# E·XFL



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                                                                                                                          | Obsolete                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Core Processor                                                                                                                          | PowerPC e500                                                                                                                                                                                                  |
| Number of Cores/Bus Width                                                                                                               | 1 Core, 32-Bit                                                                                                                                                                                                |
| Speed                                                                                                                                   | 600MHz                                                                                                                                                                                                        |
| Co-Processors/DSP                                                                                                                       | Communications; CPM, Security; SEC                                                                                                                                                                            |
| RAM Controllers                                                                                                                         | DDR, SDRAM                                                                                                                                                                                                    |
| Graphics Acceleration                                                                                                                   | No                                                                                                                                                                                                            |
| Display & Interface Controllers                                                                                                         | -                                                                                                                                                                                                             |
| Ethernet                                                                                                                                | 10/100/1000Mbps (2)                                                                                                                                                                                           |
| SATA                                                                                                                                    | -                                                                                                                                                                                                             |
| USB                                                                                                                                     | USB 2.0 (1)                                                                                                                                                                                                   |
| Voltage - I/O                                                                                                                           | 2.5V, 3.3V                                                                                                                                                                                                    |
| Operating Temperature                                                                                                                   | 0°C ~ 105°C (TA)                                                                                                                                                                                              |
| Security Features                                                                                                                       | Cryptography, Random Number Generator                                                                                                                                                                         |
| Package / Case                                                                                                                          | 783-BBGA, FCBGA                                                                                                                                                                                               |
| Supplier Device Package                                                                                                                 | 783-FCPBGA (29x29)                                                                                                                                                                                            |
| Purchase URL                                                                                                                            | https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8555evtake                                                                                                                                         |
| SATA<br>USB<br>Voltage - I/O<br>Operating Temperature<br>Security Features<br>Package / Case<br>Supplier Device Package<br>Purchase URL | -<br>USB 2.0 (1)<br>2.5V, 3.3V<br>0°C ~ 105°C (TA)<br>Cryptography, Random Number Generator<br>783-BBGA, FCBGA<br>783-FCPBGA (29x29)<br>https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8555evtake |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



- Public Key Execution Unit (PKEU) supporting the following:
  - RSA and Diffie-Hellman
  - Programmable field size up to 2048-bits
  - Elliptic curve cryptography
  - F2m and F(p) modes
  - Programmable field size up to 511-bits
- Data Encryption Standard Execution Unit (DEU)
  - DES, 3DES
  - Two key (K1, K2) or Three Key (K1, K2, K3)
  - ECB and CBC modes for both DES and 3DES
- Advanced Encryption Standard Unit (AESU)
  - Implements the Rinjdael symmetric key cipher
  - Key lengths of 128, 192, and 256 bits. Two key
  - ECB, CBC, CCM, and Counter modes
- ARC Four execution unit (AFEU)
  - Implements a stream cipher compatible with the RC4 algorithm
  - 40- to 128-bit programmable key
- Message Digest Execution Unit (MDEU)
  - SHA with 160-bit or 256-bit message digest
  - MD5 with 128-bit message digest
  - HMAC with either algorithm
- Random Number Generator (RNG)
- 4 Crypto-channels, each supporting multi-command descriptor chains
  - Static and/or dynamic assignment of crypto-execution units via an integrated controller
  - Buffer size of 256 Bytes for each execution unit, with flow control for large data sizes
- High-performance RISC CPM operating at up to 333 MHz
  - CPM software compatibility with previous PowerQUICC families
  - One instruction per clock
  - Executes code from internal ROM or instruction RAM
  - 32-bit RISC architecture
  - Tuned for communication environments: instruction set supports CRC computation and bit manipulation.
  - Internal timer
  - Interfaces with the embedded e500 core processor through a 32-Kbyte dual-port RAM and virtual DMA channels for each peripheral controller
  - Handles serial protocols and virtual DMA

