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Overview

— Can be partitioned into 128-Kbyte L2 cache plus 128-Kbyte SRAM

— Full ECC support on 64-bit boundary in both cache and SRAM modes

— SRAM operation supports relocation and is byte-accessible

— Cache mode supports instruction caching, data caching, or both

— External masters can force data to be allocated into the cache through programmed memory 
ranges or special transaction types (stashing).

— Eight-way set-associative cache organization (1024 sets of 32-byte cache lines)

— Supports locking the entire cache or selected lines

– Individual line locks set and cleared through Book E instructions or by externally mastered 
transactions

— Global locking and flash clearing done through writes to L2 configuration registers

— Instruction and data locks can be flash cleared separately

— Read and write buffering for internal bus accesses

• Address translation and mapping unit (ATMU)

— Eight local access windows define mapping within local 32-bit address space

— Inbound and outbound ATMUs map to larger external address spaces

– Three inbound windows plus a configuration window on PCI 

– Four inbound windows

– Four outbound windows plus default translation for PCI

• DDR memory controller

— Programmable timing supporting first generation DDR SDRAM

— 64-bit data interface, up to MHz data rate

— Four banks of memory supported, each up to 1 Gbyte

— DRAM chip configurations from 64 Mbits to 1 Gbit with x8/x16 data ports

— Full ECC support

— Page mode support (up to 16 simultaneous open pages)

— Contiguous or discontiguous memory mapping

— Sleep mode support for self refresh DDR SDRAM

— Supports auto refreshing

— On-the-fly power management using CKE signal

— Registered DIMM support

— Fast memory access via JTAG port

— 2.5-V SSTL2 compatible I/O

• Programmable interrupt controller (PIC)

— Programming model is compliant with the OpenPIC architecture

— Supports 16 programmable interrupt and processor task priority levels

— Supports 12 discrete external interrupts

— Supports 4 message interrupts with 32-bit messages
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Electrical Characteristics

Items on the same line have no ordering requirement with respect to one another. Items on separate lines 
must be ordered sequentially such that voltage rails on a previous step must reach 90 percent of their value 
before the voltage rails on the current step reach ten percent of theirs.

NOTE

If the items on line 2 must precede items on line 1, please ensure that the 
delay does not exceed 500 ms and the power sequence is not done greater 
than once per day in production environment.

NOTE

From a system standpoint, if the I/O power supplies ramp prior to the VDD 
core supply, the I/Os on the MPC8555E may drive a logic one or zero during 
power-up.

2.1.3 Recommended Operating Conditions
Table 2 provides the recommended operating conditions for the MPC8555E. Note that the values in 
Table 2 are the recommended and tested operating conditions. Proper device operation outside of these 
conditions is not guaranteed.

Table 2. Recommended Operating Conditions

Characteristic Symbol Recommended Value Unit

Core supply voltage VDD 1.2 V ± 60 mV
1.3 V± 50 mV (for 1 GHz only)

V

PLL supply voltage AVDD 1.2 V ± 60 mV
1.3 V ± 50 mV (for 1 GHz only)

V

DDR DRAM I/O voltage GVDD 2.5 V ± 125 mV V

Three-speed Ethernet I/O voltage LVDD 3.3 V ± 165 mV
2.5 V ± 125 mV

V

PCI, local bus, DUART, system control and power management, 
I2C, and JTAG I/O voltage

OVDD 3.3 V ± 165 mV V

Input voltage DDR DRAM signals MVIN GND to GVDD V

DDR DRAM reference MVREF GND to GVDD V

Three-speed Ethernet signals LVIN GND to LVDD V

PCI, local bus, DUART, 
SYSCLK, system control and 
power management, I2C, and 
JTAG signals

OVIN GND to OVDD V

Die-junction Temperature Tj 0 to 105 °C
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Electrical Characteristics

Figure 3 shows the undershoot and overshoot voltage of the PCI interface of the MPC8555E for the 3.3-V 
signals, respectively.

Figure 3. Maximum AC Waveforms on PCI interface for 3.3-V Signaling

2.1.4 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are 
preliminary estimates.

