




Welcome to **E-XFL.COM** 

<u>Embedded - FPGAs (Field Programmable</u>
<u>Gate Array) with Microcontrollers</u>: Enhancing
Flexibility and Performance

Embedded - FPGAs (Field Programmable Gate Arrays) with Microcontrollers represent a cutting-edge category of electronic components that combine the flexibility of FPGA technology with the processing power of integrated microcontrollers. This hybrid approach offers a versatile solution for designing and implementing complex digital systems that require both programmable logic and embedded processing capabilities.

# What Are Embedded - FPGAs with Microcontrollers?

At their care EDCAs are comisenductor devices that can

| Petails roduct Status  | Obsolete                                                                  |
|------------------------|---------------------------------------------------------------------------|
|                        | Obsolete                                                                  |
| <b>-</b>               |                                                                           |
| ore Type               | 8-Bit AVR                                                                 |
| peed                   | 25 MHz                                                                    |
| nterface               | I <sup>2</sup> C, UART                                                    |
| rogram SRAM Bytes      | 20K-32K                                                                   |
| PGA SRAM               | 4kb                                                                       |
| EPROM Size             | 512K x 8                                                                  |
| ata SRAM Bytes         | 4K ~ 16K                                                                  |
| PGA Core Cells         | 576                                                                       |
| PGA Gates              | 10K                                                                       |
| PGA Registers          | 846                                                                       |
| oltage - Supply        | 3V ~ 3.6V                                                                 |
| lounting Type          | Surface Mount                                                             |
| perating Temperature   | 0°C ~ 70°C                                                                |
| ackage / Case          | 144-LQFP                                                                  |
| upplier Device Package | 144-LQFP (20x20)                                                          |
| urchase URL            | https://www.e-xfl.com/product-detail/microchip-technology/at94s10al-25bqc |

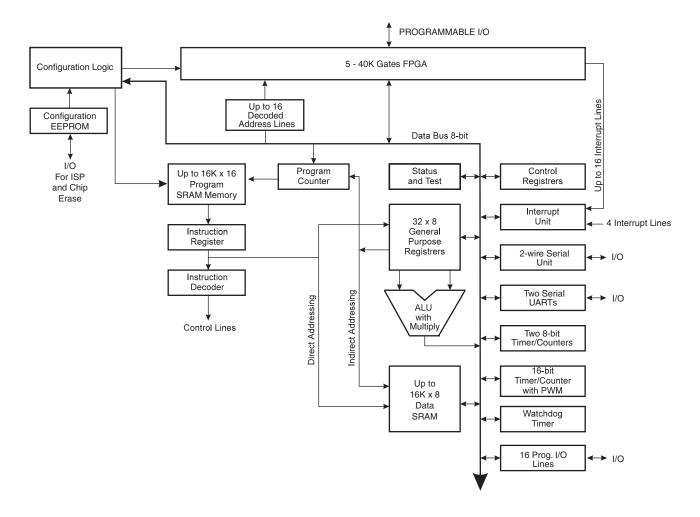
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



- V<sub>CC</sub>: 3.0V 3.6V
- 5V Tolerant I/O
- 3.3V 33 MHz PCI Compliant FPGA I/O
  - 20 mA Sink/Source High-performance I/O Structures
  - All FPGA I/O Individually Programmable
- High-performance, Low-power 0.35µ CMOS Five-layer Metal Process
- State-of-the-art Integrated PC-based Software Suite including Co-verification

# 1. Description


The AT94S Series (Secure FPSLIC family) shown in Table 1-1 is a combination of the popular Atmel AT40K Series SRAM FPGAs, the AT17 Series Configuration Memories and the high-performance Atmel AVR 8-bit RISC microcontroller with standard peripherals. Extensive data and instruction SRAM as well as device control and management logic are included in this multi-chip module (MCM).

The embedded AT40K FPGA core is a fully 3.3V PCI-compliant, SRAM-based FPGA with distributed 10 ns programmable synchronous/asynchronous, dual-port/single-port SRAM, 8 global clocks, Cache Logic ability (partially or fully reconfigurable without loss of data) and 5,000 to 40,000 usable gates.

**Table 1-1.** The AT94S Series Family

| Device                     |                 | AT94S05AL  | AT94S10AL  | AT94S40AL  |
|----------------------------|-----------------|------------|------------|------------|
| Configuration Memo         | ory Size        | 1 Mbit     | 1 Mbit     | 1 Mbit     |
| FPGA Gates                 |                 | 5K         | 10K        | 40K        |
| FPGA Core Cells            |                 | 256        | 576        | 2304       |
| FPGA SRAM Bits             |                 | 2048       | 4096       | 18432      |
| FPGA Registers (To         | otal)           | 436        | 846        | 2862       |
| Maximum FPGA User I/O      |                 | 93         | 137        | 162        |
| AVR Programmable I/O Lines |                 | 8          | 16         | 16         |
| Program SRAM Bytes         |                 | 4K - 16K   | 20K - 32K  | 20K - 32K  |
| Data SRAM Bytes            | Data SRAM Bytes |            | 4K - 16K   | 4K - 16K   |
| Hardware Multiplier        | (8-bit)         | Yes        | Yes        | Yes        |
| 2-wire Serial Interfac     | ce              | Yes        | Yes        | Yes        |
| UARTs                      |                 | 2          | 2          | 2          |
| Watchdog Timer             |                 | Yes        | Yes        | Yes        |
| Timer/Counters             |                 | 3          | 3          | 3          |
| Real-time Clock            |                 | Yes        | Yes        | Yes        |
| JTAG ICE                   |                 | Yes        | Yes        | Yes        |
| Typical AVR                | @ 25 MHz        | 19 MIPS    | 19 MIPS    | 19 MIPS    |
| Throughput                 | @ 40 MHz        | 30 MIPS    | 30 MIPS    | 30 MIPS    |
| Operating Voltage          |                 | 3.0 - 3.6V | 3.0 - 3.6V | 3.0 - 3.6V |

Figure 1-1. AT94S Architecture



The embedded AVR core achieves throughputs approaching 1 MIPS per MHz by executing powerful instructions in a single-clock-cycle, and allows system designers to optimize power consumption versus processing speed. The AVR core is based on an enhanced RISC architecture that combines a rich instruction set with 32 general-purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code-efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers at the same clock frequency. The AVR executes out of on-chip SRAM. Both the FPGA configuration SRAM and AVR instruction code SRAM are automatically loaded at system power-up using Atmel's in-system programmable AT17 Series EEPROM configuration memories, which are part of the AT94S Multi-chip Module (MCM).