### MPC8555E PowerQUICC™ III Integrated Communications Processor Hardware Specification, Rev. 4.2

Overview



Overview

- Supports connection of an external interrupt controller such as the 8259 programmable interrupt controller
- Four global high resolution timers/counters that can generate interrupts
- Supports additional internal interrupt sources
- Supports fully nested interrupt delivery
- Interrupts can be routed to external pin for external processing
- Interrupts can be routed to the e500 core's standard or critical interrupt inputs
- Interrupt summary registers allow fast identification of interrupt source
- Two I<sup>2</sup>C controllers (one is contained within the CPM, the other is a stand-alone controller which is not part of the CPM)
  - Two-wire interface
  - Multiple master support
  - Master or slave I<sup>2</sup>C mode support
  - On-chip digital filtering rejects spikes on the bus
- Boot sequencer
  - Optionally loads configuration data from serial ROM at reset via the stand-alone I<sup>2</sup>C interface
  - Can be used to initialize configuration registers and/or memory
  - Supports extended I<sup>2</sup>C addressing mode
  - Data integrity checked with preamble signature and CRC
- DUART
  - Two 4-wire interfaces (RXD, TXD, RTS, CTS)
  - Programming model compatible with the original 16450 UART and the PC16550D
- Local bus controller (LBC)
  - Multiplexed 32-bit address and data operating at up to 166 MHz
  - Eight chip selects support eight external slaves
  - Up to eight-beat burst transfers
  - The 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller
  - Three protocol engines available on a per chip select basis:
    - General purpose chip select machine (GPCM)
    - Three user programmable machines (UPMs)
    - Dedicated single data rate SDRAM controller
  - Parity support
  - Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)
- Two Three-speed (10/100/1000)Ethernet controllers (TSECs)
  - Dual IEEE 802.3, 802.3u, 802.3x, 802.3z AC compliant controllers
  - Support for Ethernet physical interfaces:
    - 10/100/1000 Mbps IEEE 802.3 GMII
    - 10/100 Mbps IEEE 802.3 MII



- 10 Mbps IEEE 802.3 MII
- 1000 Mbps IEEE 802.3z TBI
- 10/100/1000 Mbps RGMII/RTBI
- Full- and half-duplex support
- Buffer descriptors are backwards compatible with MPC8260 and MPC860T 10/100 programming models
- 9.6-Kbyte jumbo frame support
- RMON statistics support
- 2-Kbyte internal transmit and receive FIFOs
- MII management interface for control and status
- Programmable CRC generation and checking
- OCeaN switch fabric
  - Three-port crossbar packet switch
  - Reorders packets from a source based on priorities
  - Reorders packets to bypass blocked packets
  - Implements starvation avoidance algorithms
  - Supports packets with payloads of up to 256 bytes
- Integrated DMA controller
  - Four-channel controller
  - All channels accessible by both local and remote masters
  - Extended DMA functions (advanced chaining and striding capability)
  - Support for scatter and gather transfers
  - Misaligned transfer capability
  - Interrupt on completed segment, link, list, and error
  - Supports transfers to or from any local memory or I/O port
  - Selectable hardware-enforced coherency (snoop/no-snoop)
  - Ability to start and flow control each DMA channel from external 3-pin interface
  - Ability to launch DMA from single write transaction
- PCI Controllers
  - PCI 2.2 compatible
  - One 64-bit or two 32-bit PCI ports supported at 16 to 66 MHz
  - Host and agent mode support, 64-bit PCI port can be host or agent, if two 32-bit ports, only one can be an agent
  - 64-bit dual address cycle (DAC) support
  - Supports PCI-to-memory and memory-to-PCI streaming
  - Memory prefetching of PCI read accesses
  - Supports posting of processor-to-PCI and PCI-to-memory writes



DDR SDRAM

Figure 4 shows the DDR SDRAM output timing for address skew with respect to any MCK.



Figure 4. Timing Diagram for  $t_{\mbox{AOSKEW}}$  Measurement

Figure 5 shows the DDR SDRAM output timing diagram for the source synchronous mode.



Figure 5. DDR SDRAM Output Timing Diagram for Source Synchronous Mode



Local Bus



Figure 20. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)



Figure 27 shows the SCC/SMC/SPI external clock.



Note: The clock edge is selectable on SCC and SPI.



Figure 28 shows the SCC/SMC/SPI internal clock.



Note: The clock edge is selectable on SCC and SPI.

### Figure 28. SCC/SMC/SPI AC Timing Internal Clock Diagram

## NOTE

<sup>1</sup> SPI AC timings are internal mode when it is master because SPICLK is an output, and external mode when it is slave.

<sup>2</sup> SPI AC timings refer always to SPICLK.



