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Overview

1 Overview
The following section provides a high-level overview of the MPC8555E features. Figure 1 shows the 
major functional units within the MPC8555E.

Figure 1. MPC8555E Block Diagram

1.1 Key Features 
The following lists an overview of the MPC8555E feature set.

• Embedded e500 Book E-compatible core

— High-performance, 32-bit Book E-enhanced core that implements the PowerPC architecture

— Dual-issue superscalar, 7-stage pipeline design

— 32-Kbyte L1 instruction cache and 32-Kbyte L1 data cache with parity protection

— Lockable L1 caches—entire cache or on a per-line basis

— Separate locking for instructions and data

— Single-precision floating-point operations

— Memory management unit especially designed for embedded applications

— Enhanced hardware and software debug support

— Dynamic power management

— Performance monitor facility
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Electrical Characteristics

— PCI 3.3-V compatible

— Selectable hardware-enforced coherency

— Selectable clock source (SYSCLK or independent PCI_CLK)

• Power management

— Fully static 1.2-V CMOS design with 3.3- and 2.5-V I/O

— Supports power save modes: doze, nap, and sleep

— Employs dynamic power management

— Selectable clock source (sysclk or independent PCI_CLK)

• System performance monitor 

— Supports eight 32-bit counters that count the occurrence of selected events

— Ability to count up to 512 counter specific events

— Supports 64 reference events that can be counted on any of the 8 counters

— Supports duration and quantity threshold counting 

— Burstiness feature that permits counting of burst events with a programmable time between 
bursts

— Triggering and chaining capability

— Ability to generate an interrupt on overflow

• System access port

— Uses JTAG interface and a TAP controller to access entire system memory map

— Supports 32-bit accesses to configuration registers

— Supports cache-line burst accesses to main memory

— Supports large block (4-Kbyte) uploads and downloads

— Supports continuous bit streaming of entire block for fast upload and download

• IEEE Std 1149.1™-compatible, JTAG boundary scan

• 783 FC-PBGA package

2 Electrical Characteristics
This section provides the AC and DC electrical specifications and thermal characteristics for the 
MPC8555E. The MPC8555E is currently targeted to these specifications. Some of these specifications are 
independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer 
design specifications.

2.1 Overall DC Electrical Characteristics
This section covers the ratings, conditions, and other characteristics.
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Electrical Characteristics

Figure 3 shows the undershoot and overshoot voltage of the PCI interface of the MPC8555E for the 3.3-V 
signals, respectively.

Figure 3. Maximum AC Waveforms on PCI interface for 3.3-V Signaling

2.1.4 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are 
preliminary estimates.

Table 3. Output Drive Capability

Driver Type
Programmable Output 

Impedance (Ω)
Supply
Voltage

Notes

Local bus interface utilities signals 25 OVDD = 3.3 V 1

42 (default)

PCI signals 25 2

42 (default)

DDR signal 20 GVDD = 2.5 V

TSEC/10/100 signals 42 LVDD = 2.5/3.3 V

DUART, system control, I2C, JTAG 42 OVDD = 3.3 V

Notes:
1. The drive strength of the local bus interface is determined by the configuration of the appropriate bits in PORIMPSCR.
2. The drive strength of the PCI interface is determined by the setting of the PCI_GNT1 signal at reset.

11 ns
(Min)

Overvoltage
Waveform

Undervoltage
Waveform

4 ns
(Max)

4 ns
(Max)

62.5 ns

–3.5 V

+7.1 V

7.1 V p-to-p
(Min)

7.1 V p-to-p
(Min)

0 V

+3.6 V
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DDR SDRAM

MCS(n) output hold with respect to MCK
333 MHz
266 MHz
200 MHz

tDDKHCX
2.0 
2.65
3.8

— ns 4

MCK to MDQS
333 MHz
266 MHz
200 MHz

tDDKHMH
–0.9
–1.1
–1.2

0.3
0.5
0.6

ns 5

MDQ/MECC/MDM output setup with respect to 
MDQS

333 MHz
266 MHz
200 MHz

tDDKHDS,
tDDKLDS

900
900
1200

— ps 6

MDQ/MECC/MDM output hold with respect to 
MDQS

333 MHz
266 MHz
200 MHz

tDDKHDX,
tDDKLDX

900
900
1200

— ps 6

MDQS preamble start tDDKHMP –0.5 × tMCK – 0.9 –0.5 × tMCK +0.3 ns 7

MDQS epilogue end tDDKLME –0.9 0.3 ns 7

Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for 

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing 
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, 
tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until 
outputs (A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock 
reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.

