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Overview

– 10 Mbps IEEE 802.3 MII

– 1000 Mbps IEEE 802.3z TBI

– 10/100/1000 Mbps RGMII/RTBI

— Full- and half-duplex support

— Buffer descriptors are backwards compatible with MPC8260 and MPC860T 10/100 
programming models

— 9.6-Kbyte jumbo frame support

— RMON statistics support

— 2-Kbyte internal transmit and receive FIFOs

— MII management interface for control and status

— Programmable CRC generation and checking

• OCeaN switch fabric

— Three-port crossbar packet switch

— Reorders packets from a source based on priorities

— Reorders packets to bypass blocked packets

— Implements starvation avoidance algorithms

— Supports packets with payloads of up to 256 bytes

• Integrated DMA controller

— Four-channel controller

— All channels accessible by both local and remote masters

— Extended DMA functions (advanced chaining and striding capability)

— Support for scatter and gather transfers

— Misaligned transfer capability

— Interrupt on completed segment, link, list, and error

— Supports transfers to or from any local memory or I/O port

— Selectable hardware-enforced coherency (snoop/no-snoop)

— Ability to start and flow control each DMA channel from external 3-pin interface

— Ability to launch DMA from single write transaction

• PCI Controllers

— PCI 2.2 compatible 

— One 64-bit or two 32-bit PCI ports supported at 16 to 66 MHz

— Host and agent mode support, 64-bit PCI port can be host or agent, if two 32-bit ports, only one 
can be an agent

— 64-bit dual address cycle (DAC) support

— Supports PCI-to-memory and memory-to-PCI streaming

— Memory prefetching of PCI read accesses

— Supports posting of processor-to-PCI and PCI-to-memory writes
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Electrical Characteristics

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

2.1.2 Power Sequencing
The MPC8555Erequires its power rails to be applied in a specific sequence in order to ensure proper device 
operation. These requirements are as follows for power up:

1. VDD, AVDDn

2. GVDD, LVDD, OVDD (I/O supplies)

Table 1. Absolute Maximum Ratings 1

Characteristic Symbol Max Value Unit Notes

Core supply voltage VDD –0.3 to 1.32
0.3 to 1.43 (for 1 GHz only)

V

PLL supply voltage AVDD –0.3 to 1.32
0.3 to 1.43 (for 1 GHz only)

V

DDR DRAM I/O voltage GVDD –0.3 to 3.63 V

Three-speed Ethernet I/O, MII management voltage LVDD –0.3 to 3.63
–0.3 to 2.75

V

CPM, PCI, local bus, DUART, system control and power 
management, I2C, and JTAG I/O voltage

OVDD –0.3 to 3.63 V 3

Input voltage DDR DRAM signals MVIN –0.3 to (GVDD + 0.3) V 2, 5

DDR DRAM reference MVREF –0.3 to (GVDD + 0.3) V 2, 5

Three-speed Ethernet signals LVIN –0.3 to (LVDD + 0.3) V 4, 5

CPM, Local bus, DUART, 
SYSCLK, system control and 
power management, I2C, and 
JTAG signals

OVIN –0.3 to (OVDD + 0.3)1 V 5

PCI OVIN –0.3 to (OVDD + 0.3) V  6

Storage temperature range TSTG –55 to 150 °C

Notes: 
1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and 

functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause 
permanent damage to the device.

2. Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during 
power-on reset and power-down sequences.

3. Caution: OVIN must not exceed OVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during 
power-on reset and power-down sequences.

4. Caution: LVIN must not exceed LVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during 
power-on reset and power-down sequences.

5. (M,L,O)VIN and MVREF may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2. 
6.  OVIN on the PCI interface may overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as 

shown in Figure 3. 
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Electrical Characteristics

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8555E.