The following two tables are examples of I2C AC parameters at I2C clock value of 100k and 400k respectively.

| Characteristic                      | Expression         | Frequenc | y = 100 kHz | Unit |
|-------------------------------------|--------------------|----------|-------------|------|
| Characteristic                      | Expression         | Min      | Max         | Onit |
| SCL clock frequency (slave)         | f <sub>SCL</sub>   | —        | 100         | kHz  |
| SCL clock frequency (master)        | f <sub>SCL</sub>   | —        | 100         | kHz  |
| Bus free time between transmissions | t <sub>SDHDL</sub> | 4.7      | —           | μs   |
| Low period of SCL                   | t <sub>SCLCH</sub> | 4.7      | —           | μs   |
| High period of SCL                  | t <sub>SCHCL</sub> | 4        | —           | μs   |
| Start condition setup time          | t <sub>SCHDL</sub> | 2        | —           | μs   |
| Start condition hold time           | t <sub>SDLCL</sub> | 3        | —           | μs   |
| Data hold time                      | t <sub>SCLDX</sub> | 2        | —           | μs   |
| Data setup time                     | t <sub>SDVCH</sub> | 3        | —           | μs   |
| SDA/SCL rise time                   | t <sub>SRISE</sub> | —        | 1           | μs   |
| SDA/SCL fall time (master)          | t <sub>SFALL</sub> | _        | 303         | ns   |
| Stop condition setup time           | t <sub>SCHDH</sub> | 2        | _           | μs   |

## Table 36. CPM I2C Timing (f<sub>SCL</sub>=100 kHz)

## Table 37. CPM I2C Timing (f<sub>SCL</sub>=400 kHz)

| Characteristic                      | Expression         | Frequency | = 400 kHz | Unit |
|-------------------------------------|--------------------|-----------|-----------|------|
|                                     | Expression         | Min       | Мах       | Onit |
| SCL clock frequency (slave)         | f <sub>SCL</sub>   | —         | 400       | kHz  |
| SCL clock frequency (master)        | f <sub>SCL</sub>   | —         | 400       | kHz  |
| Bus free time between transmissions | t <sub>SDHDL</sub> | 1.2       | _         | μs   |
| Low period of SCL                   | t <sub>SCLCH</sub> | 1.2       |           | μs   |
| High period of SCL                  | t <sub>SCHCL</sub> | 1         | —         | μs   |
| Start condition setup time          | t <sub>SCHDL</sub> | 420       | —         | ns   |
| Start condition hold time           | t <sub>SDLCL</sub> | 630       | —         | ns   |
| Data hold time                      | t <sub>SCLDX</sub> | 420       | —         | ns   |
| Data setup time                     | t <sub>SDVCH</sub> | 630       | —         | ns   |
| SDA/SCL rise time                   | t <sub>SRISE</sub> | —         | 250       | ns   |
| SDA/SCL fall time                   | t <sub>SFALL</sub> |           | 75        | ns   |
| Stop condition setup time           | t <sub>SCHDH</sub> | 420       | _         | ns   |



### JTAG

# 11 JTAG

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the MPC8555E.

Table 38 provides the JTAG AC timing specifications as defined in Figure 33 through Figure 36.

## Table 38. JTAG AC Timing Specifications (Independent of SYSCLK)<sup>1</sup>

At recommended operating conditions (see Table 2).