2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
3. In the source synchronous mode, MCK/MCK can be shifted in 1/4 applied cycle increments through the Clock Control 

Register. For the skew measurements referenced for tAOSKEW it is assumed that the clock adjustment is set to align the 
address/command valid with the rising edge of MCK.

4. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the 
ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks 
by 1/2 applied cycle. The MCSx pins are separated from the ADDR/CMD (address and command) bus in the HW spec. This 
was separated because the MCSx pins typically have different loadings than the rest of the address and command bus, 
even though they have the same timings.

5. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing 
(DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). In the source synchronous mode, 
MDQS can launch later than MCK by 0.3 ns at the maximum. However, MCK may launch later than MDQS by as much as 
0.9 ns. tDDKHMH can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. In source 
synchronous mode, this typically is set to the same delay as the clock adjust in the CLK_CNTL register. The timing 
parameters listed in the table assume that these two parameters have been set to the same adjustment value. See the 
MPC8555E PowerQUICC™ III Integrated Communications Processor Reference Manual for a description and 
understanding of the timing modifications enabled by use of these bits. 

6. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC 
(MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the MPC8555E.

7. All outputs are referenced to the rising edge of MCK(n) at the pins of the MPC8555E. Note that tDDKHMP follows the symbol 
conventions described in note 1.

Table 14. DDR SDRAM Output AC Timing Specifications for Source Synchronous Mode (continued)
At recommended operating conditions with GVDD of 2.5 V ± 5%.

Parameter Symbol 1 Min Max Unit Notes
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Ethernet: Three-Speed, MII Management

8.2 GMII, MII, TBI, RGMII, and RTBI AC Timing Specifications
The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section. 

8.2.1 GMII AC Timing Specifications
This section describes the GMII transmit and receive AC timing specifications.

8.2.2 GMII Transmit AC Timing Specifications
Table 20 provides the GMII transmit AC timing specifications.

Figure 7 shows the GMII transmit AC timing diagram.

Figure 7. GMII Transmit AC Timing Diagram

Table 20. GMII Transmit AC Timing Specifications
At recommended operating conditions with LVDD of 3.3 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

GTX_CLK clock period tGTX — 8.0 — ns

GTX_CLK duty cycle tGTXH/tGTX 40 — 60 %

GMII data TXD[7:0], TX_ER, TX_EN setup time tGTKHDV 2.5 — — ns

GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay  tGTKHDX 0.5 — 5.0 ns

GTX_CLK data clock rise and fall times tGTXR
3

, tGTXR
2,4 — — 1.0 ns

Notes:
1. The symbols used for timing specifications herein follow the pattern t(first two letters of functional block)(signal)(state) (reference)(state) 

for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tGTKHDV symbolizes GMII 
transmit timing (GT) with respect to the tGTX clock reference (K) going to the high state (H) relative to the time date input 
signals (D) reaching the valid state (V) to state or setup time. Also, tGTKHDX symbolizes GMII transmit timing (GT) with respect 
to the tGTX clock reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold 
time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a 
particular functional. For example, the subscript of tGTX represents the GMII(G) transmit (TX) clock. For rise and fall times, 
the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3. Guaranteed by characterization.

4. Guaranteed by design.

GTX_CLK

TXD[7:0]

tGTKHDX

tGTX

tGTXH

tGTXR

tGTXF

tGTKHDV

TX_EN
TX_ER



MPC8555E PowerQUICC™ III Integrated Communications Processor Hardware Specification, Rev. 4.2

Freescale Semiconductor 25
 

Ethernet: Three-Speed, MII Management

8.2.2.1 GMII Receive AC Timing Specifications

Table 21 provides the GMII receive AC timing specifications.

Figure 8 provides the AC test load for TSEC.