Table 3. Output Drive Capability

Driver Type
Programmable Output 

Impedance (Ω)
Supply
Voltage

Notes

Local bus interface utilities signals 25 OVDD = 3.3 V 1

42 (default)

PCI signals 25 2

42 (default)

DDR signal 20 GVDD = 2.5 V

TSEC/10/100 signals 42 LVDD = 2.5/3.3 V

DUART, system control, I2C, JTAG 42 OVDD = 3.3 V

Notes:
1. The drive strength of the local bus interface is determined by the configuration of the appropriate bits in PORIMPSCR.
2. The drive strength of the PCI interface is determined by the setting of the PCI_GNT1 signal at reset.

11 ns
(Min)

Overvoltage
Waveform

Undervoltage
Waveform

4 ns
(Max)

4 ns
(Max)

62.5 ns

–3.5 V

+7.1 V

7.1 V p-to-p
(Min)

7.1 V p-to-p
(Min)

0 V

+3.6 V
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DDR SDRAM

6.2 DDR SDRAM AC Electrical Characteristics
This section provides the AC electrical characteristics for the DDR SDRAM interface.

6.2.1 DDR SDRAM Input AC Timing Specifications
Table 13 provides the input AC timing specifications for the DDR SDRAM interface.

6.2.2 DDR SDRAM Output AC Timing Specifications
Table 14 and Table 15 provide the output AC timing specifications and measurement conditions for the 
DDR SDRAM interface.

Table 13. DDR SDRAM Input AC Timing Specifications
At recommended operating conditions with GVDD of 2.5 V ± 5%.

Parameter Symbol Min Max Unit Notes

AC input low voltage VIL — MVREF – 0.31 V —

AC input high voltage VIH MVREF + 0.31 GVDD + 0.3 V —

MDQS—MDQ/MECC input skew per 
byte

For DDR = 333 MHz
For DDR < 266 MHz

tDISKEW —

750
1125

ps 1

Note:
1. Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + {0...7}] if 0 <= n <= 

7) or ECC (MECC[{0...7}] if n = 8). 

Table 14. DDR SDRAM Output AC Timing Specifications for Source Synchronous Mode
At recommended operating conditions with GVDD of 2.5 V ± 5%.

Parameter Symbol 1 Min Max Unit Notes

MCK[n] cycle time, (MCK[n]/MCK[n] crossing) tMCK 6 10 ns 2

Skew between any MCK to ADDR/CMD
333 MHz
266 MHz
200 MHz

tAOSKEW
–1000
–1100
–1200

200
300
400

ps 3

ADDR/CMD output setup with respect to MCK
333 MHz
266 MHz
200 MHz

tDDKHAS
2.8
3.45
4.6 

— ns 4

ADDR/CMD output hold with respect to MCK
333 MHz
266 MHz
200 MHz

tDDKHAX
2.0 
2.65
3.8

— ns 4

MCS(n) output setup with respect to MCK
333 MHz
266 MHz
200 MHz

tDDKHCS
2.8
3.45
4.6 

— ns 4
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DDR SDRAM

MCS(n) output hold with respect to MCK
333 MHz
266 MHz
200 MHz

tDDKHCX
2.0 
2.65
3.8

— ns 4

MCK to MDQS
333 MHz
266 MHz
200 MHz

tDDKHMH
–0.9
–1.1
–1.2

0.3
0.5
0.6

ns 5

MDQ/MECC/MDM output setup with respect to 
MDQS

333 MHz
266 MHz
200 MHz

tDDKHDS,
tDDKLDS

900
900
1200

— ps 6

MDQ/MECC/MDM output hold with respect to 
MDQS

333 MHz
266 MHz
200 MHz

tDDKHDX,
tDDKLDX

900
900
1200

— ps 6

MDQS preamble start tDDKHMP –0.5 × tMCK – 0.9 –0.5 × tMCK +0.3 ns 7

MDQS epilogue end tDDKLME –0.9 0.3 ns 7

Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for 

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing 
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, 
tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until 
outputs (A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock 
reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.

2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
3. In the source synchronous mode, MCK/MCK can be shifted in 1/4 applied cycle increments through the Clock Control 

Register. For the skew measurements referenced for tAOSKEW it is assumed that the clock adjustment is set to align the 
address/command valid with the rising edge of MCK.

4. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the 
ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks 
by 1/2 applied cycle. The MCSx pins are separated from the ADDR/CMD (address and command) bus in the HW spec. This 
was separated because the MCSx pins typically have different loadings than the rest of the address and command bus, 
even though they have the same timings.

5. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing 
(DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). In the source synchronous mode, 
MDQS can launch later than MCK by 0.3 ns at the maximum. However, MCK may launch later than MDQS by as much as 
0.9 ns. tDDKHMH can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. In source 
synchronous mode, this typically is set to the same delay as the clock adjust in the CLK_CNTL register. The timing 
parameters listed in the table assume that these two parameters have been set to the same adjustment value. See the 
MPC8555E PowerQUICC™ III Integrated Communications Processor Reference Manual for a description and 
understanding of the timing modifications enabled by use of these bits. 

6. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC 
(MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the MPC8555E.

7. All outputs are referenced to the rising edge of MCK(n) at the pins of the MPC8555E. Note that tDDKHMP follows the symbol 
conventions described in note 1.

Table 14. DDR SDRAM Output AC Timing Specifications for Source Synchronous Mode (continued)
At recommended operating conditions with GVDD of 2.5 V ± 5%.

Parameter Symbol 1 Min Max Unit Notes
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DUART

Figure 6 provides the AC test load for the DDR bus.

Figure 6. DDR AC Test Load

7 DUART
This section describes the DC and AC electrical specifications for the DUART interface of the 
MPC8555E.

7.1 DUART DC Electrical Characteristics
Table 16 provides the DC electrical characteristics for the DUART interface of the MPC8555E.

Table 15. DDR SDRAM Measurement Conditions

Symbol DDR Unit Notes

VTH MVREF ± 0.31 V V 1

VOUT 0.5 × GVDD V 2

Notes:
1. Data input threshold measurement point.
2. Data output measurement point.

Table 16. DUART DC Electrical Characteristics  

Parameter Symbol Test Condition Min Max Unit

High-level input voltage VIH VOUT ≥ VOH (min) or 2 OVDD + 0.3 V

Low-level input voltage VIL VOUT ≤ VOL (max) –0.3 0.8 V

Input current IIN VIN 1 = 0 V or VIN = VDD — ±5 μA

High-level output voltage VOH OVDD = min, 
IOH = –100 μA

OVDD – 0.2 — V

Low-level output voltage VOL OVDD = min, IOL = 100 μA — 0.2 V

Note:
1. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

Output Z0 = 50 Ω GVDD/2
RL = 50 Ω



MPC8555E PowerQUICC™ III Integrated Communications Processor Hardware Specification, Rev. 4.2

34 Freescale Semiconductor
 

Local Bus

9.2 Local Bus AC Electrical Specifications
Table 30 describes the general timing parameters of the local bus interface of the MPC8555E with the DLL 
enabled.

Table 30. Local Bus General Timing Parameters—DLL Enabled

Parameter Configuration 7 Symbol 1 Min Max Unit Notes

Local bus cycle time tLBK 6.0 — ns 2

LCLK[n] skew to LCLK[m] or LSYNC_OUT tLBKSKEW — 150 ps 7, 9

Input setup to local bus clock (except 
LUPWAIT)

tLBIVKH1 1.8 — ns 3, 4, 8

LUPWAIT input setup to local bus clock tLBIVKH2 1.7 — ns 3, 4

Input hold from local bus clock (except 
LUPWAIT)

tLBIXKH1 0.5 — ns 3, 4, 8

LUPWAIT input hold from local bus clock tLBIXKH2 1.0 — ns 3, 4

LALE output transition to LAD/LDP output 
transition (LATCH hold time)

tLBOTOT 1.5 — ns 6

Local bus clock to output valid (except 
LAD/LDP and LALE)

LWE[0:1] = 00 tLBKHOV1 — 2.3 ns 3, 8

LWE[0:1] = 11 (default) 3.8

Local bus clock to data valid for LAD/LDP LWE[0:1] = 00 tLBKHOV2 — 2.5 ns 3, 8

LWE[0:1] = 11 (default) 4.0

Local bus clock to address valid for LAD LWE[0:1] = 00 tLBKHOV3 — 2.6 ns 3, 8

LWE[0:1] = 11 (default) 4.1

Output hold from local bus clock (except 
LAD/LDP and LALE)

LWE[0:1] = 00 tLBKHOX1 0.7 — ns 3, 8

LWE[0:1] = 11 (default) 1.6

Output hold from local bus clock for 
LAD/LDP

LWE[0:1] = 00 tLBKHOX2 0.7 — ns 3, 8

LWE[0:1] = 11 (default) 1.6

Local bus clock to output high Impedance 
(except LAD/LDP and LALE)

