

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	20MHz
Connectivity	CSI, EBI/EMI, I ² C, UART/USART, USB
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	80
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-LFBGA
Supplier Device Package	121-LFBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3794f1-cah-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

							(11/11)
Address	Function Register Name	Symbol	R/W	Manip	ulatabl	e Bits	Default Value
				1	8	16	
FFFFFD26H	CSIB2 transmit data register	CB2TX	R/W				0000H
FFFFFD26H	CSIB2 transmit data register L	CB2TXL					00H
FFFFFD30H	CSIB3 control register 0	CB3CTL0		\checkmark	\checkmark		01H
FFFFFD31H	CSIB3 control register 1	CB3CTL1		\checkmark	\checkmark		00H
FFFFFD32H	CSIB3 control register 2	CB3CTL2			\checkmark		00H
FFFFFD33H	CSIB3 status register	CB3STR		\checkmark	\checkmark		00H
FFFFFD34H	CSIB3 receive data register	CB3RX	R			\checkmark	0000H
FFFFFD34H	CSIB3 receive data register L	CB3RXL			\checkmark		00H
FFFFFD36H	CSIB3 transmit data register	CB3TX	R/W			\checkmark	0000H
FFFFFD36H	CSIB3 transmit data register L	CB3TXL			\checkmark		00H
FFFFD40H	CSIB4 control register 0	CB4CTL0		\checkmark	\checkmark		01H
FFFFFD41H	CSIB4 control register 1	CB4CTL1	R/W	\checkmark	\checkmark		00H
FFFFFD42H	CSIB4 control register 2	CB4CTL2			\checkmark		00H
FFFFFD43H	CSIB4 status register	CB4STR		\checkmark	\checkmark		00H
FFFFFD44H	CSIB4 receive data register	CB4RX	R			\checkmark	0000H
FFFFFD44H	CSIB4 receive data register L	CB4RXL			\checkmark		00H
FFFFFD46H	CSIB4 transmit data register	CB4TX	R/W			\checkmark	0000H
FFFFFD46H	CSIB4 transmit data register L	CB4TXL			\checkmark		00H
FFFFFD80H	IIC shift register 0	IIC0			\checkmark		00H
FFFFD82H	IIC control register 0	IICC0		\checkmark	\checkmark		00H
FFFFD83H	Slave address register 0	SVA0			\checkmark		00H
FFFFD84H	IIC clock select register 0	IICCL0		\checkmark	\checkmark		00H
FFFFD85H	IIC function expansion register 0	IICX0		\checkmark	\checkmark		00H
FFFFD86H	IIC status register 0	IICS0	R	\checkmark	\checkmark		00H
FFFFD8AH	IIC flag register 0	IICF0	R/W	\checkmark	\checkmark		00H
FFFFD90H	IIC shift register 1	IIC1			\checkmark		00H
FFFFFD92H	IIC control register 1	IICC1		\checkmark	\checkmark		00H
FFFFD93H	Slave address register 1	SVA1			\checkmark		00H
FFFFFD94H	IIC clock select register 1	IICCL1		\checkmark	\checkmark		00H
FFFFFD95H	IIC function expansion register 1	IICX1		\checkmark	\checkmark		00H
FFFFFD96H	IIC status register 1	IICS1	R	\checkmark	\checkmark		00H
FFFFFD9AH	IIC flag register 1	IICF1	R/W	\checkmark	\checkmark		00H
FFFFFDA0H	IIC shift register 2	IIC2			\checkmark		00H
FFFFFDA2H	IIC control register 2	IICC2		\checkmark	\checkmark		00H
FFFFDA3H	Slave address register 2	SVA2			\checkmark		00H
FFFFFDA4H	IIC clock select register 2	IICCL2		\checkmark	\checkmark		00H
FFFFDA5H	IIC function expansion register 2	IICX2		\checkmark	\checkmark		00H
FFFFDA6H	IIC status register 2	IICS2	R	\checkmark	\checkmark		00H
FFFFDAAH	IIC flag register 2	IICF2	R/W	\checkmark	\checkmark		00H
FFFFF40H	USB clock control register	UCKSEL		\checkmark	\checkmark		00H
FFFFFF41H	USB function control register	UFCKMSK		\checkmark	\checkmark		03H

5.9 Bus Timing

Typical bus timing diagrams are shown below.