Figure 2. Overshoot/Undershoot Voltage for GVDD/OVDD/LVDD

The MPC8555E core voltage must always be provided at nominal 1.2 V (see Table 2 for actual 
recommended core voltage). Voltage to the processor interface I/Os are provided through separate sets of 
supply pins and must be provided at the voltages shown in Table 2. The input voltage threshold scales with 
respect to the associated I/O supply voltage. OVDD and LVDD based receivers are simple CMOS I/O 
circuits and satisfy appropriate LVCMOS type specifications. The DDR SDRAM interface uses a 
single-ended differential receiver referenced the externally supplied MVREF signal (nominally set to 
GVDD/2) as is appropriate for the SSTL2 electrical signaling standard.

GND
GND – 0.3 V

GND – 0.7 V
Not to Exceed 10%

G/L/OVDD + 20%

G/L/OVDD

G/L/OVDD + 5%

of tSYS
1

1. Note that tSYS refers to the clock period associated with the SYSCLK signal.

VIH

VIL

Note:
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Clock Timing

4 Clock Timing

4.1 System Clock Timing
Table 6 provides the system clock (SYSCLK) AC timing specifications for the MPC8555E.

4.2 TSEC Gigabit Reference Clock Timing
Table 7 provides the TSEC gigabit reference clock (EC_GTX_CLK125) AC timing specifications for the 
MPC8555E.

Table 6. SYSCLK AC Timing Specifications

Parameter/Condition Symbol Min Typical Max Unit Notes

SYSCLK frequency fSYSCLK — — 166 MHz 1

SYSCLK cycle time tSYSCLK 6.0 — — ns —

SYSCLK rise and fall time tKH, tKL 0.6 1.0 1.2 ns 2

SYSCLK duty cycle tKHK/tSYSCLK 40 — 60 % 3

SYSCLK jitter — — — +/- 150 ps 4, 5

Notes:
1. Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK 

frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating 
frequencies. 

2. Rise and fall times for SYSCLK are measured at 0.6 and 2.7 V.

3. Timing is guaranteed by design and characterization.
4. This represents the total input jitter—short term and long term—and is guaranteed by design.
5. For spread spectrum clocking, guidelines are ±1% of the input frequency with a maximum of 60 kHz of modulation regardless 

of the input frequency.

Table 7. EC_GTX_CLK125 AC Timing Specifications

Parameter/Condition Symbol Min Typical Max Unit Notes

EC_GTX_CLK125 frequency fG125 — 125 — MHz —

EC_GTX_CLK125 cycle time tG125 — 8 — ns —

EC_GTX_CLK125 rise time tG125R — — 1.0 ns 1

EC_GTX_CLK125 fall time tG125F — — 1.0 ns 1

EC_GTX_CLK125 duty cycle
GMII, TBI

RGMII, RTBI

tG125H/tG125
45
47

—
55
53

% 1, 2

Notes:
1. Timing is guaranteed by design and characterization.

2. EC_GTX_CLK125 is used to generate GTX clock for TSEC transmitter with 2% degradation. EC_GTX_CLK125 duty cycle 
can be loosened from 47/53% as long as PHY device can tolerate the duty cycle generated by GTX_CLK of TSEC.
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Ethernet: Three-Speed, MII Management

8.2.3 MII AC Timing Specifications
This section describes the MII transmit and receive AC timing specifications.

8.2.3.1 MII Transmit AC Timing Specifications

Table 22 provides the MII transmit AC timing specifications.

Figure 10 shows the MII transmit AC timing diagram.

Figure 10. MII Transmit AC Timing Diagram

Table 22. MII Transmit AC Timing Specifications
At recommended operating conditions with LVDD of 3.3 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

TX_CLK clock period 10 Mbps tMTX
2 — 400 — ns

TX_CLK clock period 100 Mbps tMTX — 40 — ns

TX_CLK duty cycle tMTXH/tMTX 35 — 65 %

TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay tMTKHDX 1 5 15 ns

TX_CLK data clock rise and fall time tMTXR, tMTXF 
2,3 1.0 — 4.0 ns

Notes:
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX 
symbolizes MII transmit timing (MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid 
(X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock 
of a particular functional. For example, the subscript of tMTX represents the MII(M) transmit (TX) clock. For rise and fall 
times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3. Guaranteed by design.