LWE[0:1] = 00 tLBKHOZ1 — 2.8 ns 5, 9

LWE[0:1] = 11 (default) 4.2
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Local Bus

Figure 22. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 or 8 (DLL Bypass Mode)

Internal launch/capture clock

UPM Mode Input Signal:
LUPWAIT

T1

T3

UPM Mode Output Signals:
LCS[0:7]/LBS[0:3]/LGPL[0:5]

GPCM Mode Output Signals:
LCS[0:7]/LWE

T2

T4

Input Signals:
LAD[0:31]/LDP[0:3]
(DLL Bypass Mode)

LCLK

tLBKLOV1

tLBKLOZ1

tLBKLOX1

tLBIVKH2
tLBIXKH2

tLBIVKH1
tLBIXKH1

tLBKHKT



MPC8555E PowerQUICC™ III Integrated Communications Processor Hardware Specification, Rev. 4.2

46 Freescale Semiconductor
 

CPM

Figure 27 shows the SCC/SMC/SPI external clock.

Figure 27. SCC/SMC/SPI AC Timing External Clock Diagram

Figure 28 shows the SCC/SMC/SPI internal clock.

Figure 28. SCC/SMC/SPI AC Timing Internal Clock Diagram

NOTE
1 SPI AC timings are internal mode when it is master because SPICLK is an 
output, and external mode when it is slave.
2 SPI AC timings refer always to SPICLK. 

Serial CLKIN

tNEIXKH
tNEIVKH

tNEKHOX

Input Signals:

(See Note)

Output Signals:

(See Note)

Note: 

SCC/SMC/SPI

SCC/SMC/SPI

The clock edge is selectable on SCC and SPI.

BRG_OUT

tNIIXKH

tNIKHOX

Input Signals:

(See Note)

Output Signals:

(See Note)

Note: 

tNIIVKH

SCC/SMC/SPI

SCC/SMC/SPI

The clock edge is selectable on SCC and SPI.
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JTAG

11 JTAG
This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the 
MPC8555E.

Table 38 provides the JTAG AC timing specifications as defined in Figure 33 through Figure 36.

Table 38. JTAG AC Timing Specifications (Independent of SYSCLK) 1

At recommended operating conditions (see Table 2).

Parameter Symbol 2 Min Max Unit Notes

JTAG external clock frequency of operation fJTG 0 33.3 MHz

JTAG external clock cycle time t JTG 30 — ns

JTAG external clock pulse width measured at 1.4 V tJTKHKL 15 — ns

JTAG external clock rise and fall times tJTGR & tJTGF 0 2 ns

TRST assert time tTRST 25 — ns 3

Input setup times:
Boundary-scan data

TMS, TDI
tJTDVKH
tJTIVKH

4
0

—
—

ns
4

Input hold times:
Boundary-scan data

TMS, TDI
tJTDXKH
tJTIXKH

20
25

—
—

ns
4

Valid times:
Boundary-scan data

TDO
tJTKLDV
tJTKLOV

4
4

20
25

ns
5

Output hold times:
Boundary-scan data

TDO
tJTKLDX
tJTKLOX

—
—

—
—

ns
5

JTAG external clock to output high impedance:
Boundary-scan data

TDO
tJTKLDZ
tJTKLOZ

3
3

19
9

ns
5, 6

Notes:
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in 

question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see 
Figure 32). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH 
symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the 
tJTG clock reference (K) going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to 
the time data input signals (D) went invalid (X) relative to the tJTG clock reference (K) going to the high (H) state. Note that, 
in general, the clock reference symbol representation is based on three letters representing the clock of a particular 
functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
4. Non-JTAG signal input timing with respect to tTCLK.
5. Non-JTAG signal output timing with respect to tTCLK.
6. Guaranteed by design.
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13.2 PCI AC Electrical Specifications
This section describes the general AC timing parameters of the PCI bus of the MPC8555E. Note that the 
SYSCLK signal is used as the PCI input clock. Table 42 provides the PCI AC timing specifications at 66 
MHz. 

NOTE

PCI Clock can be PCI1_CLK or SYSCLK based on POR config input.