7.4.1 Interval timer mode (TPnMD2 to TPnMD0 bits = 000)

In the interval timer mode, setting the TPnCTL0.TPnCE bit to 1 generates an interrupt request signal (INTTPnCC0) at a specified interval. Setting the TPnCE bit to 1 can also start the timer, which then outputs a square wave whose half cycle is equal to the interval from the TOPn0 pin.

Usually, the TPnCCR1 register is not used in the interval timer mode. Mask interrupts from this register by setting the interrupt mask flag (TPnCCMK1).

- Remarks 1. For how to set the TOPn0 pin, see Table 7-2 Pins Used by TMPn and Table 4-15 Settings When Pins Are Used for Alternate Functions.
 - 2. For how to enable the INTTPnCC0 interrupt signal, see CHAPTER 22 INTERRUPT SERVICING/ EXCEPTION PROCESSING FUNCTION.

Figure 7-6. Configuration of Interval Timer

Figure 7-7. Basic Timing of Operation in Interval Timer Mode

Figure 7-46. Register Settings in PWM Output Mode (2/2)

(d)	TMPn I/O	control r	egister 2	(TPnIOC	2)				
					TPnEES1	TPnEES0	TPnETS	1 TPnETS	0
TPnIOC2	0	0	0	0	0/1	0/1	0	0	
									-
									 These bits select the valid edge of the external trigger input.
(e)	TMPn cou The value	unter read of the 16-	buffer r obit counte	egister (T er can be	PnCNT) read by re	ading this	s register		
(f)	TMPn cap	oture/com	pare reg	isters 0 a	ind 1 (TPi	nCCR0 ar	nd TPnC	CR1)	
	If the TPr	nCCR0 re	gister is s	set to Do	and the T	PnCCR1	register	is set to	D1, the PWM waveform is as
	follows:								
	PWM w PWM w	aveform c aveform a	ycle = (Do ctive leve	9 + 1) × Co I width = I	ount clock D1 × Coun	cycle t clock cy	cle		
	Remark	TMPn I/0 the P	ວ control WM outpເ	register 1 ut mode.	(TPnIOC	1) and TN	/IPn optic	on registe	r 0 (TPnOPT0) are not used in

(1) Basic counter operation

The basic operation of the 16-bit counter is described below. For more details, see the descriptions of each operating mode.

(a) Starting counting

TMQ0 starts counting from FFFFH in all operating modes, and increments as follows: FFFFH, 0000H, 0001H, 0002H, 0003H....

(b) Clearing TMQ0

TMQ0 is cleared to 0000H when its value matches the value of the compare register or when the value of TMQ0 is captured upon the input of a valid capture trigger signal.

Note that when TMQ0 increments from FFFFH to 0000H after it starts counting and immediately following an overflow, it does not mean that TMQ0 has been cleared. Consequently, the INTTQ0CCm interrupt is not generated in this case (m = 0 to 3).

(c) Overflow

TMQ0 overflows after it increments from FFFFH to 0000H in free-running timer mode and pulse width measurement mode. An overflow sets the TQ0OPT0.TQ0OVF bit to 1 and generates an interrupt request signal (INTTQ0OV). Note that INTTQ0OV will not be generated in the following cases:

- When TMQ0 has just started counting.
- When the compare value at which TMQ0 is cleared is specified as FFFFH.
- In pulse width measurement mode, when TMQ0 increments from FFFFH to 0000H after being cleared when its value of FFFFH was captured.

Caution After the INTTQ0OV overflow interrupt request signal occurs, be sure to confirm that the overflow flag (TQ0OVF) is set to 1.

(d) Reading TMQ0 while it is incrementing

TMQ0 can be read while it is incrementing by using the TQ0CNT register.

Specifically, the value of TMQ0 can be read by reading the TQ0CNT register while the TQ0CLT0.TQ0CE bit is 1. Note, however, that when the TQ0CLT0.TQ0CE bit is 0, the value of TMQ0 is always FFFFH and the value of the TQ0CNT register is always 0000H.

(c) Operation of TQ0CCR1 to TQ0CCR3 registers

The TQ0CCR1 to TQ0CCR3 registers are configured as follows in the external event count mode.