TX_CLK

TXD[3:0]

tMTKHDX

tMTX

tMTXH

tMTXR

tMTXF

TX_EN
TX_ER
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Ethernet: Three-Speed, MII Management

8.2.3.2 MII Receive AC Timing Specifications

Table 23 provides the MII receive AC timing specifications.
 

Figure 11 shows the MII receive AC timing diagram.

Figure 11. MII Receive AC Timing Diagram

Table 23. MII Receive AC Timing Specifications
At recommended operating conditions with LVDD of 3.3 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

RX_CLK clock period 10 Mbps tMRX
2 — 400 — ns

RX_CLK clock period 100 Mbps tMRX — 40 — ns

RX_CLK duty cycle tMRXH/tMRX 35 — 65 %

RXD[3:0], RX_DV, RX_ER setup time to RX_CLK tMRDVKH 10.0 — — ns

RXD[3:0], RX_DV, RX_ER hold time to RX_CLK tMRDXKH 10.0 — — ns

RX_CLK clock rise and fall time tMRXR, tMRXF 
2,3 1.0 — 4.0 ns

Notes:
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) 

for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMRDVKH symbolizes MII 
receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the tMRX clock reference 
(K) going to the high (H) state or setup time. Also, tMRDXKL symbolizes MII receive timing (GR) with respect to the time data 
input signals (D) went invalid (X) relative to the tMRX clock reference (K) going to the low (L) state or hold time. Note that, in 
general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. 
For example, the subscript of tMRX represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is 
used with the appropriate letter: R (rise) or F (fall).

2. Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3.Guaranteed by design.

RX_CLK

RXD[3:0]

tMRDXKH

tMRX

tMRXH

tMRXR

tMRXF

RX_DV
RX_ER

tMRDVKH

Valid Data
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Ethernet: Three-Speed, MII Management

8.3.2 MII Management AC Electrical Specifications
Table 28 provides the MII management AC timing specifications.

Input high current IIH LVDD = Max VIN 1 = 2.1 V — 40 μA

Input low current IIL LVDD = Max VIN = 0.5 V –600 — μA

Note:
1. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

Table 28. MII Management AC Timing Specifications
At recommended operating conditions with LVDD is 3.3 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit Notes

MDC frequency fMDC 0.893 — 10.4 MHz 2

MDC period tMDC 96 — 1120 ns

MDC clock pulse width high tMDCH 32 — — ns

MDC to MDIO valid tMDKHDV 2*[1/(fccb_clk/8)] ns 3

MDC to MDIO delay tMDKHDX 10 — 2*[1/(fccb_clk/8)] ns 3

MDIO to MDC setup time tMDDVKH 5 — — ns

MDIO to MDC hold time tMDDXKH 0 — — ns

MDC rise time tMDCR — — 10 ns

MDC fall time tMDHF — — 10 ns

Notes:
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX 
symbolizes management data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are 
invalid (X) or data hold time. Also, tMDDVKH symbolizes management data timing (MD) with respect to the time data input 
signals (D) reach the valid state (V) relative to the tMDC clock reference (K) going to the high (H) state or setup time. For 
rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. This parameter is dependent on the system clock speed (that is, for a system clock of 267 MHz, the delay is 70 ns and for 
a system clock of 333 MHz, the delay is 58 ns).

3. This parameter is dependent on the CCB clock speed (that is, for a CCB clock of 267 MHz, the delay is 60 ns and for a 
CCB clock of 333 MHz, the delay is 48 ns).

4. Guaranteed by design.

Table 27. MII Management DC Electrical Characteristics (continued)

Parameter Symbol Conditions Min Max Unit
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Local Bus

Figure 15 shows the MII management AC timing diagram.