Figure 8. TSEC AC Test Load

Figure 9 shows the GMII receive AC timing diagram.

Figure 9. GMII Receive AC Timing Diagram

Table 21. GMII Receive AC Timing Specifications
At recommended operating conditions with LVDD of 3.3 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

RX_CLK clock period tGRX — 8.0 — ns

RX_CLK duty cycle tGRXH/tGRX 40 — 60 %

RXD[7:0], RX_DV, RX_ER setup time to RX_CLK tGRDVKH 2.0 — — ns

RXD[7:0], RX_DV, RX_ER hold time to RX_CLK tGRDXKH 0.5 — — ns

RX_CLK clock rise and fall time tGRXR, tGRXF
 2,3 — — 1.0 ns

Note:
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tGRDVKH 
symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to 
the tRX clock reference (K) going to the high state (H) or setup time. Also, tGRDXKL symbolizes GMII receive timing (GR) 
with respect to the time data input signals (D) went invalid (X) relative to the tGRX clock reference (K) going to the low (L) 
state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing 
the clock of a particular functional. For example, the subscript of tGRX represents the GMII (G) receive (RX) clock. For rise 
and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3. Guaranteed by design.

Output Z0 = 50 Ω LVDD/2
RL = 50 Ω

RX_CLK

RXD[7:0]

tGRDXKH

tGRX

tGRXH

tGRXR

tGRXF

tGRDVKH

RX_DV
RX_ER
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Local Bus

Table 31 describes the general timing parameters of the local bus interface of the MPC8555E with the DLL 
bypassed.

Local bus clock to output high impedance for 
LAD/LDP

LWE[0:1] = 00 tLBKHOZ2 — 2.8 ns 5, 9

LWE[0:1] = 11 (default) 4.2

Notes:
1. The symbols used for timing specifications herein follow the pattern of t(First two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 
symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes 
high (H), in this case for clock one(1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go 
high (H), with respect to the output (O) going invalid (X) or output hold time. 

2. All timings are in reference to LSYNC_IN for DLL enabled mode.
3. All signals are measured from OVDD/2 of the rising edge of LSYNC_IN for DLL enabled to 0.4 × OVDD of the signal in 

question for 3.3-V signaling levels.
4. Input timings are measured at the pin.
5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.
6. The value of tLBOTOT is defined as the sum of 1/2 or 1 ccb_clk cycle as programmed by LBCR[AHD], and the number of 

local bus buffer delays used as programmed at power-on reset with configuration pins LWE[0:1].
7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between 

complementary signals at OVDD/2.
8. Guaranteed by characterization.
9. Guaranteed by design.

Table 31. Local Bus General Timing Parameters—DLL Bypassed

Parameter Configuration 7 Symbol 1 Min Max Unit Notes

Local bus cycle time tLBK 6.0 — ns 2

Internal launch/capture clock to LCLK 
delay 

tLBKHKT 1.8 3.4 ns 8

LCLK[n] skew to LCLK[m] or LSYNC_OUT tLBKSKEW — 150 ps 7, 9

Input setup to local bus clock (except 
LUPWAIT)

tLBIVKH1 5.2 — ns 3, 4

LUPWAIT input setup to local bus clock tLBIVKH2 5.1 — ns 3, 4

Input hold from local bus clock (except 
LUPWAIT)

tLBIXKH1 –1.3 — ns 3, 4

LUPWAIT input hold from local bus clock tLBIXKH2 –0.8 — ns 3, 4

LALE output transition to LAD/LDP output 
transition (LATCH hold time)

tLBOTOT 1.5 — ns 6

Local bus clock to output valid (except 
LAD/LDP and LALE)

LWE[0:1] = 00 tLBKLOV1 — 0.5 ns 3

LWE[0:1] = 11 (default) 2.0

Local bus clock to data valid for LAD/LDP LWE[0:1] = 00 tLBKLOV2 — 0.7 ns 3

LWE[0:1] = 11 (default) 2.2

Table 30. Local Bus General Timing Parameters—DLL Enabled (continued)

Parameter Configuration 7 Symbol 1 Min Max Unit Notes
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CPM

Figure 23 provides the AC test load for the CPM.