(1) Operations in PWM output mode

Figure 8-47. Timing and Processing of Operations in PWM Output Mode (1/2)

	TQ0	OL3	TQ0OE3	TQ0OL2	TQ0OE2	TQ0OL1	TQ0OE1	TQ0OL0	TQ0OE0	
000100	0/1	Note	0/1 ^{Note}	0/1 ^{Note}	0/1 ^{Note}	0/1 ^{Note}	0/1 ^{Note}	0/1 ^{Note}	0/1 ^{Note}	
										0: Disable TOQ00 pin output. 1: Enable TOQ00 pin output.
										Output level when TOQ00 pin is disabled: 0: Low level 1: High level
										0: Disable TOQ01 pin output. 1: Enable TOQ01 pin output.
										Output level when TOQ01 pin is disabled: 0: Low level 1: High level
										0: Disable TOQ02 pin output. 1: Enable TOQ02 pin output.
										Output level when TOQ02 pin is disabled: 0: Low level 1: High level
										0: Disable TOQ03 pin output
										1. Enable 10005 pin output.
										Output level when TOQ03 pin is disabled: 0: Low level 1: High level
ז ו (d) 1	Note Rema TMQ(The ark 0 I/O	e TOQ0m m = 0 to control r	pin canno 3 egister 1	ot be used (TQ0IOC	d when the	TIQ0m p	in is being	g used.	Output level when TOQ03 pin is disabled: 0: Low level 1: High level
1 1 (d)	Note Rema TMQ(The ark 0 I/O 0157	 TOQ0m m = 0 to control r TQ0IS6 0/1 	pin canno 3 register 1 TQ0IS5	ot be used (TQ0IOC TQ0IS4	1) TQ0IS3	TIQ0m p TQ0IS2	in is being TQ0IS1	g used. TQ0IS0	Output level when TOQ03 pin is disabled: 0: Low level 1: High level
ז (d) ד 1000C1	Note Rema TMQ(TQ(The ark 0 I/O 01S7 /1	e TOQ0m m = 0 to control r TQ0IS6 0/1	pin canno 3 egister 1 TQ0IS5 0/1	ot be used (TQ0IOC TQ0IS4 0/1	1 when the 1) TQ0IS3 0/1	TIQ0m p TQ0IS2 0/1	in is being TQ0IS1 0/1	g used. TQ0IS0 0/1	Output level when TOQ03 pin is disabled: 0: Low level 1: High level
ן (d) ד 000C1	Note Rema TMQ(TQC	The ark 0 1/O 0157	e TOQ0m m = 0 to control r TQ0IS6 0/1	pin canno 3 egister 1 TQ0IS5 0/1	ot be used (TQ0IOC TQ0IS4 0/1	d when the 1) TQ0IS3 0/1	TIQ0m p TQ0IS2 0/1	in is being TQ0IS1 0/1	g used. TQ0IS0 0/1	These bits select the valid
ן (d) 1 00OC1	Note Rema TMQ(TQ(0,	The ark 0 I/O DIS7 /1	e TOQ0m m = 0 to control r TQ0IS6 0/1	pin canno 3 egister 1 TQ0IS5 0/1	ot be used (TQ0IOC TQ0IS4 0/1	d when the 1) TQ0IS3 0/1	TIQ0m p TQ0IS2 0/1	in is being TQ0IS1 0/1	g used. TQ0IS0 0/1	These bits select the valid edge of the TIQ00 pin input.
ן (d) 1 00OC1	Note Rema TMQ(TQ(0,	The ark 0 I/O 01S7 /1	e TOQ0m m = 0 to control r TQ0IS6 0/1	pin canno 3 egister 1 TQ0IS5 0/1	ot be used (TQ0IOC TQ0IS4 0/1	d when the 1) TQ0IS3 0/1	TIQ0m p TQ0IS2 0/1	in is being TQ0IS1 0/1	g used. TQ0IS0 0/1	These bits select the valid edge of the TIQ00 pin input.
ן (d) 1 000C1	Note Rema TMQ(TQC 0,	The ark 0 I/O 01S7	e TOQ0m m = 0 to control r TQ0IS6 0/1	pin canno 3 egister 1 TQ0IS5 0/1	ot be used (TQ0IOC TQ0IS4 0/1	d when the 1) TQ0IS3 0/1	TIQ0m p TQ0IS2 0/1	in is being TQ0IS1 0/1	g used. TQ0IS0 0/1	These bits select the valid edge of the TIQ00 pin input.