Figure 15. MII Management Interface Timing Diagram

9 Local Bus
This section describes the DC and AC electrical specifications for the local bus interface of the 
MPC8555E.

9.1 Local Bus DC Electrical Characteristics
Table 29 provides the DC electrical characteristics for the local bus interface.

Table 29. Local Bus DC Electrical Characteristics 

Parameter Symbol Test Condition Min Max Unit

High-level input voltage VIH VOUT ≥ VOH (min) or 2 OVDD + 0.3 V

Low-level input voltage VIL VOUT ≤ VOL (max) –0.3 0.8 V

Input current IIN VIN 
1 = 0 V or VIN = VDD — ±5 μA

High-level output voltage VOH OVDD = min, 
IOH = –2mA

OVDD –0.2 — V

Low-level output voltage VOL OVDD = min, IOL = 2mA — 0.2 V

Note:
1. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

MDC

tMDDXKH

tMDC

tMDCH

tMDCR

tMDCF

tMDDVKH

tMDKHDX

MDIO

MDIO

(Input)

(Output)
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Local Bus

Notes:
1. The symbols used for timing specifications herein follow the pattern of t(First two letters of functional block)(signal)(state) (reference)(state) 

for inputs and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus 
timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case for 
clock one(1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go high (H), with respect to the 
output (O) going invalid (X) or output hold time. 

2. All timings are in reference to LSYNC_IN for DLL enabled mode.
3. All signals are measured from OVDD/2 of the rising edge of local bus clock for DLL bypass mode to 0.4 × OVDD of the signal 

in question for 3.3-V signaling levels.
4. Input timings are measured at the pin.
5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.
6. The value of tLBOTOT is defined as the sum of 1/2 or 1 ccb_clk cycle as programmed by LBCR[AHD], and the number of local 

bus buffer delays used as programmed at power-on reset with configuration pins LWE[0:1].
7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between 

complementary signals at OVDD/2.
8. Guaranteed by characterization.
9. Guaranteed by design.

Figure 16 provides the AC test load for the local bus.

Figure 16. Local Bus C Test Load

Local bus clock to address valid for LAD LWE[0:1] = 00 tLBKLOV3 — 0.8 ns 3

LWE[0:1] = 11 (default) 2.3

Output hold from local bus clock (except 
LAD/LDP and LALE)

LWE[0:1] = 00 tLBKLOX1 –2.7 — ns 3

LWE[0:1] = 11 (default) –1.8

Output hold from local bus clock for 
LAD/LDP

LWE[0:1] = 00 tLBKLOX2 –2.7 — ns 3

LWE[0:1] = 11 (default) –1.8

Local bus clock to output high Impedance 
(except LAD/LDP and LALE)

LWE[0:1] = 00 tLBKLOZ1 — 1.0 ns 5

LWE[0:1] = 11 (default) 2.4

Local bus clock to output high impedance 
for LAD/LDP

LWE[0:1] = 00 tLBKLOZ2 — 1.0 ns 5

LWE[0:1] = 11 (default) 2.4

Table 31. Local Bus General Timing Parameters—DLL Bypassed (continued)

Parameter Configuration 7 Symbol 1 Min Max Unit Notes

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω
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CPM

Figure 24 through Figure 30 represent the AC timing from Table 33 and Table 34. Note that although the 
specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when 
the falling edge is the active edge.

Figure 24 shows the FCC internal clock.

Figure 24. FCC Internal AC Timing Clock Diagram

Figure 25 shows the FCC external clock.

Figure 25. FCC External AC Timing Clock Diagram 

Figure 26 shows Ethernet collision timing on FCCs.