Figure 23. CPM AC Test Load

TDM inputs/SI—hold time tTDIXKH 3 ns

PIO inputs—input setup time tPIIVKH 8 ns

PIO inputs—input hold time tPIIXKH 1 ns

COL width high (FCC) tFCCH 1.5 CLK

Notes:
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings 

are measured at the pin.
2. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tFIIVKH 
symbolizes the FCC inputs internal timing (FI) with respect to the time the input signals (I) reaching the valid state (V) 
relative to the reference clock tFCC (K) going to the high (H) state or setup time. And tTDIXKH symbolizes the TDM timing 
(TD) with respect to the time the input signals (I) reach the invalid state (X) relative to the reference clock tFCC (K) going to 
the high (H) state or hold time.

3. PIO and TIMER inputs and outputs are asynchronous to SYSCLK or any other externally visible clock. PIO/TIMER inputs 
are internally synchronized to the CPM internal clock. PIO/TIMER outputs should be treated as asynchronous.

Table 34.  CPM Output AC Timing Specifications 1

Characteristic Symbol 2 Min Max Unit

FCC outputs—internal clock (NMSI) delay tFIKHOX 1 5.5 ns

FCC outputs—external clock (NMSI) delay tFEKHOX 2 8 ns

SCC/SMC/SPI outputs—internal clock (NMSI) delay tNIKHOX 0.5 10 ns

SCC/SMC/SPI outputs—external clock (NMSI) delay tNEKHOX 2 8 ns

TDM outputs/SI delay tTDKHOX 2.5 11 ns

PIO outputs delay tPIKHOX 1 11 ns

Notes:
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings 

are measured at the pin.
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for 

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tFIKHOX symbolizes the FCC 
inputs internal timing (FI) for the time tFCC memory clock reference (K) goes from the high state (H) until outputs (O) are 
invalid (X). 

Table 33. CPM Input AC Timing Specifications 1 (continued)

Characteristic Symbol 2 Min3 Unit

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω
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CPM

Figure 24 through Figure 30 represent the AC timing from Table 33 and Table 34. Note that although the 
specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when 
the falling edge is the active edge.

Figure 24 shows the FCC internal clock.

Figure 24. FCC Internal AC Timing Clock Diagram

Figure 25 shows the FCC external clock.

Figure 25. FCC External AC Timing Clock Diagram 

Figure 26 shows Ethernet collision timing on FCCs.

Figure 26. Ethernet Collision AC Timing Diagram (FCC)
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Serial CLKIN
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tFEIVKH

FCC Input Signals

FCC Output Signals
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tFEKHOX

COL
(Input)

tFCCH
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PCI

13.2 PCI AC Electrical Specifications
This section describes the general AC timing parameters of the PCI bus of the MPC8555E. Note that the 
SYSCLK signal is used as the PCI input clock. Table 42 provides the PCI AC timing specifications at 66 
MHz. 

NOTE

PCI Clock can be PCI1_CLK or SYSCLK based on POR config input.

NOTE

The input setup time does not meet the PCI specification.

Figure 16 provides the AC test load for PCI.

Figure 39. PCI AC Test Load

Table 42. PCI AC Timing Specifications at 66 MHz

Parameter Symbol 1 Min Max Unit Notes

Clock to output valid tPCKHOV — 6.0 ns 2, 3

Output hold from Clock tPCKHOX 2.0 — ns 2, 9

Clock to output high impedance tPCKHOZ — 14 ns 2, 3, 10

Input setup to Clock tPCIVKH 3.3 — ns 2, 4, 9

Input hold from Clock tPCIXKH 0 — ns 2, 4, 9

REQ64 to HRESET 9 setup time tPCRVRH 10 × tSYS — clocks 5, 6, 10

HRESET to REQ64 hold time tPCRHRX 0 50 ns 6, 10

HRESET high to first FRAME assertion tPCRHFV 10 — clocks 7, 10

Notes:
1. Note that the symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH 
symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK 
clock, tSYS, reference (K) going to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC) with respect to 
the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.
4. Input timings are measured at the pin.
5. The timing parameter tSYS indicates the minimum and maximum CLK cycle times for the various specified frequencies. The 

system clock period must be kept within the minimum and maximum defined ranges. For values see Section 15, “Clocking.” 
6. The setup and hold time is with respect to the rising edge of HRESET.
7. The timing parameter tPCRHFV is a minimum of 10 clocks rather than the minimum of 5 clocks in the PCI 2.2 Local Bus 

Specifications.
8. The reset assertion timing requirement for HRESET is 100 μs.
9. Guaranteed by characterization.
10.Guaranteed by design.