State-of-the-art FPSLIC design tools, System Designer, were developed in conjunction with the FPSLIC architecture to help reduce overall time-to-market by integrating microcontroller development and debugging, FPGA development, place and route, and complete system co-verification in one easy-to-use software tool.

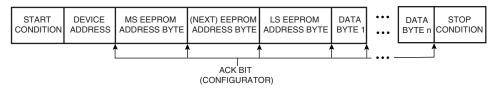


# AT94S Secure Family

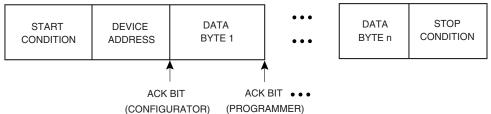
may only drive the cSDA line Low. The system must provide a small pull-up current (1  $k\Omega$  equivalent) for the cSDA line.

The MESSAGE FORMAT for read and write instructions consists of the bytes shown in "Bit Format" on page 5.

While writing, the programmer is responsible for issuing the instruction and data. While reading, the programmer issues the instruction and acknowledges the data from the Configurator as necessary.


Again, the Acknowledge Bit is asserted on the cSDA line by the receiving device on a byte-bybyte basis.

The factory blanks devices to all zeros before shipping. The array cannot otherwise be "initialized" except by explicitly writing a known value to each location using the serial protocol described herein.


#### 4.3 Bit Format

Data on the cSDA pin may change only during the cSCK Low time; whereas Start and Stop Conditions are identified as transitions during the cSCK High time.

#### **Write Instruction Message Format**



### Current Address Read (Extended to Sequential Read) Instruction Message Format



# 4.4 Start and Stop Conditions

The Start Condition is indicated by a high-to-low transition of the cSDA line when the cSCK line is High. Similarly, the Stop Condition is generated by a low-to-high transition of the cSDA line when the cSCK line is High, as shown in Figure 4-1.

The Start Condition will return the device to the state where it is waiting for a Device Address (its normal quiescent mode).

The Stop Condition initiates an internally timed write signal whose maximum duration is  $t_{WR}$  (refer to AC Characteristics table for actual value). During this time, the Configurator must remain in programming mode (i.e.,  $\overline{SER}_{EN}$  is driven Low). cSDA and cSCK lines are ignored until the cycle is completed. Since the write cycle typically completes in less than  $t_{WR}$  seconds, we recommend the use of "polling" as described in later sections. Input levels to all other pins should be held constant until the write cycle has been completed.





# 4.5 Acknowledge Bit

The Acknowledge (ACK) Bit shown in Figure 4-1 is provided by the Configurator receiving the byte. The receiving Configurator can accept the byte by asserting a Low value on the cSDA line, or it can refuse the byte by asserting (allowing the signal to be externally pulled up to) a High value on the cSDA line. All bytes from accepted messages must be terminated by either an Acknowledge Bit or a Stop Condition. Following an ACK Bit, when the cSDA line is released during an exchange of control between the Configurator and the programmer, the cSDA line may be pulled High temporarily due to the open-collector output nature of the line. Control of the line must resume before the next rising edge of the clock.

## 4.6 Bit Ordering Protocol

The most significant bit is the first bit of a byte transmitted on the cSDA line for the Device Address Byte and the EEPROM Address Bytes. It is followed by the lesser significant bits until the eighth bit, the least significant bit, is transmitted. However, for Data Bytes (both writing and reading), the first bit transmitted is the least significant bit. This protocol is shown in the diagrams below.

## 4.7 Device Address Byte

The contents of the Device Address Byte are shown below, along with the order in which the bits are clocked into the device.

The  $\overline{\text{CE}}$  pin cannot be used for device selection in programming mode (i.e., when  $\overline{\text{SER\_EN}}$  is drive Low).

Figure 4-1. Start and Stop Conditions

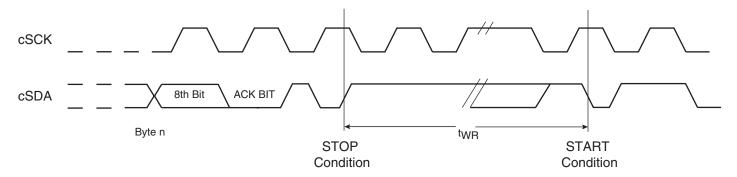
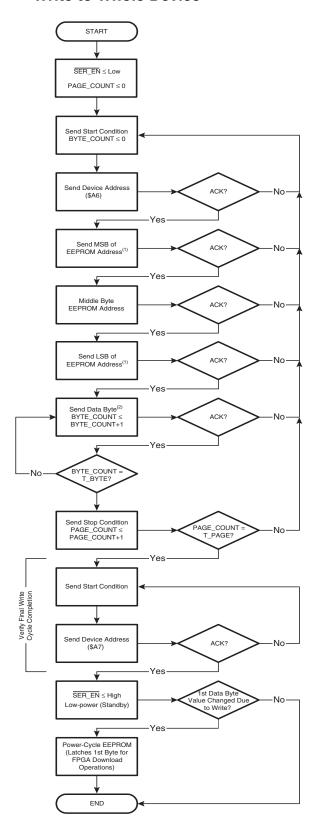



Table 4-1. Device Address Byte




Where: $R/\overline{W}=1$  Read = 0 Write

6



# 4.8 Programming Summary: Write to Whole Device



Notes: 1. The 1-Mbit part requires three EEPROM address bytes; all three bytes must be individually ACK'd by

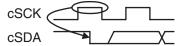
the EEPROM.