Figure 26. Ethernet Collision AC Timing Diagram (FCC)

FCC Output Signals
(When GFMR TCI = 1)

tFIKHOX

BRG_OUT

tFIIXKH
tFIIVKH

FCC Input Signals

FCC Output Signals
(When GFMR TCI = 0)

tFIKHOX

FCC Output Signals
(When GFMR TCI = 1)

tFEKHOX

Serial CLKIN

tFEIXKH
tFEIVKH

FCC Input Signals

FCC Output Signals
(When GFMR TCI = 0)

tFEKHOX

COL
(Input)

tFCCH
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Package and Pin Listings

PCI2_GNT[1:4] AD18, AE18, AE19, AD19 O OVDD 5, 9

PCI2_IDSEL AC22 I OVDD —

PCI2_IRDY AD20 I/O OVDD 2

PCI2_PERR AC20 I/O OVDD 2

PCI2_REQ[0] AD21 I/O OVDD —

PCI2_REQ[1:4] AE21, AD22, AE22, AC23 I OVDD —

PCI2_SERR AE20 I/O OVDD 2,4

PCI2_STOP AC21 I/O OVDD 2

PCI2_TRDY AC19 I/O OVDD 2

DDR SDRAM Memory Interface

MDQ[0:63] M26, L27, L22, K24, M24, M23, K27, K26, K22, J28, 
F26, E27, J26, J23, H26, G26, C26, E25, C24, E23, 
D26, C25, A24, D23, B23, F22, J21, G21, G22, D22, 
H21, E21, N18, J18, D18, L17, M18, L18, C18, A18, 
K17, K16, C16, B16, G17, L16, A16, L15, G15, E15, 
C14, K13, C15, D15, E14, D14, D13, E13, D12, A11, 

F13, H13, A13, B12

I/O GVDD —

MECC[0:7] N20, M20, L19, E19, C21, A21, G19, A19 I/O GVDD —

MDM[0:8] L24, H28, F24, L21, E18, E16, G14, B13, M19 O GVDD —

MDQS[0:8] L26, J25, D25, A22, H18, F16, F14, C13, C20 I/O GVDD —

MBA[0:1] B18, B19 O GVDD —

MA[0:14] N19, B21, F21, K21, M21, C23, A23, B24, H23, G24, 
K19, B25, D27, J14, J13

O GVDD —

MWE D17 O GVDD —

MRAS F17 O GVDD —

MCAS J16 O GVDD —

MCS[0:3] H16, G16, J15, H15 O GVDD —

MCKE[0:1] E26, E28 O GVDD 11

MCK[0:5] J20, H25, A15, D20, F28, K14 O GVDD —

MCK[0:5] F20, G27, B15, E20, F27, L14 O GVDD —

MSYNC_IN M28 I GVDD 22

MSYNC_OUT N28 O GVDD 22

Local Bus Controller Interface

LA[27] U18 O OVDD 5, 9

Table 43. MPC8555E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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Package and Pin Listings

TSEC2_CRS D9 I LVDD —

TSEC2_COL F8 I LVDD —

TSEC2_RXD[7:0] F9, E9, C9, B9, A9, H9, G10, F10 I LVDD —

TSEC2_RX_DV H8 I LVDD —

TSEC2_RX_ER A8 I LVDD —

TSEC2_RX_CLK E10 I LVDD —

DUART

UART_CTS[0,1] Y2, Y3 I OVDD —

UART_RTS[0,1] Y1, AD1 O OVDD —

UART_SIN[0,1] P11, AD5 I OVDD —

UART_SOUT[0,1] N6, AD2 O OVDD —

I2C interface

IIC_SDA AH22 I/O OVDD 4, 19

IIC_SCL AH23 I/O OVDD 4, 19

System Control

HRESET AH16 I OVDD —

HRESET_REQ AG20 O OVDD 18

SRESET AF20 I OVDD —

CKSTP_IN M11 I OVDD —

CKSTP_OUT G1 O OVDD 2, 4

Debug

TRIG_IN N12 I OVDD —

TRIG_OUT/READY G2 O OVDD  6, 9, 18

MSRCID[0:1] J9, G3 O OVDD 5, 6, 9

MSRCID[2:3] F3, F5 O OVDD 6

MSRCID4 F2 O OVDD 6 

MDVAL F4 O OVDD 6 

Clock

SYSCLK AH21 I OVDD —

RTC AB23 I OVDD —

CLK_OUT AF22 O OVDD —

Table 43. MPC8555E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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Thermal