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω
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Package and Pin Listings

Figure 40 shows the PCI input AC timing conditions.

Figure 40. PCI Input AC Timing Measurement Conditions

Figure 41 shows the PCI output AC timing conditions.

Figure 41. PCI Output AC Timing Measurement Condition

14 Package and Pin Listings
This section details package parameters, pin assignments, and dimensions.

14.1 Package Parameters for the MPC8555E FC-PBGA
The package parameters are as provided in the following list. The package type is 29 mm × 29 mm, 783 
flip chip plastic ball grid array (FC-PBGA).

Die size 8.7 mm × 9.3 mm × 0.75 mm

Package outline 29 mm × 29 mm

Interconnects 783 

Pitch 1 mm

Minimum module height 3.07 mm

Maximum module height 3.75 mm

Solder Balls 62 Sn/36 Pb/2 Ag 

Ball diameter (typical) 0.5 mm

tPCIVKH

CLK

Input

tPCIXKH

CLK

Output Delay

tPCKHOV

High-Impedance

tPCKHOZ

Output
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Package and Pin Listings

IRQ[0:7] AA18, Y18, AB18, AG24, AA21, Y19, AA19, AG25 I OVDD —

IRQ8 AB20 I OVDD 9

IRQ9/DMA_DREQ3 Y20 I OVDD 1

IRQ10/DMA_DACK3 AF26 I/O OVDD 1

IRQ11/DMA_DDONE3 AH24 I/O OVDD 1

IRQ_OUT AB21 O OVDD 2, 4

Ethernet Management Interface

EC_MDC F1 O OVDD 5, 9

EC_MDIO E1 I/O OVDD —

Gigabit Reference Clock

EC_GTX_CLK125 E2 I LVDD —

Three-Speed Ethernet Controller (Gigabit Ethernet 1)

TSEC1_TXD[7:4] A6, F7, D7, C7 O LVDD —

TSEC1_TXD[3:0] B7, A7, G8, E8 O LVDD 9, 18

TSEC1_TX_EN C8 O LVDD 11

TSEC1_TX_ER B8 O LVDD —

TSEC1_TX_CLK C6 I LVDD —

TSEC1_GTX_CLK B6 O LVDD —

TSEC1_CRS C3 I LVDD —

TSEC1_COL G7 I LVDD —

TSEC1_RXD[7:0] D4, B4, D3, D5, B5, A5, F6, E6 I LVDD —

TSEC1_RX_DV D2 I LVDD —

TSEC1_RX_ER E5 I LVDD —

TSEC1_RX_CLK D6 I LVDD —

Three-Speed Ethernet Controller (Gigabit Ethernet 2)

TSEC2_TXD[7:4] B10, A10, J10, K11 O LVDD —

TSEC2_TXD[3:0] J11, H11, G11, E11 O LVDD 5, 9, 18

TSEC2_TX_EN B11 O LVDD 11

TSEC2_TX_ER D11 O LVDD —

TSEC2_TX_CLK D10 I LVDD —

TSEC2_GTX_CLK C10 O LVDD —

Table 43. MPC8555E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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PB[18:31] P7, P6, P5, P4, P3, P2, P1, R1, R2, R3, R4, R5, R6, 
R7

I/0 OVDD —

PC[0, 1, 4–29] R8, R9, T9, T6, T5, T4, T1, U1, U2, U3, U4, U7, U8, 
U9, U10, V9, V6, V5, V4, V3, V2, V1, W1, W2, W3, 

W6, W7, W8

I/0 OVDD —

PD[7, 14–25, 29–31] Y4, AA2, AA1, AB1, AB2, AB3, AB5, AB6, AC7, AC4, 
AC3, AC2, AC1, AD6, AE3, AE2

I/0 OVDD —

Notes: 
1. All multiplexed signals are listed only once and do not re-occur. For example, LCS5/DMA_REQ2 is listed only once in the 

Local Bus Controller Interface section, and is not mentioned in the DMA section even though the pin also functions as 
DMA_REQ2.