Figure 8-55. Register Settings in Free-Running Timer Mode (2/3)

16.4 Registers

(1) UARTAn control register 0 (UAnCTL0)

The UAnCTL0 register is an 8-bit register that controls the UARTAn serial transfer operation. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 10H.

After re	eset: 10H	R/W A	Address: U U U	A0CTL0 FI A2CTL0 FI A4CTL0 FI	FFFA00H FFFFA20H FFFFA40H	, UA1CTL0 , UA3CTL0 , UA5CTL0	FFFFFA1 FFFFFA3 FFFFFA5	10H, 30H, 50H
	<7>	<6>	<5>	<4>	3	2	1	0
UAnCTL0	UAnPWR	UAnTXE	UAnRXE	UAnDIR	UAnPS1	UAnPS0	UAnCL	UAnSL
(n = 0 to 5)								
	UAnPWR			UARTA	n operatio	n control		
	0	Disable U	ARTAn ope	eration (UA	RTAn rese	t asynchroi	nously)	
	1	Enable U	ARTAn ope	eration				
	The UAR is fixed to UAnOPT	FAn operat high level).UAnTDL	tion is contr by clearing bit = 1).	olled by the the UAnP	e UAnPWF WR bit to 0	l bit. The T (fixed to lo	XDAn pin w level if	output
	UAnTXE			Transmiss	sion operat	ion enable		
	0	Disable tr	ansmission	operation				
	1	Enable tra	ansmission	operation				
	 To start To stop To initia the base may not When U to 1, tran elapsed 	transmissi transmissi lize the tra clock, and be execut ARTAn op nsmission	on, set the on, clear th nsmission u d then set t ed (for the eration is e is enabled	UAnPWR I e UAnTXE unit, clear ti he UAnTXI base clock nabled (UA after at leas	bit to 1 and bit to 0 and he UAnTXI E bit to 1 ag see 16.7 (AnPWR bit st two cycle	then set th d then UAn E bit to 0, w gain. Other (1) (a) Base = 1) and th es of the ba	e UAnTXE PWR bit to rait for two rwise, initia e clock). e UAnTXE se clock (f	E bit to 1. o 0. cycles of alization E bit is set fucLK) have
	UAnRXE			Reception	on operatio	n enable		
	0	Disable re	eception op	eration				
	1	Enable re	ception ope	eration				
	To start To stop To initia the base may not When U to 1, rec elapsed ignored	reception, reception, lize the rec clock, and be execut ARTAn op eption is e	set the UA clear the U ception unit d then set t ed (for the eration is e nabled afte bit is receiv	nPWR bit t AnRXE bit , clear the t he UAnRX base clock nabled (UA r at least tw red before	o 1 and the to 0 and th JAnRXE bi E bit to 1 a see 16.7 (AnPWR bit vo cycles o reception is	en set the U ten UAnPW it to 0, wait gain. Othe (1) (a) Base = 1) and th of the base of s enabled, t	IAnRXE bi IR bit to 0. for two cy rwise, initia c clock). e UAnRXE clock (fucu he start bi	it to 1. cles of alization E bit is set k) have t is

16.6.8 SBF transmission

When the UAnCTL0.UAnPWR bit and UAnCTL0.UAnTXE bit are 1, the transmission enabled status is entered, and SBF transmission is started by setting the SBF transmission trigger (UAnOPT0.UAnSTT bit) to 1.

Thereafter, a low level signal having a length of 13 to 20 bits, as specified by the UAnOPT0.UAnSLS2 to AnOPT0.UAnSLS0 bits, is output. A transmission enable interrupt request signal (INTUAnT) is generated upon the start of SBF transmission. Following the end of SBF transmission, the UAnSTT bit is automatically cleared.

Transmission is suspended until the data to be transmitted next is written to the UAnTX register, or until the SBF transmission trigger (UAnSTT bit) is set.