| Parameter                                                                  | Symbol <sup>2</sup>                        | Min      | Мах      | Unit | Notes |
|----------------------------------------------------------------------------|--------------------------------------------|----------|----------|------|-------|
| JTAG external clock frequency of operation                                 | f <sub>JTG</sub>                           | 0        | 33.3     | MHz  |       |
| JTAG external clock cycle time                                             | t <sub>JTG</sub>                           | 30       | —        | ns   |       |
| JTAG external clock pulse width measured at 1.4 V                          | t <sub>JTKHKL</sub>                        | 15       | —        | ns   |       |
| JTAG external clock rise and fall times                                    | t <sub>JTGR</sub> & t <sub>JTGF</sub>      | 0        | 2        | ns   |       |
| TRST assert time                                                           | t <sub>TRST</sub>                          | 25       | _        | ns   | 3     |
| Input setup times:<br>Boundary-scan data<br>TMS, TDI                       | t <sub>JTDVKH</sub><br>t <sub>JTIVKH</sub> | 4<br>0   |          | ns   | 4     |
| Input hold times:<br>Boundary-scan data<br>TMS, TDI                        | t <sub>JTDXKH</sub><br>t <sub>JTIXKH</sub> | 20<br>25 |          | ns   | 4     |
| Valid times:<br>Boundary-scan data<br>TDO                                  | t <sub>JTKLDV</sub><br>t <sub>JTKLOV</sub> | 4<br>4   | 20<br>25 | ns   | 5     |
| Output hold times:<br>Boundary-scan data<br>TDO                            | t <sub>jtkldx</sub><br>t <sub>jtklox</sub> |          |          | ns   | 5     |
| JTAG external clock to output high impedance:<br>Boundary-scan data<br>TDO | t <sub>JTKLDZ</sub><br>t <sub>JTKLOZ</sub> | 3<br>3   | 19<br>9  | ns   | 5, 6  |

#### Notes:

 All outputs are measured from the midpoint voltage of the falling/rising edge of t<sub>TCLK</sub> to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 32). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbols used for timing specifications herein follow the pattern of t<sub>(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t<sub>JTDVKH</sub> symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t<sub>JTG</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>JTDXKH</sub> symbolizes JTAG timing (JT) with respect to the t<sub>t</sub> clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub></sub>

3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.

4. Non-JTAG signal input timing with respect to  $t_{TCLK}$ .

- 5. Non-JTAG signal output timing with respect to  $t_{TCLK}$ .
- 6. Guaranteed by design.



Figure 36 provides the test access port timing diagram.



VM = Midpoint Voltage (OV<sub>DD</sub>/2) Figure 36. Test Access Port Timing Diagram

# 12 I<sup>2</sup>C

This section describes the DC and AC electrical characteristics for the I<sup>2</sup>C interface of the MPC8555E.

# **12.1** I<sup>2</sup>C DC Electrical Characteristics

Table 39 provides the DC electrical characteristics for the  $I^2C$  interface of the MPC8555E.

## Table 39. I<sup>2</sup>C DC Electrical Characteristics

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  of 3.3 V  $\pm$  5%.

| Parameter                                                                                                   | Symbol              | Min                   | Max                                | Unit | Notes |
|-------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|------------------------------------|------|-------|
| Input high voltage level                                                                                    | V <sub>IH</sub>     | $0.7 	imes OV_{DD}$   | OV <sub>DD</sub> + 0.3             | V    |       |
| Input low voltage level                                                                                     | V <sub>IL</sub>     | -0.3                  | $0.3 	imes OV_{DD}$                | V    |       |
| Low level output voltage                                                                                    | V <sub>OL</sub>     | 0                     | $0.2 \times \text{OV}_{\text{DD}}$ | V    | 1     |
| Output fall time from $V_{IH}(\text{min})$ to $V_{IL}(\text{max})$ with a bus capacitance from 10 to 400 pF | t <sub>I2KLKV</sub> | $20 + 0.1 \times C_B$ | 250                                | ns   | 2     |
| Pulse width of spikes which must be suppressed by the input filter                                          | t <sub>I2KHKL</sub> | 0                     | 50                                 | ns   | 3     |
| Input current each I/O pin (input voltage is between 0.1 $\times$ OV_{DD} and 0.9 $\times$ OV_{DD}(max)     | I                   | -10                   | 10                                 | μA   | 4     |
| Capacitance for each I/O pin                                                                                | CI                  | —                     | 10                                 | pF   |       |

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2.  $C_B$  = capacitance of one bus line in pF.

3. Refer to the MPC8555E PowerQUICC<sup>™</sup> III Integrated Communications Processor Reference Manual for information on the digital filter used.

4. I/O pins obstruct the SDA and SCL lines if  $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$  is switched off.



Figure 40 shows the PCI input AC timing conditions.



Figure 40. PCI Input AC Timing Measurement Conditions

Figure 41 shows the PCI output AC timing conditions.