Figure 43. Package Exploded Cross-Sectional View with Several Heat Sink Options

The system board designer can choose between several types of heat sinks to place on the MPC8555E. 
There are several commercially-available heat sinks from the following vendors:

Aavid Thermalloy 603-224-9988
80 Commercial St.
Concord, NH 03301
Internet: www.aavidthermalloy.com

Alpha Novatech 408-749-7601
473 Sapena Ct. #15
Santa Clara, CA 95054
Internet: www.alphanovatech.com

International Electronic Research Corporation (IERC) 818-842-7277
413 North Moss St.
Burbank, CA 91502
Internet: www.ctscorp.com

Millennium Electronics (MEI) 408-436-8770
Loroco Sites
671 East Brokaw Road
San Jose, CA 95112
Internet: www.mei-millennium.com

Tyco Electronics 800-522-6752
Chip Coolers™
P.O. Box 3668
Harrisburg, PA 17105-3668
Internet: www.chipcoolers.com

Wakefield Engineering 603-635-5102
33 Bridge St.
Pelham, NH 03076
Internet: www.wakefield.com

Heat Sink
FC-PBGA Package

Heat Sink
Clip

Printed-Circuit Board

Die

Lid

Thermal Interface Material
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16.2.2 Internal Package Conduction Resistance
For the packaging technology, shown in Table 49, the intrinsic internal conduction thermal resistance paths 
are as follows:

• The die junction-to-case thermal resistance

• The die junction-to-board thermal resistance

Figure 45 depicts the primary heat transfer path for a package with an attached heat sink mounted to a 
printed-circuit board.

Figure 45. Package with Heat Sink Mounted to a Printed-Circuit Board 

The heat sink removes most of the heat from the device. Heat generated on the active side of the chip is 
conducted through the silicon and through the lid, then through the heat sink attach material (or thermal 
interface material), and finally to the heat sink. The junction-to-case thermal resistance is low enough that 
the heat sink attach material and heat sink thermal resistance are the dominant terms.

16.2.3 Thermal Interface Materials
A thermal interface material is required at the package-to-heat sink interface to minimize the thermal 
contact resistance. For those applications where the heat sink is attached by spring clip mechanism, 
Figure 46 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, 
graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. 
As shown, the performance of these thermal interface materials improves with increasing contact pressure. 
The use of thermal grease significantly reduces the interface thermal resistance. The bare joint results in a 
thermal resistance approximately six times greater than the thermal grease joint. 

Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see 
Figure 42). Therefore, the synthetic grease offers the best thermal performance, especially at the low 
interface pressure. 

When removing the heat sink for re-work, it is preferable to slide the heat sink off slowly until the thermal 
interface material loses its grip. If the support fixture around the package prevents sliding off the heat sink, 

External Resistance

External Resistance

Internal Resistance

Radiation Convection

Radiation Convection

Heat Sink

Printed-Circuit Board

Thermal Interface Material

Package/Leads
Die Junction
Die/Package

(Note the internal versus external package resistance)
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Chanhassen, MN 55317
Internet: www.bergquistcompany.com

Thermagon Inc. 888-246-9050
4707 Detroit Ave.
Cleveland, OH 44102
Internet: www.thermagon.com

16.2.4 Heat Sink Selection Examples
The following section provides a heat sink selection example using one of the commercially available heat 
sinks.

16.2.4.1 Case 1 

For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

TJ = TI + TR + (θJC + θINT + θSA) × PD

where

TJ is the die-junction temperature

TI is the inlet cabinet ambient temperature

TR is the air temperature rise within the computer cabinet

θJC is the junction-to-case thermal resistance

θINT is the adhesive or interface material thermal resistance

θSA is the heat sink base-to-ambient thermal resistance

PD is the power dissipated by the device. See Table 4 and Table 5.