2. Data byte received/sent LSB to MSB.

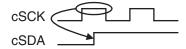
#### 4.8.1 EEPROM Address is Defined as:

 $\mathsf{AT17LV010} \quad \mathsf{0000} \quad \mathsf{000x}_9 \quad \mathsf{x}_8 \mathsf{x}_7 \mathsf{x}_6 \mathsf{x}_5 \quad \mathsf{x}_4 \mathsf{x}_3 \mathsf{x}_2 \mathsf{x}_1 \quad \mathsf{x}_0 \mathsf{000} \quad \quad \mathsf{0000}$ 

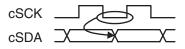
Note: where  $X_n ... X_0$  is (PAGE\_COUNT)\b


#### 4.8.2 T\_BYTE

AT17LV010 128


#### 4.8.3 T\_PAGE

AT17LV010 1024

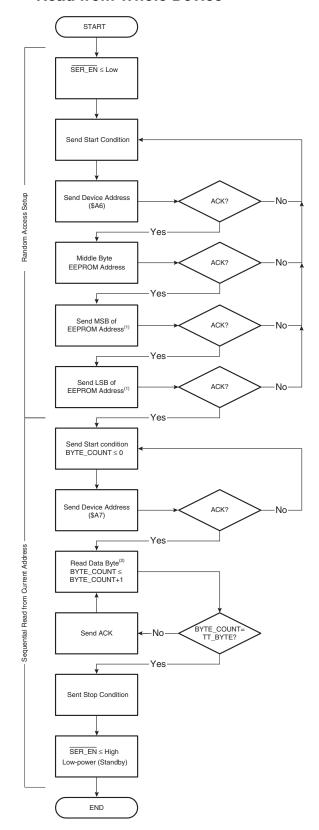

#### START CONDITION



#### **STOP CONDITION**



#### DATA BIT




#### **ACK BIT**



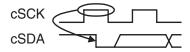
# AT94S Secure Family

# 4.9 Programming Summary: Read from Whole Device



Notes: 1. The 1-Mbit part requires three EEPROM address bytes; all three bytes must be individually ACK'd by

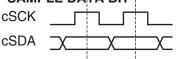
2. Data byte received/sent LSB to MSB


#### 4.9.1 EEPROM Address is Defined as:

AT17LV010 00 00 00 \h

#### 4.9.2 TT\_BYTE

AT17LV010 131072 \d


#### START CONDITION




#### STOP CONDITION



### **SAMPLE DATA BIT**



#### **ACK BIT**







#### 4.9.3 Data Byte

| LSB |     |     |     |     |     |     | MSB |  |
|-----|-----|-----|-----|-----|-----|-----|-----|--|
| D0  | D1  | D2  | D3  | D4  | D5  | D6  | D7  |  |
| 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th |  |

The organization of the Data Byte is shown above. Note that in this case, the Data Byte is clocked into the device LSB first and MSB last.

#### 4.9.4 Writing

Writing to the normal address space takes place in pages. A page is 128-bytes long in the 1-Mbit part. The page boundaries are, respectively, addresses where  $A_{E0}$  down to  $A_{E0S}$  are all zero, and  $A_{E6}$  down to  $A_{E0}$  are all zero. Writing can start at any address within a page and the number of bytes written must be 128 for the 1-Mbit part. The first byte is written at the transmitted address. The address is incremented in the Configurator following the receipt of each Data Byte. Only the lower 7 bits of the address are incremented. Thus, after writing to the last byte address within the given page, the address will roll over to the first byte address of the same page. A Write Instruction consists of:

a Start Condition a Device Address Byte with  $R/\overline{W}=0$  An Acknowledge Bit from the Configurator MS Byte of the EEPROM Address An Acknowledge Bit from the Configurator Next Byte of the EEPROM Address An Acknowledge Bit from the Configurator LS Byte of EEPROM Address An Acknowledge Bit from the Configurator One or more Data Bytes (sent to the Configurator) Each followed by an Acknowledge Bit from the Configurator a Stop Condition

#### 4.9.4.1 Write Polling

On receipt of the Stop Condition, the Configurator enters an internally-timed write cycle. While the Configurator is busy with this write cycle, it will not acknowledge any transfers. The programmer can start the next page write by sending the Start Condition followed by the Device Address, in effect polling the Configurator. If this is not acknowledged, then the programmer should abandon the transfer without asserting a Stop Condition. The programmer can then repeatedly initiate a write instruction as above, until an acknowledge is received. When the Acknowledge Bit is received, the write instruction should continue by sending the first EEPROM Address Byte to the Configurator.

An alternative to write polling would be to wait a period of  $t_{WR}$  before sending the next page of data or exiting the programming mode. All signals must be maintained during the entire write cycle.

#### 4.9.5 Reading

Read instructions are initiated similarly to write instructions. However, with the  $R/\overline{W}$  bit in the Device Address set to one. There are three variants of the read instruction: current address read, random read and sequential read.

For all reads, it is important to understand that the internal Data Byte address counter maintains the last address accessed during the previous read or write operation, incremented by one. This address remains valid between operations as long as the chip power is maintained and the device remains in 2-wire access mode (i.e.,  $\overline{SER}_{EN}$  is driven Low). If the last operation was a read at address n, then the current address would be n + 1. If the final operation was a write at address n, then the current address would again be n + 1 with one exception. If address n was the last byte address in the page, the incremented address n + 1 would "roll over" to the first byte address on the next page.