Figure 16-13. Example of SBF Transmission

(4) Baud rate

The baud rate is obtained by the following equation.

Baud rate = $\frac{f_{XX}}{2^{m+1} \times k}$ [bps]RemarkfucLk = Frequency of base clock selected by the UC0CTL1.UC0CKS3 to UC0CTL1.UC0CKS0 bits
fxx: Main clock frequency
m = Value set using the UC0CTL1.UC0CKS3 to UC0CTL1.UC0CKS0 bits (m = 0 to 10)
k = Value set using the UC0CTL2.UC0BRS7 to UC0CTL2.UC0BRS0 bits (k = 4 to 255)

The baud rate error is obtained by the following equation.

Therefore, the maximum baud rate that can be received by the destination is as follows.

BRmax =
$$(FLmin/11)^{-1} = \frac{22k}{21k + 2}$$
 Brate

Similarly, obtaining the maximum allowable data frame length yields the following.

$$\frac{10}{11} \times FLmax = 11 \times BL - \frac{k+2}{2 \times k} \times BL = \frac{21k-2}{2 \times k} BL$$

$$FLmax = \frac{21k - 2}{20 k} BL \times 11$$

Therefore, the minimum baud rate that can be received by the destination is as follows.

BRmin =
$$(FLmax/11)^{-1} = \frac{20k}{21k - 2}$$
 Brate

Obtaining the allowable baud rate error for UARTC0 and the destination from the above-described equations yields the following.

Division Ratio (k)	Maximum Allowable Baud Rate Error	Minimum Allowable Baud Rate Error
4	+2.32%	-2.43%
8	+3.53%	-3.61%
20	+4.26%	-4.31%
50	+4.56%	-4.58%
100	+4.66%	-4.67%
255	+4.72%	-4.73%

Table 17-8. Maximum/Minimum Allowable Baud Rate Error (11-Bit Length)

Remarks 1. The reception accuracy depends on the bit count in 1 frame, the base clock frequency (fUCLK), and the division ratio (k). The higher the base clock frequency (fUCLK) and the larger the division ratio (k), the higher the accuracy.

2. k: Setting value of UC0CTL2.UC0BRS7 to UC0CTL2.UC0BRS0 bits (n = 0 to 2)

18.3.2 CSIB4 and UARTA0 mode switching

In the V850ES/JG3-L, CSIB4 and UARTA0 share pins and therefore cannot be used simultaneously. To use the CSIB4 function, specify the CSIB4 mode in advance by using the PMC3, PFC3, and PFCE3L registers.

Switching the operation mode between CSIB4 and UARTA0 is described below.

Caution Transmission and reception by CSIB4 and UARTA0 are not guaranteed if these operation modes are switched during transmission or reception. Be sure to disable the serial interface that is not being used.

	set: 0000H	R/W	Address	: FFFFF44	6H, FFFF	-447H		
	15	14	13	12	11	10	9	8
PMC3	0	0	0	0	0	0	PMC39	PMC38
	7	6	5	4	3	2	1	0
	0	0	PMC35	PMC34	PMC33	PMC32	PMC31	PMC30
After res	et: 0000H	R/W	Address:	FFFFF46	6H, FFFF	467H		
	15	14	13	12	11	10	9	8
PFC3	0	0	0	0	0	0	PFC39	PFC38
	7	6	5	4	3	2	1	0
	0	0	PFC35	PFC34	PFC33	PFC32	PFC31	PFC30
PFCE3L	7 0	6 0	5 0	4 0	3 0	2 PFCE32	1 0	0 0
	PMC32	PFCE32	PFC32		O	peration mo	ode	
	0	×	×	Port I/O m				
	-		~	FUILIOII	ode			
	1	0	0	ASCKA0	node mode			
	1	0 0	0	ASCKA0	node mode ode			
	1 1 PMC3n	0 0 PFC3n	0	ASCKA0	node mode ode Operatio	n mode		
	1 1 PMC3n 0	0 0 PFC3n ×	0 1 Port I/O m	ASCKA0	node node ode Operatio	n mode		
	1 1 PMC3n 0 1	0 0 PFC3n × 0	0 1 Port I/O m UARTA0 r	ASCKA0 SCKB4 m ode node	ode node ode Operatio	n mode		
	1 1 PMC3n 0 1 1	0 0 PFC3n × 0 1	0 1 Port I/O m UARTA0 r CSIB4 mo	ASCKA0 I SCKB4 m ode node de	iode mode ode Operatio	n mode		

Figure 18-3. Switching CSIB4 and UARTA0 Operation Modes

(3) IIC flag registers 0 to 2 (IICF0 to IICF2)

The IICFn register sets the I²C0n operation mode and indicates the I²C bus status.