Figure 41. PCI Output AC Timing Measurement Condition

# 14 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions.

## 14.1 Package Parameters for the MPC8555E FC-PBGA

The package parameters are as provided in the following list. The package type is  $29 \text{ mm} \times 29 \text{ mm}$ , 783 flip chip plastic ball grid array (FC-PBGA).

| Die size                | $8.7 \text{ mm} \times 9.3 \text{ mm} \times 0.75 \text{ mm}$ |
|-------------------------|---------------------------------------------------------------|
| Package outline         | $29 \text{ mm} \times 29 \text{ mm}$                          |
| Interconnects           | 783                                                           |
| Pitch                   | 1 mm                                                          |
| Minimum module height   | 3.07 mm                                                       |
| Maximum module height   | 3.75 mm                                                       |
| Solder Balls            | 62 Sn/36 Pb/2 Ag                                              |
| Ball diameter (typical) | 0.5 mm                                                        |



Package and Pin Listings

| Signal            | Package Pin Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pin Type                                                               | Power<br>Supply   | Notes |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------|-------|
| GND               | <ul> <li>A12, A17, B3, B14, B20, B26, B27, C2, C4, C11,C17,<br/>C19, C22, C27, D8, E3, E12, E24, F11, F18, F23, G9,<br/>G12, G25, H4, H12, H14, H17, H20, H22, H27, J19,<br/>J24, K5, K9, K18, K23, K28, L6, L20, L25, M4, M12,<br/>M14, M16, M22, M27, N2, N13, N15, N17, P12, P14,<br/>P16, P23, R13, R15, R17, R20, R26, T3, T8, T10,<br/>T12, T14, T16, U6, U13, U15, U16, U17, U21, V7,<br/>V10, V26, W5, W18, W23, Y8, Y16, AA6, AA13, AB4,<br/>AB11, AB19, AC6, AC9, AD3, AD8, AD17, AF2, AF4,<br/>AF10, AF13, AF15, AF27, AG3, AG7</li> </ul> | _                                                                      | _                 | _     |
| GV <sub>DD</sub>  | A14, A20, A25, A26, A27, A28, B17, B22, B28, C12,<br>C28, D16, D19, D21, D24, D28, E17, E22, F12, F15,<br>F19, F25, G13, G18, G20, G23, G28, H19, H24, J12,<br>J17, J22, J27, K15, K20, K25, L13, L23, L28, M25,<br>N21                                                                                                                                                                                                                                                                                                                               | Power for DDR<br>DRAM I/O<br>Voltage<br>(2.5 V)                        | GV <sub>DD</sub>  | _     |
| LV <sub>DD</sub>  | A4, C5, E7, H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reference<br>Voltage;<br>Three-Speed<br>Ethernet I/O<br>(2.5 V, 3.3 V) | LV <sub>DD</sub>  | _     |
| MV <sub>REF</sub> | N27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reference<br>Voltage Signal;<br>DDR                                    | MV <sub>REF</sub> | -     |
| No Connects       | AA24, AA25, AA3, AA4, AA7 AA8, AB24, AB25,<br>AC24, AC25, AD23, AD24, AD25, AE23, AE24,<br>AE25, AE26, AE27, AF24, AF25, H1, H2, J1, J2, J3,<br>J4, J5, J6, M1, N1, N10, N11, N4, N5, N7, N8, N9,<br>P10, P8, P9, R10, R11, T24, T25, U24, U25, V24,<br>V25, W24, W25, W9, Y24, Y25, Y5, Y6, Y9, AH26,<br>AH28, AG28, AH1, AG1, AH2, B1, B2, A2, A3                                                                                                                                                                                                   | _                                                                      | _                 | 16    |
| OV <sub>DD</sub>  | D1, E4, H3, K4, K10, L7, M5, N3, P22, R19, R25, T2,<br>T7, U5, U20, U26, V8, W4, W13, W19, W21, Y7, Y23,<br>AA5, AA12, AA16, AA20, AB7, AB9, AB26, AC5,<br>AC11, AC17, AD4, AE1, AE8, AE10, AE15, AF7,<br>AF12, AG27, AH4                                                                                                                                                                                                                                                                                                                             | PCI, 10/100<br>Ethernet, and<br>other Standard<br>(3.3 V)              | OV <sub>DD</sub>  | _     |
| RESERVED          | C1, T11, U11, AF1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —                                                                      | _                 | 15    |
| SENSEVDD          | L12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Power for Core<br>(1.2 V)                                              | $V_{DD}$          | 13    |
| SENSEVSS          | K12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | —                                                                      | _                 | 13    |
| V <sub>DD</sub>   | M13, M15, M17, N14, N16, P13, P15, P17, R12, R14,<br>R16, T13, T15, T17, U12, U14                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Power for Core<br>(1.2 V)                                              | V <sub>DD</sub>   | —     |
|                   | СРМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                   |       |
| PA[8:31]          | J7, J8, K8, K7, K6, K3, K2, K1, L1, L2, L3, L4, L5, L8,<br>L9, L10, L11, M10, M9, M8, M7, M6, M3, M2                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I/O                                                                    | OV <sub>DD</sub>  | —     |