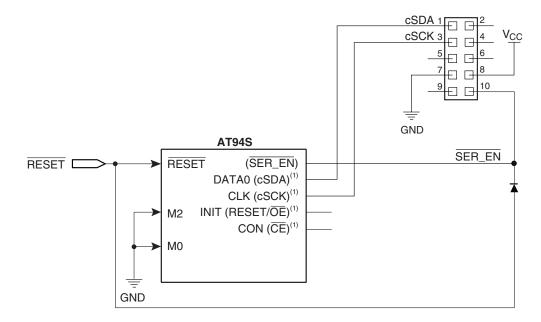
#### 4.9.5.1 Current Address Read

Once the Device Address (with the R/W select bit set to High) is clocked in and acknowledged by the Configurator, the Data Byte at the current address is serially clocked out by the Configurator in response to the clock from the programmer. The programmer generates a Stop Condition to accept the single byte of data and terminate the read instruction.

A Current Address Read instruction consists of a Start Condition a Device Address with  $R/\overline{W}=1$  An Acknowledge Bit from the Configurator a Data Byte from the Configurator a Stop Condition from the programmer.

#### 4.9.5.2 Random Read

A Random Read is a Current Address Read preceded by an aborted write instruction. The write instruction is only initiated for the purpose of loading the EEPROM Address Bytes. Once the Device Address Byte and the EEPROM Address Bytes are clocked in and acknowledged by the Configurator, the programmer immediately initiates a Current Address Read.


A Random Address Read instruction consists of :

```
a Start Condition a Device Address with R/\overline{W}=0 An Acknowledge Bit from the Configurator MS Byte of the EEPROM Address An Acknowledge Bit from the Configurator Next Byte of the EEPROM Address An Acknowledge Bit from the Configurator LS Byte of EEPROM Address An Acknowledge Bit from the Configurator LS Byte of EEPROM Address An Acknowledge bit from the Configurator a Start Condition a Device Address with R/\overline{W}=1 An Acknowledge Bit from the Configurator a Data Byte from the Configurator a Stop Condition from the programmer.
```



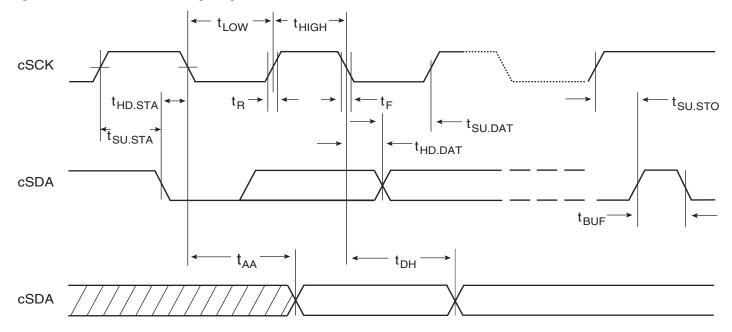



Figure 4-3. ISP of the AT17LV512/010 in an AT94S FPSLIC Application



Note: 1. Configurator signal names are shown in parenthesis.

Figure 4-4. Serial Data Timing Diagram



# 4.11 DC Characteristics<sup>(1)</sup>

 $V_{CC} = 3.3V \pm 10\%, T_A = -40^{\circ}C - 85^{\circ}C^{(2)(3)(4)}$ 

| Symbol          | Parameter                | Test Condition                 | Min                   | Тур  | Max                   | Units |
|-----------------|--------------------------|--------------------------------|-----------------------|------|-----------------------|-------|
| V <sub>CC</sub> | Supply Voltage           |                                | 3.0                   | 3.3  | 3.6                   | V     |
| I <sub>CC</sub> | Supply Current           | V <sub>CC</sub> = 3.6          |                       | 2    | 3                     | mA    |
| I <sub>LL</sub> | Input Leakage Current    | $V_{IN} = V_{CC}$ or $V_{SS}$  |                       | 0.10 | 10                    | μΑ    |
| I <sub>LO</sub> | Output Leakage Current   | $V_{OUT} = V_{CC}$ or $V_{SS}$ |                       | 0.05 | 10                    | μA    |
| V <sub>IH</sub> | High-level Input Voltage |                                | V <sub>CC</sub> x 0.7 |      | V <sub>CC</sub> + 0.5 | V     |
| V <sub>IL</sub> | Low-level Input Voltage  |                                | -0.5                  |      | 0.2                   | V     |
| V <sub>OL</sub> | Output Low-level Voltage | I <sub>OL</sub> = 2.1 mA       |                       |      | 0.4                   | V     |

Notes: 1. Specific to programming mode (i.e., when SER\_EN is driven Low)