NOTE

The input setup time does not meet the PCI specification.

Figure 16 provides the AC test load for PCI.

Figure 39. PCI AC Test Load

Table 42. PCI AC Timing Specifications at 66 MHz

Parameter Symbol 1 Min Max Unit Notes

Clock to output valid tPCKHOV — 6.0 ns 2, 3

Output hold from Clock tPCKHOX 2.0 — ns 2, 9

Clock to output high impedance tPCKHOZ — 14 ns 2, 3, 10

Input setup to Clock tPCIVKH 3.3 — ns 2, 4, 9

Input hold from Clock tPCIXKH 0 — ns 2, 4, 9

REQ64 to HRESET 9 setup time tPCRVRH 10 × tSYS — clocks 5, 6, 10

HRESET to REQ64 hold time tPCRHRX 0 50 ns 6, 10

HRESET high to first FRAME assertion tPCRHFV 10 — clocks 7, 10

Notes:
1. Note that the symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH 
symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK 
clock, tSYS, reference (K) going to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC) with respect to 
the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.
4. Input timings are measured at the pin.
5. The timing parameter tSYS indicates the minimum and maximum CLK cycle times for the various specified frequencies. The 

system clock period must be kept within the minimum and maximum defined ranges. For values see Section 15, “Clocking.” 
6. The setup and hold time is with respect to the rising edge of HRESET.
7. The timing parameter tPCRHFV is a minimum of 10 clocks rather than the minimum of 5 clocks in the PCI 2.2 Local Bus 

Specifications.
8. The reset assertion timing requirement for HRESET is 100 μs.
9. Guaranteed by characterization.
10.Guaranteed by design.

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω
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Package and Pin Listings

PCI2_GNT[1:4] AD18, AE18, AE19, AD19 O OVDD 5, 9

PCI2_IDSEL AC22 I OVDD —

PCI2_IRDY AD20 I/O OVDD 2

PCI2_PERR AC20 I/O OVDD 2

PCI2_REQ[0] AD21 I/O OVDD —

PCI2_REQ[1:4] AE21, AD22, AE22, AC23 I OVDD —

PCI2_SERR AE20 I/O OVDD 2,4

PCI2_STOP AC21 I/O OVDD 2

PCI2_TRDY AC19 I/O OVDD 2

DDR SDRAM Memory Interface

MDQ[0:63] M26, L27, L22, K24, M24, M23, K27, K26, K22, J28, 
F26, E27, J26, J23, H26, G26, C26, E25, C24, E23, 
D26, C25, A24, D23, B23, F22, J21, G21, G22, D22, 
H21, E21, N18, J18, D18, L17, M18, L18, C18, A18, 
K17, K16, C16, B16, G17, L16, A16, L15, G15, E15, 
C14, K13, C15, D15, E14, D14, D13, E13, D12, A11, 

F13, H13, A13, B12

I/O GVDD —

MECC[0:7] N20, M20, L19, E19, C21, A21, G19, A19 I/O GVDD —

MDM[0:8] L24, H28, F24, L21, E18, E16, G14, B13, M19 O GVDD —

MDQS[0:8] L26, J25, D25, A22, H18, F16, F14, C13, C20 I/O GVDD —

MBA[0:1] B18, B19 O GVDD —

MA[0:14] N19, B21, F21, K21, M21, C23, A23, B24, H23, G24, 
K19, B25, D27, J14, J13

O GVDD —

MWE D17 O GVDD —

MRAS F17 O GVDD —

MCAS J16 O GVDD —

MCS[0:3] H16, G16, J15, H15 O GVDD —

MCKE[0:1] E26, E28 O GVDD 11

MCK[0:5] J20, H25, A15, D20, F28, K14 O GVDD —

MCK[0:5] F20, G27, B15, E20, F27, L14 O GVDD —

MSYNC_IN M28 I GVDD 22

MSYNC_OUT N28 O GVDD 22

Local Bus Controller Interface

LA[27] U18 O OVDD 5, 9

Table 43. MPC8555E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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JTAG