2. Recommend a weak pull-up resistor (2–10 kΩ) be placed on this pin to OVDD.
3. TEST_SEL0 must be pulled-high, TEST_SEL1 must be tied to ground.
4. This pin is an open drain signal.
5. This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the MPC8555E is in 

the reset state. This pull-up is designed such that it can be overpowered by an external 4.7-kΩ pull-down resistor. If an 
external device connected to this pin might pull it down during reset, then a pull-up or active driver is needed if the signal is 
intended to be high during reset.

6. Treat these pins as no connects (NC) unless using debug address functionality.
7. The value of LA[28:31] during reset sets the CCB clock to SYSCLK PLL ratio. These pins require 4.7-kΩ pull-up or 

pull-down resistors. See Section 15.2, “Platform/System PLL Ratio.” 
8. The value of LALE and LGPL2 at reset set the e500 core clock to CCB Clock PLL ratio. These pins require 4.7-kΩ pull-up 

or pull-down resistors. See the Section 15.3, “e500 Core PLL Ratio.”
9. Functionally, this pin is an output, but structurally it is an I/O because it either samples configuration input during reset or 

because it has other manufacturing test functions. This pin therefore is described as an I/O for boundary scan.
10. This pin functionally requires a pull-up resistor, but during reset it is a configuration input that controls 32- vs. 64-bit PCI 

operation. Therefore, it must be actively driven low during reset by reset logic if the device is to be configured to be a 64-bit 
PCI device. Refer to the PCI Specification.

11. This output is actively driven during reset rather than being three-stated during reset.
12. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
13. These pins are connected to the VDD/GND planes internally and may be used by the core power supply to improve tracking 

and regulation.
14. Internal thermally sensitive resistor.
15. No connections should be made to these pins.
16. These pins are not connected for any functional use.
17. PCI specifications recommend that a weak pull-up resistor (2–10 kΩ) be placed on the higher order pins to OVDD when 

using 64-bit buffer mode (pins PCI_AD[63:32] and PCI2_C_BE[7:4]). 
18. If this pin is connected to a device that pulls down during reset, an external pull-up is required to that is strong enough to 

pull this signal to a logic 1 during reset.

19. Recommend a pull-up resistor (~1 kΩ) be placed on this pin to OVDD.

20. These are test signals for factory use only and must be pulled up (100Ω το 1kΩ) to OVDD for normal machine operation.

21. If this signal is used as both an input and an output, a weak pull-up (~10kΩ) is required on this pin.

22. MSYNC_IN and MSYNC_OUT should be connected together for proper operation.

Table 43. MPC8555E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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15 Clocking
This section describes the PLL configuration of the MPC8555E. Note that the platform clock is identical 
to the CCB clock.

15.1 Clock Ranges
Table 44 provides the clocking specifications for the processor core and Table 44 provides the clocking 
specifications for the memory bus.

Table 44. Processor Core Clocking Specifications

Characteristic

Maximum Processor Core Frequency

Unit Notes533 MHz 600 MHz  667 MHz  833 MHz  1000 MHz

Min Max Min Max Min Max Min Max Min Max

e500 core 
processor 
frequency

400 533 400 600 400 667 400 833 400 1000 MHz 1, 2, 3

Notes:

1. Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK 
frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating 
frequencies. Refer to Section 15.2, “Platform/System PLL Ratio,” and Section 15.3, “e500 Core PLL Ratio,” for ratio settings.

2.)The minimum e500 core frequency is based on the minimum platform frequency of 200 MHz.

3. 1000 MHz frequency supports only a 1.3 V core.

Table 45. Memory Bus Clocking Specifications

Characteristic

Maximum Processor Core 
Frequency

Unit Notes
533, 600, 667, 883, 1000 MHz

Min Max

Memory bus frequency 100 166 MHz 1, 2, 3

Notes:
1. Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that 

the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their 
respective maximum or minimum operating frequencies. Refer to Section 15.2, “Platform/System PLL 
Ratio,” and Section 15.3, “e500 Core PLL Ratio,” for ratio settings.