2. Commercial temperature range 0°C - 70°C

3. Industrial temperature range -40°C - 85°C

4. This parameter is characterized and is not 100% tested.

# 4.12 AC Characteristics<sup>(1)</sup>

 $V_{CC} = 3.3V \pm 10\%, T_A = -40^{\circ}C - 85^{\circ}C^{(2)(3)(4)}$ 

| Symbol              | Parameter                                                     | Min | Max | Units |
|---------------------|---------------------------------------------------------------|-----|-----|-------|
| f <sub>CLOCK</sub>  | Clock Frequency, Clock                                        |     | 100 | KHz   |
| t <sub>LOW</sub>    | Clock Pulse Width Low                                         | 4   |     | μs    |
| t <sub>HIGH</sub>   | Clock Pulse Width High                                        | 4   |     | μs    |
| t <sub>AA</sub>     | Clock Low to Data Out Valid                                   | 0.1 | 1   | μs    |
| t <sub>BUF</sub>    | Time the Bus Must Be Free Before a New Transmission Can Start | 4.5 |     | μs    |
| t <sub>HD;STA</sub> | Start Hold Time                                               | 2   |     | μs    |
| t <sub>SU;STA</sub> | Start Setup Time                                              | 2   |     | μs    |
| t <sub>HD DAT</sub> | Data In Hold Time                                             | 0   |     | μs    |
| t <sub>SU DAT</sub> | Data In Setup Time                                            | 0.2 |     | μs    |
| t <sub>R</sub>      | Inputs Rise Time                                              |     | 0.3 | μs    |
| t <sub>F</sub>      | Inputs Fall Time                                              |     | 0.3 | μs    |
| t <sub>SU STO</sub> | Stop Setup Time                                               | 2   |     | μs    |
| t <sub>DH</sub>     | Data Out Hold Time                                            | 0.1 |     | μs    |
| t <sub>WR</sub>     | Write Cycle Time                                              |     | 20  | ms    |

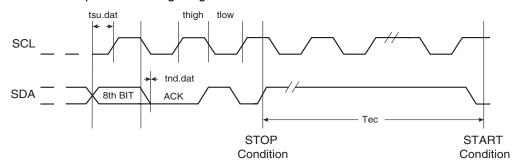
Notes: 1. Specific to programming mode (i.e., when SER\_EN is driven Low)

2. Commercial temperature range 0°C - 70°C

3. Industrial temperature range -40°C - 85°C

4. This parameter is characterized and is not 100% tested.




# 4.15 Chip Erase Timing

The entire device can be erased at once by writing to a specific address. This operation will erase the entire array. See Table 4-2 for specifics on the write algorithm.

Table 4-2. Chip Erase Cycle Characteristics

| Symbol | Parameter                     |
|--------|-------------------------------|
| Tec    | Chip Erase Cycle Time (25 ms) |

Figure 4-5. Chip Erase Timing Diagram



# 5. Packaging and Pin List information

 Table 5-1.
 Part and Package Combinations Available

| Part # | Package | AT94S05 | AT94S10 | AT94S40 |
|--------|---------|---------|---------|---------|
| BG256  | DG      | 93      | 137     | 162     |
| LQ144  | BQ      | _       | 84      | 84      |

Table 5-2. AT94K JTAG ICE Pin List

|     | AT94S05     | AT94S10      | AT94S40      |
|-----|-------------|--------------|--------------|
| Pin | 96 FPGA I/O | 192 FPGA I/O | 384 FPGA I/O |
| TDI | IO34        | IO50         | IO98         |
| TDO | IO38        | IO54         | IO102        |
| TMS | IO43        | IO63         | IO123        |
| TCK | IO44        | IO64         | IO124        |



Table 5-3.AT94S Pin List (Continued)

|                          |                          |                          | Packa                   | ıge                  |
|--------------------------|--------------------------|--------------------------|-------------------------|----------------------|
| AT94S05<br>96 FPGA I/O   | AT94S10<br>144 FPGA I/O  | AT94S40<br>288 FPGA I/O  | Chip Array 256<br>CABGA | LQ144 <sup>(1)</sup> |
| NC                       | I/O31                    | 1/067                    | L2                      |                      |
| NC                       | I/O32                    | I/O68                    | L5                      |                      |
| I/O21 (A26)              | I/O33 (A26)              | I/O69 (A26)              | L4                      | 23                   |
| I/O22 (A27)              | I/O34 (A27)              | I/O70 (A27)              | M1                      | 24                   |
| I/O23                    | I/O35                    | I/O71                    | M2                      | 25                   |
| I/O24, FCK2              | I/O36, FCK2              | I/072, FCK2              | N1                      | 26                   |
|                          |                          | 1/073                    |                         |                      |
|                          |                          | 1/074                    |                         |                      |
|                          | 1/037                    | 1/075                    |                         |                      |
|                          | I/O38                    | I/O76                    |                         |                      |
|                          |                          | 1/077                    |                         |                      |
|                          |                          | 1/078                    |                         |                      |
|                          |                          | 1/079                    |                         |                      |
|                          |                          | I/O80                    |                         |                      |
| I/O25                    | I/O39                    | I/O81                    | M3                      |                      |
| I/O26                    | I/O40                    | I/O82                    | N2                      |                      |
|                          | I/O41                    | I/O83                    |                         |                      |
|                          | 1/042                    | I/O84                    |                         |                      |
|                          |                          | I/O85                    |                         |                      |
|                          |                          | I/O86                    |                         |                      |
|                          |                          | I/O87                    |                         |                      |
|                          |                          | I/O88                    |                         |                      |
| I/O27 (A28)              | I/O43 (A28)              | I/O89 (A28)              | P1                      | 28                   |
| I/O28                    | 1/044                    | I/O90                    | P2                      | 29                   |
|                          |                          | I/O91                    |                         |                      |
|                          |                          | 1/092                    |                         |                      |
| I/O29                    | I/O45                    | I/O93                    | R1                      | 30                   |
| I/O30                    | I/O46                    | I/O94                    | N3                      | 31                   |
| I/O31 ( <del>OTS</del> ) | I/O47 ( <del>OTS</del> ) | I/O95 ( <del>OTS</del> ) | T1                      | 32                   |
| I/O32, GCK2 (A29)        | I/O48, GCK2 (A29)        | I/O96, GCK2 (A29)        | P3                      | 33                   |
| AVRRESET                 | AVRRESET                 | AVRRESET                 | R2                      | 34                   |
| MO                       | MO                       | MO                       | R3                      | 36                   |
|                          |                          | FPSLIC Array             | ,                       |                      |
| M2                       | M2                       | M2                       | Т3                      | 38                   |
|                          |                          |                          |                         |                      |