During operation the die-junction temperatures (TJ) should be maintained within the range specified in 
Table 2. The temperature of air cooling the component greatly depends on the ambient inlet air temperature 
and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (TA) 
may range from 30° to 40°C. The air temperature rise within a cabinet (TR) may be in the range of 5° to 
10°C. The thermal resistance of some thermal interface material (θINT) may be about 1°C/W. For the 
purposes of this example, the θJC value given in Table 49 that includes the thermal grease interface and is 
documented in note 4 is used. If a thermal pad is used, θINT must be added. 

Assuming a TI of 30°C, a TR of 5°C, a FC-PBGA package θJC = 0.96, and a power consumption (PD) of 
8.0 W, the following expression for TJ is obtained:

Die-junction temperature: TJ = 30°C + 5°C + (0.96°C/W + θSA) × 8.0 W

The heat sink-to-ambient thermal resistance (θSA) versus airflow velocity for a Thermalloy heat sink 
#2328B is shown in Figure 47.

Assuming an air velocity of 2 m/s, we have an effective θSA+ of about 3.3°C/W, thus 

TJ = 30°C + 5°C + (0.96°C/W + 3.3°C/W) × 8.0 W,

resulting in a die-junction temperature of approximately 69°C which is well within the maximum 
operating temperature of the component.
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Figure 47. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity

16.2.4.2 Case 2

Every system application has different conditions that the thermal management solution must solve. As an 
alternate example, assume that the air reaching the component is 85 °C with an approach velocity of 1 
m/sec. For a maximum junction temperature of 105 °C at 8 W, the total thermal resistance of junction to 
case thermal resistance plus thermal interface material plus heat sink thermal resistance must be less than 
2.5 °C/W. The value of the junction to case thermal resistance in Table 49 includes the thermal interface 
resistance of a thin layer of thermal grease as documented in footnote 4 of the table. Assuming that the 
heat sink is flat enough to allow a thin layer of grease or phase change material, then the heat sink must be 
less than 1.5 °C/W. 

Millennium Electronics (MEI) has tooled a heat sink MTHERM-1051 for this requirement assuming a 
compactPCI environment at 1 m/sec and a heat sink height of 12 mm. The MEI solution is illustrated in 
Figure 48 and Figure 49. This design has several significant advantages: 

• The heat sink is clipped to a plastic frame attached to the application board with screws or plastic 
inserts at the corners away from the primary signal routing areas. 

• The heat sink clip is designed to apply the force holding the heat sink in place directly above the 
die at a maximum force of less than 10 lbs. 

• For applications with significant vibration requirements, silicone damping material can be applied 
between the heat sink and plastic frame. 
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17 System Design Information
This section provides electrical and thermal design recommendations for successful application of the 
MPC8555E.

17.1 System Clocking
The MPC8555E includes five PLLs.

1. The platform PLL (AVDD1) generates the platform clock from the externally supplied SYSCLK 
input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL 
ratio configuration bits as described in Section 15.2, “Platform/System PLL Ratio.”

2. The e500 Core PLL (AVDD2) generates the core clock as a slave to the platform clock. The 
frequency ratio between the e500 core clock and the platform clock is selected using the e500 
PLL ratio configuration bits as described in Section 15.3, “e500 Core PLL Ratio.”

3. The CPM PLL (AVDD3) is slaved to the platform clock and is used to generate clocks used 
internally by the CPM block. The ratio between the CPM PLL and the platform clock is fixed and 
not under user control.

4. The PCI1 PLL (AVDD4) generates the clocking for the first PCI bus.

5. The PCI2 PLL (AVDD5) generates the clock for the second PCI bus.

17.2 PLL Power Supply Filtering
Each of the PLLs listed above is provided with power through independent power supply pins (AVDD1, 
AVDD2, AVDD3, AVDD4, and AVDD5 respectively). The AVDD level should always be equivalent to VDD, 
and preferably these voltages are derived directly from VDD through a low frequency filter scheme such 
as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to 
provide five independent filter circuits as illustrated in Figure 50, one to each of the five AVDD pins. By 
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the 
other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.