TCK AF21 I OVDD —

TDI AG21 I OVDD 12

TDO AF19 O OVDD 11

TMS AF23 I OVDD 12

TRST AG23 I OVDD 12

DFT

LSSD_MODE AG19 I OVDD 20

L1_TSTCLK AB22 I OVDD 20

L2_TSTCLK AG22 I OVDD 20

TEST_SEL0 AH20 I OVDD 3

TEST_SEL1 AG26 I OVDD 3

Thermal Management

THERM0 AG2 — — 14

THERM1 AH3 — — 14

Power Management

ASLEEP AG18 — — 9, 18

Power and Ground Signals

AVDD1 AH19 Power for e500 
PLL (1.2 V)

AVDD1 —

AVDD2 AH18 Power for CCB 
PLL (1.2 V)

AVDD2 —

AVDD3 AH17 Power for CPM 
PLL (1.2 V)

AVDD3 —

AVDD4 AF28 Power for PCI1 
PLL (1.2 V)

AVDD4 —

AVDD5 AE28 Power for PCI2 
PLL (1.2 V)

AVDD5 —

Table 43. MPC8555E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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15.3 e500 Core PLL Ratio
Table 47 describes the clock ratio between the e500 core complex bus (CCB) and the e500 core clock. This 
ratio is determined by the binary value of LALE and LGPL2 at power up, as shown in Table 47.

15.4 Frequency Options
Table 48 shows the expected frequency values for the platform frequency when using a CCB to SYSCLK 
ratio in comparison to the memory bus speed.

Table 47. e500 Core to CCB Ratio

Binary Value of LALE, LGPL2 Signals Ratio Description

00 2:1 e500 core:CCB

01 5:2 e500 core:CCB

10 3:1 e500 core:CCB

11 7:2 e500 core:CCB

Table 48. Frequency Options with Respect to Memory Bus Speeds

CCB to SYSCLK 
Ratio

SYSCLK (MHz)

17 25 33 42 67 83 100 111 133

Platform/CCB Frequency (MHz)

2 200 222 267 

3 200 250 300 333 

4 267 333 

5 208 333 

6 200 250 

8 200 267 333 

9 225 300 

10 250 333 

12 200 300

16 267 
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16.2.2 Internal Package Conduction Resistance
For the packaging technology, shown in Table 49, the intrinsic internal conduction thermal resistance paths 
are as follows:

• The die junction-to-case thermal resistance

• The die junction-to-board thermal resistance

Figure 45 depicts the primary heat transfer path for a package with an attached heat sink mounted to a 
printed-circuit board.

Figure 45. Package with Heat Sink Mounted to a Printed-Circuit Board 

The heat sink removes most of the heat from the device. Heat generated on the active side of the chip is 
conducted through the silicon and through the lid, then through the heat sink attach material (or thermal 
interface material), and finally to the heat sink. The junction-to-case thermal resistance is low enough that 
the heat sink attach material and heat sink thermal resistance are the dominant terms.

16.2.3 Thermal Interface Materials
A thermal interface material is required at the package-to-heat sink interface to minimize the thermal 
contact resistance. For those applications where the heat sink is attached by spring clip mechanism, 
Figure 46 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, 
graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. 
As shown, the performance of these thermal interface materials improves with increasing contact pressure. 
The use of thermal grease significantly reduces the interface thermal resistance. The bare joint results in a 
thermal resistance approximately six times greater than the thermal grease joint. 

Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see 
Figure 42). Therefore, the synthetic grease offers the best thermal performance, especially at the low 
interface pressure. 

When removing the heat sink for re-work, it is preferable to slide the heat sink off slowly until the thermal 
interface material loses its grip. If the support fixture around the package prevents sliding off the heat sink, 

External Resistance

External Resistance

Internal Resistance

Radiation Convection

Radiation Convection

Heat Sink

Printed-Circuit Board

Thermal Interface Material

Package/Leads
Die Junction
Die/Package

(Note the internal versus external package resistance)
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Figure 47. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity

16.2.4.2 Case 2

Every system application has different conditions that the thermal management solution must solve. As an 
alternate example, assume that the air reaching the component is 85 °C with an approach velocity of 1 
m/sec. For a maximum junction temperature of 105 °C at 8 W, the total thermal resistance of junction to 
case thermal resistance plus thermal interface material plus heat sink thermal resistance must be less than 
2.5 °C/W. The value of the junction to case thermal resistance in Table 49 includes the thermal interface 
resistance of a thin layer of thermal grease as documented in footnote 4 of the table. Assuming that the 
heat sink is flat enough to allow a thin layer of grease or phase change material, then the heat sink must be 
less than 1.5 °C/W. 