Table 5-3.AT94S Pin List (Continued)

|                         |                          |                           | Packa                   | ige                  |
|-------------------------|--------------------------|---------------------------|-------------------------|----------------------|
| AT94S05<br>96 FPGA I/O  | AT94S10<br>144 FPGA I/O  | AT94S40<br>288 FPGA I/O   | Chip Array 256<br>CABGA | LQ144 <sup>(1)</sup> |
|                         |                          | I/O130                    |                         |                      |
|                         |                          | I/O131                    |                         |                      |
|                         |                          | I/O132                    |                         |                      |
|                         |                          | I/O133                    |                         |                      |
|                         |                          | I/O134                    |                         |                      |
| NC                      | 1/067                    | I/O135                    | M8                      |                      |
| NC                      | I/O68                    | I/O136                    | R8                      |                      |
| I/O45                   | I/O69                    | I/O137                    | P8                      | 50                   |
| I/O46                   | 1/070                    | I/O138                    | N8                      | 51                   |
|                         |                          | I/O139                    |                         |                      |
|                         |                          | I/O140                    |                         |                      |
|                         |                          | I/O141                    |                         |                      |
|                         |                          | I/O142                    |                         |                      |
| I/O47 (TD7)             | I/O71 (TD7)              | I/O143 (TD7)              | L8                      | 52                   |
| /O48 (InitErr) RESET/OE | I/O72 (InitErr) RESET/OE | I/O144 (InitErr) RESET/OE | K9                      | 53                   |
| I/O49 (TD6)             | I/O73 (TD6)              | I/O145 (TD6)              | P9                      | 56                   |
| I/O50 (TD5)             | I/O74 (TD5)              | I/O146 (TD5)              | N9                      | 57                   |
|                         |                          | I/O147                    |                         |                      |
|                         |                          | I/O148                    |                         |                      |
|                         |                          | I/O149                    |                         |                      |
|                         |                          | I/O150                    |                         |                      |
| I/O51                   | 1/075                    | I/O151                    | M9                      | 58                   |
| I/O52                   | 1/076                    | I/O152                    | L9                      | 59                   |
| NC                      | 1/077                    | I/O153                    | J9                      |                      |
| NC                      | 1/078                    | I/O154                    | T10                     |                      |
|                         |                          | I/O155                    |                         |                      |
|                         |                          | I/O156                    |                         |                      |
|                         |                          | I/O157                    |                         |                      |
|                         |                          | I/O158                    |                         |                      |
|                         |                          | I/O159                    |                         |                      |
|                         |                          | I/O160                    |                         |                      |
|                         |                          | I/O161                    |                         |                      |
|                         |                          | I/O162                    |                         |                      |
| NC                      | 1/079                    | I/O163                    | P10                     |                      |

Table 5-3.AT94S Pin List (Continued)

|                        |                         |                         | Packa                   | ige                 |
|------------------------|-------------------------|-------------------------|-------------------------|---------------------|
| AT94S05<br>96 FPGA I/O | AT94S10<br>144 FPGA I/O | AT94S40<br>288 FPGA I/O | Chip Array 256<br>CABGA | LQ144 <sup>(1</sup> |
| NC                     | I/O80                   | I/O164                  | N10                     |                     |
| I/O53 (TD4)            | I/O81 (TD4)             | I/O165 (TD4)            | L10                     | 60                  |
| I/O54 (TD3)            | I/O82 (TD3)             | I/O166 (TD3)            | T11                     | 61                  |
| I/O55                  | I/O83                   | I/O167                  | R11                     | 62                  |
| I/O56                  | I/O84                   | I/O168                  | M11                     | 63                  |
| NC                     | NC                      | I/O169                  | N11                     |                     |
| NC                     | NC                      | I/O170                  | T12                     |                     |
| NC                     | I/O85                   | I/O171                  | R12                     |                     |
| NC                     | I/O86                   | I/O172                  | T13                     |                     |
|                        |                         | I/O173                  |                         |                     |
|                        |                         | I/O174                  |                         |                     |
|                        |                         | I/O175                  |                         |                     |
|                        |                         | I/O176                  |                         |                     |
| NC                     | I/O87                   | I/O177                  | N12                     |                     |
| NC                     | I/O88                   | I/O178                  | P12                     |                     |
| I/O57                  | I/O89                   | I/O179                  | R13                     |                     |
| I/O58                  | I/O90                   | I/O180                  | T14                     |                     |
| NC                     | NC                      | I/O181                  | N13                     |                     |
| NC                     | NC                      | I/O182                  | P13                     |                     |
| I/O59 (TD2)            | I/O91 (TD2)             | I/O183 (TD2)            | T16                     | 65                  |
| I/O60 (TD1)            | I/O92 (TD1)             | I/O184 (TD1)            | P14                     | 66                  |
|                        |                         | I/O185                  |                         |                     |
|                        |                         | I/O186                  |                         |                     |
|                        |                         | I/O187                  |                         |                     |
|                        |                         | I/O188                  |                         |                     |
| I/O61                  | I/O93                   | I/O189                  | R16                     | 67                  |
| I/O62                  | I/O94                   | I/O190                  | P15                     | 68                  |
| I/O63 (TD0)            | I/O95 (TD0)             | I/O191 (TD0)            | N14                     | 69                  |
| I/O64, GCK4            | I/O96, GCK4             | I/O192, GCK4            | P16                     | 70                  |
| CON/CE                 | CON/CE                  | CON/CE                  | N16                     | 72                  |
|                        |                         | FPSLIC Array            |                         |                     |
| RESET                  | RESET                   | RESET                   | M14                     | 74                  |
| PE0                    | PE0                     | PE0                     | M12                     | 75                  |
| PE1                    | PE1                     | PE1                     | M15                     | 76                  |