Each circuit should be placed as close as possible to the specific AVDD pin being supplied to minimize 
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AVDD 
pin, which is on the periphery of the 783 FC-PBGA footprint, without the inductance of vias.
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Figure 53. JTAG Interface Connection
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3. The KEY location (pin 14) is not physically present on the COP header.
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COP_CHKSTP_OUT
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2. Populate this with a 10 Ω resistor for short-circuit/current-limiting protection.

NC

OVDD

10 kΩ

10 kΩ HRESET1

 in order to fully control the processor as shown here.

4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for

1. The COP port and target board should be able to independently assert HRESET and TRST to the processor

improved signal integrity.

TCK

 4

5

5. This switch is included as a precaution for BSDL testing. The switch should be open during BSDL testing to avoid
accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed or removed.

10 kΩ

6

6. Asserting SRESET causes a machine check interrupt to the e500 core.
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18 Document Revision History
Table 51 provides a revision history for this hardware specification.

Table 51. Document Revision History

Rev. No. Date Substantive Change(s)

4.2 1/2008 Added “Note: Rise/Fall Time on CPM Input Pins” and following note text to Section 10.2, “CPM AC 
Timing Specifications.”

4.1 7/2007 Inserted Figure 3, ““Maximum AC Waveforms on PCI interface for 3.3-V Signaling.”

4 12/2006 Updated Section 2.1.2, “Power Sequencing.”

Updated back page information.

3.2 11/2006 Updated Section 2.1.2, “Power Sequencing.”

Replaced Section 17.8, “JTAG Configuration Signals.”

3.1 10/2005 Added footnote 2 about junction temperature in Table 4.

Added max. power values for 1000 MHz core frequency in Table 4. 

Removed Figure 3, “Maximum AC Waveforms on PCI Interface for 3.3-V Signaling.”

Modified note to tLBKSKEW from 8 to 9 in Table 30.

Changed tLBKHOZ1 and tLBKHOV2 values inTable 30.

Added note 3 to tLBKHOV1 in Table 30.

Modified note 3 in Table 30 and Table 31. 

Added note 3 to tLBKLOV1 in Table 31.

Modified values for tLBKHKT, tLBKLOV1, tLBKLOV2, tLBKLOV3, tLBKLOZ1, and tLBKLOZ2 in Table 31.

Changed Input Signals: LAD[0:31]/LDP[0:3] in Figure 21.

Modified note for signal CLK_OUT in Table 43.

PCI1_CLK and PCI2_CLK changed from I/O to I in Table 43.

Added column for Encryption Acceleration in Table 52.

3 8/2005 Modified max. power values in Table 4. 

Modified notes for signals TSEC1_TXD[3:0], TSEC2_TXD[3:0], TRIG_OUT/READY, MSRCID4, 
CLK_OUT, and MDVAL in Table 43. 

2 8/2005 Previous revision’s history listed incorrect cross references. Table 2 is now correctly listed as 
Table 27 and Table 38 is now listed as Table 31.

Added note 2 in Table 7.

Modified min and max values for tDDKHMP in Table 14.

1 6/2005 Changed LVdd to OVdd for the supply voltage Ethernet management interface in Table 27.

Modified footnote 4 and changed typical power for the 1000 MHz core frequency inTable 4.

Corrected symbols for body rows 9–15, effectively changing them from a high state to a low state 
in Table 31.

0 6/2005 Initial release.
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19.2 Part Marking
Parts are marked as the example shown in Figure 54.

Figure 54. Part Marking for FC-PBGA Device
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Notes:

CCCCC is the country of assembly. This space is left blank if parts are assembled in the United States.

MMMMM is the 5-digit mask number.
ATWLYYWWA is the traceability code.
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Notes:
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ATWLYYWWA is the traceability code.
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