2. The memory bus speed is half of the DDR data rate, hence, half of the platform clock frequency.

3. 1000 MHz frequency supports only a 1.3 V core.
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17 System Design Information
This section provides electrical and thermal design recommendations for successful application of the 
MPC8555E.

17.1 System Clocking
The MPC8555E includes five PLLs.

1. The platform PLL (AVDD1) generates the platform clock from the externally supplied SYSCLK 
input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL 
ratio configuration bits as described in Section 15.2, “Platform/System PLL Ratio.”

2. The e500 Core PLL (AVDD2) generates the core clock as a slave to the platform clock. The 
frequency ratio between the e500 core clock and the platform clock is selected using the e500 
PLL ratio configuration bits as described in Section 15.3, “e500 Core PLL Ratio.”

3. The CPM PLL (AVDD3) is slaved to the platform clock and is used to generate clocks used 
internally by the CPM block. The ratio between the CPM PLL and the platform clock is fixed and 
not under user control.

4. The PCI1 PLL (AVDD4) generates the clocking for the first PCI bus.

5. The PCI2 PLL (AVDD5) generates the clock for the second PCI bus.

17.2 PLL Power Supply Filtering
Each of the PLLs listed above is provided with power through independent power supply pins (AVDD1, 
AVDD2, AVDD3, AVDD4, and AVDD5 respectively). The AVDD level should always be equivalent to VDD, 
and preferably these voltages are derived directly from VDD through a low frequency filter scheme such 
as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to 
provide five independent filter circuits as illustrated in Figure 50, one to each of the five AVDD pins. By 
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the 
other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.

Each circuit should be placed as close as possible to the specific AVDD pin being supplied to minimize 
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AVDD 
pin, which is on the periphery of the 783 FC-PBGA footprint, without the inductance of vias.
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When data is held high, SW1 is closed (SW2 is open) and RP is trimmed until the voltage at the pad equals 
OVDD/2. RP then becomes the resistance of the pull-up devices. RP and RN are designed to be close to each 
other in value. Then, Z0 = (RP + RN)/2.

Figure 51. Driver Impedance Measurement

The value of this resistance and the strength of the driver’s current source can be found by making two 
measurements. First, the output voltage is measured while driving logic 1 without an external differential 
termination resistor. The measured voltage is V1 = Rsource × Isource. Second, the output voltage is measured 
while driving logic 1 with an external precision differential termination resistor of value Rterm. The 
measured voltage is V2 = 1/(1/R1 + 1/R2)) × Isource. Solving for the output impedance gives Rsource = Rterm 
× (V1/V2 – 1). The drive current is then Isource = V1/Rsource.

Table 50 summarizes the signal impedance targets. The driver impedance are targeted at minimum VDD, 
nominal OVDD, 105°C.

Table 50. Impedance Characteristics

Impedance
Local Bus, Ethernet, DUART, Control, Configuration, Power 

Management PCI DDR DRAM Symbol Unit

RN 43 Target 25 Target 20 Target Z0 Ω

RP 43 Target 25 Target 20 Target Z0 Ω

Differential NA NA NA ZDIFF Ω

Note: Nominal supply voltages. See Table 1, Tj = 105°C.

OVDD

OGND

RP

RN

Pad
Data

SW1

SW2
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The COP function of these processors allow a remote computer system (typically, a PC with dedicated 
hardware and debugging software) to access and control the internal operations of the processor. The COP 
interface connects primarily through the JTAG port of the processor, with some additional status 
monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order 
to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic.

The arrangement shown in Figure 52 allows the COP port to independently assert HRESET or TRST, 
while ensuring that the target can drive HRESET as well. 

The COP interface has a standard header, shown in Figure 52, for connection to the target system, and is 
based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The 
connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features. An inexpensive option can be to leave 
the COP header unpopulated until needed.

There is no standardized way to number the COP header; consequently, many different pin numbers have 
been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others 
use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as 
with an IC). Regardless of the numbering, the signal placement recommended in Figure 52 is common to 
all known emulators.