These registers can be read or written in 8-bit or 1-bit units. However, the STCFn and IICBSYn bits are read-only.

IICRSVn enables/disables the communication reservation function (see **19.14 Communication Reservation**).

The initial value of the IICBSYn bit is set by using the STCENn bit (see 19.15 Cautions).

The IICRSVn and STCENn bits can be written only when operation of I^2C0n is disabled (IICCn.IICEn bit = 0). After operation is enabled, IICFn can be read (n = 0 to 2).

Reset sets these registers to 00H.

19.6.7 Wait state cancellation method

In the case of l^2C0n , a wait state can be canceled normally in the following ways (n = 0 to 2).

- By writing data to the IICn register
- By setting the IICCn.WRELn bit to 1 (wait state cancellation)
- By setting the IICCn.STTn bit to 1 (start condition generation)
- By setting the IICCn.SPTn bit to 1 (stop condition generation)

If any of these wait state cancellation actions is performed, I²C0n will cancel the wait state and restart communication. When canceling the wait state and sending data (including addresses), write data to the IICn register.

To receive data after canceling the wait state, or to complete data transmission, set the WRELn bit to 1.

To generate a restart condition after canceling the wait state, set the STTn bit to 1.

To generate a stop condition after canceling the wait state, set the SPTn bit to 1.

Cancel each wait state only once.

For example, if data is written to the IICn register following wait state cancellation by setting the WRELn bit to 1, a conflict between the SDA0n line change timing and the IICn register write timing may result in the data output to the SDA0n line being incorrect.

Even in other operations, if communication is stopped halfway, clearing the IICCn.IICEn bit to 0 will stop communication, enabling the wait state to be cancelled.

If the I²C bus deadlocks due to noise, etc., setting the IICCn.LRELn bit to 1 causes the communication to stop, enabling the wait state to be cancelled.

(4) Regulator protection register (REGPR)

The REGPR register is used to protect the regulator output voltage level control register 0 (REGOVL0) so that illegal data is not written to REGOVL0. Data cannot be written to the REGOVL0 register unless enabling data (C9H) is written to the REGPR register. Only two types of data, C9H (enabling data) and 00H (protection data), can be written to the REGPR register. Writing any other value is prohibited. (If a value other than C9H or 00H is written to the REGPR register, the written value is set to prohibit a write access to the REGOVL0 register, but the operation is not guaranteed.)

This register can be read or written only in 8-bit units (accessing it in 1-bit units is prohibited). Reset sets this register to 00H (protection data status).

After res	et: 00H	R/W	Address: F	FFFF331H	I				
	7	6	5	4	3	2	1	0	
REGPR	PR7	PR6	PR5	PR4	PR3	PR2	PR1	PR0	
 Protection data In this status, a status, a value REGOVL0 regis Be sure to set avoid unexpector 	a status: the REG(is not wi ster holds REGPR ed malfun	REGPR = DVL0 reginstruction to the previous to 00H, execution.	: 00H ster is pr ne REGO ous value. xcept who	otected fr VL0 regis en changi	om an ille ter even ng the va	egal write if an atte alue of the	e access. mpt is ma e REGOV	In the pr ade to wri /L0 registe	rotection ite it, and er, in ord
Enabling data	status: H	EGPK = (C9H						
 Enabling data In this status, a 	write acc	ess to the	REGOVL	_0 register	is enable	ed.			
 Enabling data In this status, a Transition from 	status: H write acc m normal	ess to the mode \rightarrow	REGOVL	_0 register je STOP r	[.] is enable node	ed.			
 Enabling data In this status, a Transition from See 24.6.1 S 	status: H write acc m normal Setting ar	ess to the mode → nd operat	REGOVL low-voltag	₋0 register ge STOP r s.	[,] is enable node	ed.			
 Enabling data In this status, a Transition from See 24.6.1 S Transition of s 	status: H write acc m normal Setting ar subclock o	ess to the mode \rightarrow nd operat	REGOVL low-voltage ion statue mode \rightarrow l	₋0 register ge STOP r s. ow-voltag	[,] is enable node e subcloc	ed. k operatic	on mode		
 Enabling data In this status, a Transition from See 24.6.1 S Transition of s See 24.7.1 S 	status: H write acc m normal Setting ar subclock o Setting ar	ess to the mode → nd operat operation nd operat	REGOVL low-voltage ion statue mode \rightarrow l	_0 register ge STOP r s. ow-voltag s.	[,] is enable node e subcloc	ed. k operatic	on mode		
 Enabling data In this status, a Transition from See 24.6.1 S Transition of s See 24.7.1 S Transition of s 	status: H write acc m normal Setting ar subclock (Setting ar subclock (ess to the mode → nd operat operation nd operat operation	REGOVL low-voltag ion status mode → I ion status mode → I	_0 register ge STOP r s. ow-voltag s. ow-voltag	⁻ is enable node e subcloc e sub-IDL	ed. k operatic .E mode	on mode		