Table 5-3.AT94S Pin List (Continued)

|                        |                         |                         | Packa                   | ige                  |
|------------------------|-------------------------|-------------------------|-------------------------|----------------------|
| AT94S05<br>96 FPGA I/O | AT94S10<br>144 FPGA I/O | AT94S40<br>288 FPGA I/O | Chip Array 256<br>CABGA | LQ144 <sup>(1)</sup> |
|                        |                         | I/O321                  |                         |                      |
|                        |                         | I/O322                  |                         |                      |
|                        |                         | I/O323                  |                         |                      |
|                        |                         | I/O324                  |                         |                      |
| I/O107 (A4)            | I/O161 (A4)             | I/O325 (A4)             | A10                     | 121                  |
| I/O108 (A5)            | I/O162 (A5)             | I/O326 (A5)             | G10                     | 122                  |
| NC                     | I/O163                  | I/O327                  | G9                      |                      |
| NC                     | I/O164                  | I/O328                  | F9                      |                      |
| I/O109                 | I/O165                  | I/O329                  | E9                      | 123                  |
| I/O110                 | I/O166                  | I/O330                  | C9                      | 124                  |
|                        |                         | I/O331                  |                         |                      |
|                        |                         | I/O332                  |                         |                      |
|                        |                         | I/O333                  |                         |                      |
|                        |                         | I/O334                  |                         |                      |
| I/O111 (A6)            | I/O167 (A6)             | I/O335 (A6)             | В9                      | 125                  |
| I/O112 (A7)            | I/O168 (A7)             | I/O336 (A7)             | A9                      | 126                  |
| I/O113 (A8)            | I/O169 (A8)             | I/O337 (A8)             | A8                      | 129                  |
| I/O114 (A9)            | I/O170 (A9)             | I/O338 (A9)             | B8                      | 130                  |
|                        |                         | I/O339                  |                         |                      |
|                        |                         | I/O340                  |                         |                      |
|                        |                         | I/O341                  |                         |                      |
|                        |                         | I/O342                  |                         |                      |
| I/O115                 | I/O171                  | I/O343                  | C8                      | 131                  |
| I/O116                 | I/O172                  | I/O344                  | D8                      | 132                  |
| NC                     | I/O173                  | I/O345                  | E8                      |                      |
| NC                     | I/O174                  | I/O346                  | F8                      |                      |
| I/O117 (A10)           | I/O175 (A10)            | I/O347 (A10)            | H8                      | 133                  |
| I/O118 (A11)           | I/O176 (A11)            | I/O348 (A11)            | A7                      | 134                  |
| NC                     | NC                      | I/O349                  | C7                      |                      |
| NC                     | NC                      | I/O350                  | D7                      |                      |
|                        |                         | I/O351                  |                         |                      |
|                        |                         | I/O352                  |                         |                      |
|                        |                         | I/O353                  |                         |                      |
|                        |                         | I/O354                  |                         |                      |

Table 5-3.AT94S Pin List (Continued)

|                        | AT94S10<br>144 FPGA I/O | AT94S40<br>288 FPGA I/O | Package                 |                      |
|------------------------|-------------------------|-------------------------|-------------------------|----------------------|
| AT94S05<br>96 FPGA I/O |                         |                         | Chip Array 256<br>CABGA | LQ144 <sup>(1)</sup> |
|                        |                         | I/O355                  |                         |                      |
|                        |                         | I/O356                  |                         |                      |
| NC                     | I/O177                  | I/O357                  | F7                      |                      |
| NC                     | I/O178                  | I/O358                  | A6                      |                      |
| I/O119                 | I/O179                  | I/O359                  | F6                      | 135                  |
| I/O120                 | I/O180                  | I/O360                  | B6                      | 136                  |
|                        |                         | I/O361                  |                         |                      |
|                        |                         | I/O362                  |                         |                      |
| NC                     | I/O181                  | I/O363                  | D6                      |                      |
| NC                     | I/O182                  | I/O364                  | E6                      |                      |
|                        |                         | I/O365                  |                         |                      |
|                        |                         | I/O366                  |                         |                      |
|                        |                         | I/O367                  |                         |                      |
|                        |                         | I/O368                  |                         |                      |
| I/O121                 | I/O183                  | I/O369                  | A5                      |                      |
| I/O122                 | I/O184                  | I/O370                  | B5                      |                      |
| I/O123 (A12)           | I/O185 (A12)            | I/O371 (A12)            | E5                      | 138                  |
| I/O124 (A13)           | I/O186 (A13)            | I/O372 (A13)            | C5                      | 139                  |
|                        |                         | I/O373                  |                         |                      |
|                        |                         | I/O374                  |                         |                      |
|                        |                         | I/O375                  |                         |                      |
|                        |                         | I/O376                  |                         |                      |
|                        |                         | I/O377                  |                         |                      |
|                        |                         | I/O378                  |                         |                      |
| NC                     | I/O187                  | I/O379                  | A4                      |                      |
| NC                     | I/O188                  | I/O380                  | B4                      |                      |
| I/O125                 | I/O189                  | I/O381                  | A3                      | 140                  |
| I/O126                 | I/O190                  | I/O382                  | C4                      | 141                  |
| I/O127 (A14)           | I/O191 (A14)            | I/O383 (A14)            | В3                      | 142                  |
| I/O128, GCK8 (A15)     | I/O192, GCK8 (A15)      | I/O384, GCK8 (A15)      | A2                      | 143                  |

Note: 1. LQ144 is only offered in the AT94S10 and AT94S40.