## Table 43. MPC8555E Pinout Listing (continued)



# 15 Clocking

This section describes the PLL configuration of the MPC8555E. Note that the platform clock is identical to the CCB clock.

# 15.1 Clock Ranges

Table 44 provides the clocking specifications for the processor core and Table 44 provides the clocking specifications for the memory bus.

|                                     |     |     |     | Maximur | n Proce | ssor Core | Frequen | су  |      |       |      |         |
|-------------------------------------|-----|-----|-----|---------|---------|-----------|---------|-----|------|-------|------|---------|
| Characteristic                      | 533 | MHz | 600 | MHz     | 667     | ' MHz     | 833     | MHz | 1000 | ) MHz | Unit | Notes   |
|                                     | Min | Max | Min | Max     | Min     | Max       | Min     | Max | Min  | Max   |      |         |
| e500 core<br>processor<br>frequency | 400 | 533 | 400 | 600     | 400     | 667       | 400     | 833 | 400  | 1000  | MHz  | 1, 2, 3 |

Table 44. Processor Core Clocking Specifications

Notes:

1. **Caution:** The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 15.2, "Platform/System PLL Ratio," and Section 15.3, "e500 Core PLL Ratio," for ratio settings.

2.) The minimum e500 core frequency is based on the minimum platform frequency of 200 MHz.

3. 1000 MHz frequency supports only a 1.3 V core.

## Table 45. Memory Bus Clocking Specifications

| Characteristic       | Maximum Pro<br>Frequ<br>533, 600, 667, | Unit | Notes |         |
|----------------------|----------------------------------------|------|-------|---------|
|                      | Min                                    | Мах  |       |         |
| Memory bus frequency | 100                                    | 166  | MHz   | 1, 2, 3 |

Notes:

- 1. **Caution:** The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 15.2, "Platform/System PLL Ratio," and Section 15.3, "e500 Core PLL Ratio," for ratio settings.
- 2. The memory bus speed is half of the DDR data rate, hence, half of the platform clock frequency.
- 3. 1000 MHz frequency supports only a 1.3 V core.







Figure 47. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity

## 16.2.4.2 Case 2

Every system application has different conditions that the thermal management solution must solve. As an alternate example, assume that the air reaching the component is 85 °C with an approach velocity of 1 m/sec. For a maximum junction temperature of 105 °C at 8 W, the total thermal resistance of junction to case thermal resistance plus thermal interface material plus heat sink thermal resistance must be less than 2.5 °C/W. The value of the junction to case thermal resistance in Table 49 includes the thermal interface resistance of a thin layer of thermal grease as documented in footnote 4 of the table. Assuming that the heat sink is flat enough to allow a thin layer of grease or phase change material, then the heat sink must be less than 1.5 °C/W.

Millennium Electronics (MEI) has tooled a heat sink MTHERM-1051 for this requirement assuming a compactPCI environment at 1 m/sec and a heat sink height of 12 mm. The MEI solution is illustrated in Figure 48 and Figure 49. This design has several significant advantages:

- The heat sink is clipped to a plastic frame attached to the application board with screws or plastic inserts at the corners away from the primary signal routing areas.
- The heat sink clip is designed to apply the force holding the heat sink in place directly above the die at a maximum force of less than 10 lbs.
- For applications with significant vibration requirements, silicone damping material can be applied between the heat sink and plastic frame.

# NP

#### System Design Information

When data is held high, SW1 is closed (SW2 is open) and  $R_P$  is trimmed until the voltage at the pad equals  $OV_{DD}/2$ .  $R_P$  then becomes the resistance of the pull-up devices.  $R_P$  and  $R_N$  are designed to be close to each other in value. Then,  $Z_0 = (R_P + R_N)/2$ .