Figure 52. COP Connector Physical Pinout
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1 2COP_TDO
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COP_CHKSTP_OUT



MPC8555E PowerQUICC™ III Integrated Communications Processor Hardware Specification, Rev. 4.2

Freescale Semiconductor 83
 

System Design Information

17.8.1 Termination of Unused Signals
If the JTAG interface and COP header are not used, Freescale recommends the following connections:

• TRST should be tied to HRESET through a 0 kΩ isolation resistor so that it is asserted when the 
system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during 
the power-on reset flow. Freescale recommends that the COP header be designed into the system 
as shown in Figure 53. If this is not possible, the isolation resistor allows future access to TRST in 
case a JTAG interface may need to be wired onto the system in future debug situations.

• Tie TCK to OVDD through a 10 kΩ resistor. This prevents TCK from changing state and reading 
incorrect data into the device. 

• No connection is required for TDI, TMS, or TDO.
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Figure 53. JTAG Interface Connection
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3. The KEY location (pin 14) is not physically present on the COP header.

10 kΩ

TRST1
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CKSTP_OUT
COP_CHKSTP_OUT
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COP Connector
Physical Pinout

1 2

NC

SRESET 

 

2. Populate this with a 10 Ω resistor for short-circuit/current-limiting protection.

NC

OVDD

10 kΩ

10 kΩ HRESET1

 in order to fully control the processor as shown here.

4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for

1. The COP port and target board should be able to independently assert HRESET and TRST to the processor

improved signal integrity.

TCK

 4

5

5. This switch is included as a precaution for BSDL testing. The switch should be open during BSDL testing to avoid
accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed or removed.

10 kΩ

6

6. Asserting SRESET causes a machine check interrupt to the e500 core.
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18 Document Revision History
Table 51 provides a revision history for this hardware specification.

Table 51. Document Revision History

Rev. No. Date Substantive Change(s)

4.2 1/2008 Added “Note: Rise/Fall Time on CPM Input Pins” and following note text to Section 10.2, “CPM AC 
Timing Specifications.”

4.1 7/2007 Inserted Figure 3, ““Maximum AC Waveforms on PCI interface for 3.3-V Signaling.”

4 12/2006 Updated Section 2.1.2, “Power Sequencing.”

Updated back page information.

3.2 11/2006 Updated Section 2.1.2, “Power Sequencing.”

Replaced Section 17.8, “JTAG Configuration Signals.”

3.1 10/2005 Added footnote 2 about junction temperature in Table 4.

Added max. power values for 1000 MHz core frequency in Table 4. 

Removed Figure 3, “Maximum AC Waveforms on PCI Interface for 3.3-V Signaling.”

Modified note to tLBKSKEW from 8 to 9 in Table 30.

Changed tLBKHOZ1 and tLBKHOV2 values inTable 30.

Added note 3 to tLBKHOV1 in Table 30.

Modified note 3 in Table 30 and Table 31. 

Added note 3 to tLBKLOV1 in Table 31.

Modified values for tLBKHKT, tLBKLOV1, tLBKLOV2, tLBKLOV3, tLBKLOZ1, and tLBKLOZ2 in Table 31.

Changed Input Signals: LAD[0:31]/LDP[0:3] in Figure 21.

Modified note for signal CLK_OUT in Table 43.

PCI1_CLK and PCI2_CLK changed from I/O to I in Table 43.

Added column for Encryption Acceleration in Table 52.

3 8/2005 Modified max. power values in Table 4. 

Modified notes for signals TSEC1_TXD[3:0], TSEC2_TXD[3:0], TRIG_OUT/READY, MSRCID4, 
CLK_OUT, and MDVAL in Table 43. 

2 8/2005 Previous revision’s history listed incorrect cross references. Table 2 is now correctly listed as 
Table 27 and Table 38 is now listed as Table 31.

Added note 2 in Table 7.

Modified min and max values for tDDKHMP in Table 14.

1 6/2005 Changed LVdd to OVdd for the supply voltage Ethernet management interface in Table 27.

Modified footnote 4 and changed typical power for the 1000 MHz core frequency inTable 4.

Corrected symbols for body rows 9–15, effectively changing them from a high state to a low state 
in Table 31.

0 6/2005 Initial release.