Millennium Electronics (MEI) has tooled a heat sink MTHERM-1051 for this requirement assuming a 
compactPCI environment at 1 m/sec and a heat sink height of 12 mm. The MEI solution is illustrated in 
Figure 48 and Figure 49. This design has several significant advantages: 

• The heat sink is clipped to a plastic frame attached to the application board with screws or plastic 
inserts at the corners away from the primary signal routing areas. 

• The heat sink clip is designed to apply the force holding the heat sink in place directly above the 
die at a maximum force of less than 10 lbs. 

• For applications with significant vibration requirements, silicone damping material can be applied 
between the heat sink and plastic frame. 
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The spring mounting should be designed to apply the force only directly above the die. By localizing the 
force, rocking of the heat sink is minimized. One suggested mounting method attaches a plastic fence to 
the board to provide the structure on which the heat sink spring clips. The plastic fence also provides the 
opportunity to minimize the holes in the printed-circuit board and to locate them at the corners of the 
package. Figure 48 and provide exploded views of the plastic fence, heat sink, and spring clip.

Figure 48. Exploded Views (1) of a Heat Sink Attachment using a Plastic Fence
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17 System Design Information
This section provides electrical and thermal design recommendations for successful application of the 
MPC8555E.

17.1 System Clocking
The MPC8555E includes five PLLs.

1. The platform PLL (AVDD1) generates the platform clock from the externally supplied SYSCLK 
input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL 
ratio configuration bits as described in Section 15.2, “Platform/System PLL Ratio.”

2. The e500 Core PLL (AVDD2) generates the core clock as a slave to the platform clock. The 
frequency ratio between the e500 core clock and the platform clock is selected using the e500 
PLL ratio configuration bits as described in Section 15.3, “e500 Core PLL Ratio.”

3. The CPM PLL (AVDD3) is slaved to the platform clock and is used to generate clocks used 
internally by the CPM block. The ratio between the CPM PLL and the platform clock is fixed and 
not under user control.

4. The PCI1 PLL (AVDD4) generates the clocking for the first PCI bus.

5. The PCI2 PLL (AVDD5) generates the clock for the second PCI bus.

17.2 PLL Power Supply Filtering
Each of the PLLs listed above is provided with power through independent power supply pins (AVDD1, 
AVDD2, AVDD3, AVDD4, and AVDD5 respectively). The AVDD level should always be equivalent to VDD, 
and preferably these voltages are derived directly from VDD through a low frequency filter scheme such 
as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to 
provide five independent filter circuits as illustrated in Figure 50, one to each of the five AVDD pins. By 
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the 
other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.

Each circuit should be placed as close as possible to the specific AVDD pin being supplied to minimize 
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AVDD 
pin, which is on the periphery of the 783 FC-PBGA footprint, without the inductance of vias.
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The COP function of these processors allow a remote computer system (typically, a PC with dedicated 
hardware and debugging software) to access and control the internal operations of the processor. The COP 
interface connects primarily through the JTAG port of the processor, with some additional status 
monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order 
to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic.

The arrangement shown in Figure 52 allows the COP port to independently assert HRESET or TRST, 
while ensuring that the target can drive HRESET as well. 

The COP interface has a standard header, shown in Figure 52, for connection to the target system, and is 
based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The 
connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features. An inexpensive option can be to leave 
the COP header unpopulated until needed.

There is no standardized way to number the COP header; consequently, many different pin numbers have 
been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others 
use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as 
with an IC). Regardless of the numbering, the signal placement recommended in Figure 52 is common to 
all known emulators.

Figure 52. COP Connector Physical Pinout
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17.8.1 Termination of Unused Signals
If the JTAG interface and COP header are not used, Freescale recommends the following connections:

• TRST should be tied to HRESET through a 0 kΩ isolation resistor so that it is asserted when the 
system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during 
the power-on reset flow. Freescale recommends that the COP header be designed into the system 
as shown in Figure 53. If this is not possible, the isolation resistor allows future access to TRST in 
case a JTAG interface may need to be wired onto the system in future debug situations.

• Tie TCK to OVDD through a 10 kΩ resistor. This prevents TCK from changing state and reading 
incorrect data into the device. 

• No connection is required for TDI, TMS, or TDO.