Figure 51. Driver Impedance Measurement

The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is  $V_1 = R_{source} \times I_{source}$ . Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value  $R_{term}$ . The measured voltage is  $V_2 = 1/(1/R_1 + 1/R_2)) \times I_{source}$ . Solving for the output impedance gives  $R_{source} = R_{term} \times (V_1/V_2 - 1)$ . The drive current is then  $I_{source} = V_1/R_{source}$ .

Table 50 summarizes the signal impedance targets. The driver impedance are targeted at minimum  $V_{DD}$ , nominal  $OV_{DD}$ , 105°C.

| Impedance      | Local Bus, Ethernet, DUART, Control, Configuration, Power<br>Management | PCI       | DDR DRAM  | Symbol            | Unit |
|----------------|-------------------------------------------------------------------------|-----------|-----------|-------------------|------|
| R <sub>N</sub> | 43 Target                                                               | 25 Target | 20 Target | Z <sub>0</sub>    | Ω    |
| R <sub>P</sub> | 43 Target                                                               | 25 Target | 20 Target | Z <sub>0</sub>    | Ω    |
| Differential   | NA                                                                      | NA        | NA        | Z <sub>DIFF</sub> | Ω    |

| Table 50 | Impedance | Characteristics |
|----------|-----------|-----------------|
|----------|-----------|-----------------|

Note: Nominal supply voltages. See Table 1,  $T_i = 105^{\circ}C$ .



# 17.6 Configuration Pin Multiplexing

The MPC8555E provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k $\Omega$  on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While  $\overline{\text{HRESET}}$  is asserted however, these pins are treated as inputs. The value presented on these pins while  $\overline{\text{HRESET}}$  is asserted, is latched when  $\overline{\text{HRESET}}$  deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Most of these sampled configuration pins are equipped with an on-chip gated resistor of approximately 20 k $\Omega$ . This value should permit the 4.7-k $\Omega$  resistor to pull the configuration pin to a valid logic low level. The pull-up resistor is enabled only during  $\overline{\text{HRESET}}$  (and for platform/system clocks after  $\overline{\text{HRESET}}$  deassertion to ensure capture of the reset value). When the input receiver is disabled the pull-up is also, thus allowing functional operation of the pin as an output with minimal signal quality or delay disruption. The default value for all configuration bits treated this way has been encoded such that a high voltage level puts the device into the default state and external resistors are needed only when non-default settings are required by the user.

Careful board layout with stubless connections to these pull-down resistors coupled with the large value of the pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

The platform PLL ratio and e500 PLL ratio configuration pins are not equipped with these default pull-up devices.

# 17.7 Pull-Up Resistor Requirements

The MPC8555E requires high resistance pull-up resistors (10 k $\Omega$  is recommended) on open drain type pins.

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 53. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions as most have asynchronous behavior and spurious assertion give unpredictable results.

TSEC1\_TXD[3:0] must not be pulled low during reset. Some PHY chips have internal pulldowns that could cause this to happen. If such PHY chips are used, then a pullup must be placed on these signals strong enough to restore these signals to a logical 1 during reset.

Refer to the PCI 2.2 specification for all pull-ups required for PCI.

# 17.8 JTAG Configuration Signals

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1 specification, but is provided on all processors that implement the Power Architecture. The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, generally systems assert TRST during the power-on reset flow. Simply tying TRST to HRESET is not practical because the JTAG interface is also used for accessing the common on-chip processor (COP) function.

# NP

#### System Design Information

The COP function of these processors allow a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 52 allows the COP port to independently assert  $\overline{\text{HRESET}}$  or  $\overline{\text{TRST}}$ , while ensuring that the target can drive  $\overline{\text{HRESET}}$  as well.

The COP interface has a standard header, shown in Figure 52, for connection to the target system, and is based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features. An inexpensive option can be to leave the COP header unpopulated until needed.

There is no standardized way to number the COP header; consequently, many different pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in Figure 52 is common to all known emulators.