**Table 5-4.** 256 CABGA and LQ144 V<sub>DD</sub>, V<sub>CC</sub> and GND Pins<sup>(1)</sup>

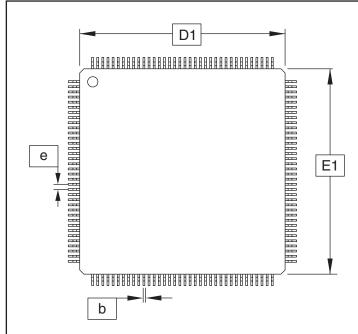
| Package      | V <sub>DD</sub> (core)                         | V <sub>cc</sub> (I/O)                          | GND                                                                                                                                                      |
|--------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 256<br>CABGA | D14, E7, F12, G3, H9, K10,<br>L13, M13, P4, T9 | B2, G8, G13, H10, K13, L3,<br>M10, R14, T3, T7 | B11, B13, B16, B7, C3, C6, D5, D9, F11, F13, T15, F16, F2, F5, G16, H11, H16, J15, J2, K16, K3, T2, L14, L16, L7, M4, N15, N4, N6, P11, R9, R10, R15, T8 |
| LQ144        | 18, 54, 90, 128                                | 37, 73, 108, 144                               | 1, 8, 17, 27, 35, 45, 55, 64, 71, 91, 100, 110, 118, 127, 137                                                                                            |

Note: 1. For power rail support for product migration to lower-power devices, refer to the "Designing in Split Power Supply Support for AT94KAL/AX and AT94SAL/AX Devices" application note (doc2308.pdf), available on the Atmel web site, at http://www.atmel.com/dyn/products/app\_notes.asp?family\_id=627.

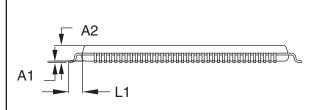
# 6. Thermal Coefficient Table

| Package Style | Lead Count | Theta J-A [°C/W]<br>0 LFPM | Theta J-A [°C/W]<br>225 LFPM | Theta J-A [°C/W]<br>500 LPFM |
|---------------|------------|----------------------------|------------------------------|------------------------------|
| CABGA         | 256        | 27                         | 23                           | 20                           |
| LQFP          | 144        | 35                         | _                            | _                            |

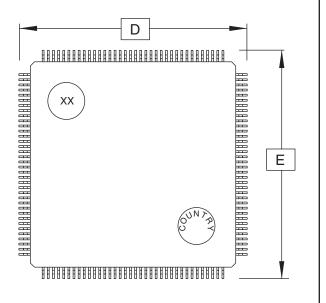
# ■ AT94S Secure Family


# 7. Ordering Information

| Usable Gates | Speed Grade | Ordering Code    | Package | Operation Range |
|--------------|-------------|------------------|---------|-----------------|
| 5,000        | 25 MHz      | AT94S05AL-25DGC  | 256ZA   | Commercial      |
|              |             | AT94S05AL-25BQC  | 144L1   | (0°C - 70°C)    |
|              | ZO IVITZ    | AT94S05AL-25DGI  | 256ZA   | Industrial      |
|              |             | AT94S05AL-25BQI  | 144L1   | (-40°C - 85°C)  |
| 10,000       | 25 MHz      | AT94S10AL-25DGC  | 256ZA   | Commercial      |
|              |             | AT94S10AL-25BQC  | 144L1   | (0°C - 70°C)    |
|              |             | AT94S10AL-25DGI  | 256ZA   | Industrial      |
|              |             | AT94S10AL-25BQI  | 144L1   | (-40°C - 85°C)  |
| 40,000       | 16 MHz      | AT94S40AL-25DGC  | 256ZA   | Commercial      |
|              |             |                  | 230ZA   | (0°C - 70°C)    |
|              |             | AT94S40AL-25DGI  | 256ZA   | Industrial      |
|              |             | AI 34040AL-23DGI | 250ZA   | (-40°C - 85°C)  |


| Package Type |                                                                  |  |
|--------------|------------------------------------------------------------------|--|
| 256ZA        | 256-ball, Chip Array Ball Grid Array Package (CABGA)             |  |
| 144L1        | 144-lead, Low Profile Plastic Gull Wing Quad Flat Package (LQFP) |  |




#### 8.2 144L1 - LQFP



Top View



Side View



**Bottom View** 

# COMMON DIMENSIONS

(Unit of Measure = mm)

| SYMBOL | MIN       | NOM  | MAX  | NOTE |
|--------|-----------|------|------|------|
| A1     | 0.05      |      | 0.15 | 6    |
| A2     | 1.35      | 1.40 | 1.45 |      |
| D      | 22.00 BSC |      |      |      |
| D1     | 20.00 BSC |      |      | 2, 3 |
| E      | 22.00 BSC |      |      |      |
| E1     | 20.00 BSC |      |      | 2, 3 |
| е      | 0.50 BSC  |      |      |      |
| b      | 0.17      | 0.22 | 0.27 | 4, 5 |
| L1     | 1.00 REF  |      |      |      |

Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-026 for additional information.

- 2. The top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Dimensions D1 and E1 do not include mold protrusions. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 and 0.5 mm pitch packages.
- 5. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 6. At is defined as the distance from the seating place to the lowest point on the package body.

11/30/01

|                                            | TITLE                                                                              | DRAWING NO. | REV. |
|--------------------------------------------|------------------------------------------------------------------------------------|-------------|------|
| 2325 Orchard Parkway<br>San Jose, CA 95131 | 144L1, 144-lead (20 x 20 x 1.4 mm Body), Low Profile Plastic Quad Flat Pack (LQFP) | 144L1       | А    |





## **Atmel Corporation**

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

#### Regional Headquarters

#### Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

#### Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369

## Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

## **Atmel Operations**

#### Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

#### Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18

Fax: (33) 2-40-18-19-60

#### ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

#### RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-0

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

### Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123

38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel<sup>®</sup>, logo and combinations thereof, Everywhere You Are<sup>®</sup> and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

