLK	D6	I	LV _{DD}						
Three-Speed Ethernet Controller (Gigabit Ethernet 2)									
TSEC2_TXD[7:4]	B10, A10, J10, K11	0	LV _{DD}	—					
TSEC2_TXD[3:0]	J11, H11, G11, E11	0	LV _{DD}	5, 9, 18					
TSEC2_TX_EN	B11	0	LV _{DD}	11					
TSEC2_TX_ER	D11	0	LV _{DD}	—					
TSEC2_TX_CLK	D10	I	LV _{DD}	—					
TSEC2_GTX_CLK	C10	0	LV _{DD}						

15.2 Platform/System PLL Ratio

The platform clock is the clock that drives the L2 cache, the DDR SDRAM data rate, and the e500 core complex bus (CCB), and is also called the CCB clock. The values are determined by the binary value on LA[28:31] at power up, as shown in Table 46.

There is no default for this PLL ratio; these signals must be pulled to the desired values.

For specifications on the PCI_CLK, refer to the PCI 2.2 Specification.

Binary Value of LA[28:31] Signals	Ratio Description		
0000	16:1 ratio CCB clock: SYSCLK (PCI bus)		
0001	Reserved		
0010	2:1 ratio CCB clock: SYSCLK (PCI bus)		
0011	3:1 ratio CCB clock: SYSCLK (PCI bus)		
0100	4:1 ratio CCB clock: SYSCLK (PCI bus)		
0101	5:1 ratio CCB clock: SYSCLK (PCI bus)		
0110	6:1 ratio CCB clock: SYSCLK (PCI bus)		
0111	Reserved		
1000	8:1 ratio CCB clock: SYSCLK (PCI bus)		
1001	9:1 ratio CCB clock: SYSCLK (PCI bus)		
1010	10:1 ratio CCB clock: SYSCLK (PCI bus)		
1011	Reserved		
1100	12:1 ratio CCB clock: SYSCLK (PCI bus)		
1101	Reserved		
1110	Reserved		
1111	Reserved		

Table	46.	CCB	Clock	Ratio
Table	4 0.	000	Olock	nauo

Figure 47. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity

16.2.4.2 Case 2

Every system application has different conditions that the thermal management solution must solve. As an alternate example, assume that the air reaching the component is 85 °C with an approach velocity of 1 m/sec. For a maximum junction temperature of 105 °C at 8 W, the total thermal resistance of junction to case thermal resistance plus thermal interface material plus heat sink thermal resistance must be less than 2.5 °C/W. The value of the junction to case thermal resistance in Table 49 includes the thermal interface resistance of a thin layer of thermal grease as documented in footnote 4 of the table. Assuming that the heat sink is flat enough to allow a thin layer of grease or phase change material, then the heat sink must be less than 1.5 °C/W.

Millennium Electronics (MEI) has tooled a heat sink MTHERM-1051 for this requirement assuming a compactPCI environment at 1 m/sec and a heat sink height of 12 mm. The MEI solution is illustrated in Figure 48 and Figure 49. This design has several significant advantages:

- The heat sink is clipped to a plastic frame attached to the application board with screws or plastic inserts at the corners away from the primary signal routing areas.
- The heat sink clip is designed to apply the force holding the heat sink in place directly above the die at a maximum force of less than 10 lbs.
- For applications with significant vibration requirements, silicone damping material can be applied between the heat sink and plastic frame.

ltem No	QTY	MEI PN	Description
1	1	MFRAME-2000	HEATSINK FRAME
2	1	MSNK-1120	EXTRUDED HEATSINK
3	1	MCLIP-1013	CLIP
4	4	MPPINS-1000	FRAME ATTACHMENT PINS

Illustrative source provided by Millennium Electronics (MEI) Figure 49. Exploded Views (2) of a Heat Sink Attachment using a Plastic Force

The die junction-to-ambient and the heat sink-to-ambient thermal resistances are common figure-of-merits used for comparing the thermal performance of various microelectronic packaging technologies, one should exercise caution when only using this metric in determining thermal management because no single parameter can adequately describe three-dimensional heat flow. The final die-junction operating temperature is not only a function of the component-level thermal resistance, but the system level design and its operating conditions. In addition to the component's power consumption, a number of factors affect the final operating die-junction temperature: airflow, board population (local heat flux of adjacent components), system air temperature rise, altitude, etc.

Due to the complexity and the many variations of system-level boundary conditions for today's microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation convection and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models for the boards, as well as, system-level designs.

System Design Information

Figure 50 shows the PLL power supply filter circuit.

Figure 50. PLL Power Supply Filter Circuit

17.3 Decoupling Recommendations

Due to large address and data buses, and high operating frequencies, the MPC8555E can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8555E system, and the MPC8555E itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pins of the MPC8555E. These decoupling capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , OV_{DD} , OV_{DD} , OV_{DD} , OV_{DD} , OV_{DD} , GV_{DD} , OV_{DD} , OV_{DD} , GV_{DD} , OV_{DD} , OV

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

17.4 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD} , GV_{DD} , or LV_{DD} as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} , GV_{DD} , LV_{DD} , OV_{DD} , and GND pins of the MPC8555E.

17.5 Output Buffer DC Impedance

The MPC8555E drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 51). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices.

NP

System Design Information

The COP function of these processors allow a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 52 allows the COP port to independently assert $\overline{\text{HRESET}}$ or $\overline{\text{TRST}}$, while ensuring that the target can drive $\overline{\text{HRESET}}$ as well.

The COP interface has a standard header, shown in Figure 52, for connection to the target system, and is based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features. An inexpensive option can be to leave the COP header unpopulated until needed.

There is no standardized way to number the COP header; consequently, many different pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in Figure 52 is common to all known emulators.

Figure 52. COP Connector Physical Pinout