Figure 52. COP Connector Physical Pinout



## 17.8.1 Termination of Unused Signals

If the JTAG interface and COP header are not used, Freescale recommends the following connections:

- TRST should be tied to HRESET through a 0 k $\Omega$  isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system as shown in Figure 53. If this is not possible, the isolation resistor allows future access to TRST in case a JTAG interface may need to be wired onto the system in future debug situations.
- Tie TCK to  $OV_{DD}$  through a 10 k $\Omega$  resistor. This prevents TCK from changing state and reading incorrect data into the device.
- No connection is required for TDI, TMS, or TDO.



System Design Information



#### Notes:

- 1. The COP port and target board should be able to independently assert HRESET and TRST to the processor in order to fully control the processor as shown here.
- 2. Populate this with a 10  $\Omega$  resistor for short-circuit/current-limiting protection.
- 3. The KEY location (pin 14) is not physically present on the COP header.
- 4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for improved signal integrity.
- This switch is included as a precaution for BSDL testing. The switch should be open during BSDL testing to avoid accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed or removed.
- 6. Asserting SRESET causes a machine check interrupt to the e500 core.

### Figure 53. JTAG Interface Connection



# **18 Document Revision History**

Table 51 provides a revision history for this hardware specification.

| lable 51. | Document | Revision | History |
|-----------|----------|----------|---------|
|-----------|----------|----------|---------|

| Rev. No. | Date    | Substantive Change(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.2      | 1/2008  | Added "Note: Rise/Fall Time on CPM Input Pins" and following note text to Section 10.2, "CPM AC Timing Specifications."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.1      | 7/2007  | Inserted Figure 3, ""Maximum AC Waveforms on PCI interface for 3.3-V Signaling."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4        | 12/2006 | Updated Section 2.1.2, "Power Sequencing."<br>Updated back page information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.2      | 11/2006 | Updated Section 2.1.2, "Power Sequencing."<br>Replaced Section 17.8, "JTAG Configuration Signals."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.1      | 10/2005 | Added footnote 2 about junction temperature in Table 4.<br>Added max. power values for 1000 MHz core frequency in Table 4.<br>Removed Figure 3, "Maximum AC Waveforms on PCI Interface for 3.3-V Signaling."<br>Modified note to t <sub>LBKSKEW</sub> from 8 to 9 in Table 30.<br>Changed t <sub>LBKHOZ1</sub> and t <sub>LBKHOV2</sub> values inTable 30.<br>Added note 3 to t <sub>LBKHOV1</sub> in Table 30.<br>Modified note 3 in Table 30 and Table 31.<br>Added note 3 to t <sub>LBKLOV1</sub> in Table 31.<br>Modified values for t <sub>LBKHKT</sub> , t <sub>LBKLOV1</sub> , t <sub>LBKLOV2</sub> , t <sub>LBKLOV3</sub> , t <sub>LBKLOZ1</sub> , and t <sub>LBKLOZ2</sub> in Table 31.<br>Changed Input Signals: LAD[0:31]/LDP[0:3] in Figure 21.<br>Modified note for signal CLK_OUT in Table 43.<br>PCI1_CLK and PCI2_CLK changed from I/O to I in Table 43.<br>Added column for Encryption Acceleration in Table 52. |
| 3        | 8/2005  | Modified max. power values in Table 4.<br>Modified notes for signals TSEC1_TXD[3:0], TSEC2_TXD[3:0], TRIG_OUT/READY, MSRCID4,<br>CLK_OUT, and MDVAL in Table 43.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2        | 8/2005  | Previous revision's history listed incorrect cross references. Table 2 is now correctly listed as<br>Table 27 and Table 38 is now listed as Table 31.<br>Added note 2 in Table 7.<br>Modified min and max values for t <sub>DDKHMP</sub> in Table 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1        | 6/2005  | Changed $LV_{dd}$ to $OV_{dd}$ for the supply voltage Ethernet management interface in Table 27.<br>Modified footnote 4 and changed typical power for the 1000 MHz core frequency in Table 4.<br>Corrected symbols for body rows 9–15, effectively changing them from a high state to a low state in Table 31.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0        | 6/2005  | Initial release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



# 19.2 Part Marking

Parts are marked as the example shown in Figure 54.



#### Notes:

MMMMM is the 5-digit mask number. ATWLYYWWA is the traceability code. CCCCC is the country of assembly. This space is left blank if parts are assembled in the United States.

Figure 54. Part Marking for FC-PBGA Device