(3) CSIB0 + HS, CSIB3 + HS

Serial clock: 2.4 kHz to 5 MHz (MSB first) The V850ES/JG3-L operates as a slave.

FLMD0	FLMD1	Operation Mode
0	Don't care	Normal operation mode
Vdd	0	Flash memory programming mode
Vdd	Vdd	Setting prohibited

Table 31-8. Relationship Between FLMD0 and FLMD1 Pins and Operation Mode Immediately After Reset Ends

(3) Serial interface pin

The following shows the pins used by each serial interface.

Serial Interface	Pins Used
UARTA0	TXDA0, RXDA0
CSIB0	SOB0, SIB0, SCKB0
CSIB3	SOB3, SIB3, SCKB3
CSIB0 + HS	SOB0, SIB0, SCKB0, PCM0
CSIB3 + HS	SOB3, SIB3, SCKB3, PCM0

Table 31-9.	Pins Used by	Serial Interfaces
-------------	--------------	-------------------

When connecting a dedicated flash memory programmer to a serial interface pin that is connected to another device on-board, care should be taken to avoid conflict of signals and malfunction of the other device.

(a) Conflict of signals

When the dedicated flash memory programmer (output) is connected to a serial interface pin (input) that is connected to another device (output), a conflict of signals occurs. To avoid the conflict of signals, isolate the connection to the other device or set the other device to the output high-impedance status.

32.2.3 Allocation of user resources

The user must prepare the following resources to perform communication between MINICUBE2 and the target device and implement each debug function. These items need to be set in the user program or using the compiler options.

(1) Allocation of memory space

The shaded portions in Figure 32-5 are the areas reserved for placing the debug monitor program, so user programs and data cannot be allocated to these spaces. These spaces must be secured so as not to be used by the user program.

(2) Security ID setting

The ID code must be embedded in the area between 0000070H and 0000079H in Figure 32-5, to prevent the memory from being read by an unauthorized person. For details, see **32.3 ROM Security Function**.

D.2 Instruction Set (in Alphabetical Order)

Mnemonic	Operand	Opcode	Operation		Ex	ecut	ion	Flags					
					;	Cloci	k L	cv	OV	9	7	SAT	
⊿חח	reg1 reg2	rrrr001110BBBBB	GB[reg2]_GB[reg2]+GB[reg1]		1	1	1	v	~	5 ×	~		
ABB	imm5 reg2		GR[reg2]←GR[reg2]+sign-extend(imm5)			1	1	×	×	×	×		
ADDI	imm16,reg1,reg2	rrrr110000RRRR	GR[reg2]←GR[reg1]+sign-extend(imm16)			1	1	×	×	×	×		
AND	reg1,reg2	rrrr001010RRRRR	GR[reg2]←GR[reg2]AND GR[reg1]	1	1	1		0	×	×			
ANDI	imm16,reg1,reg2	rrrrr110110RRRRR	GR[reg2]←GR[reg1]AND zero-exte	1	1	1		0	×	×			
Bcond	disp9	ddddd1011dddcccc Note 1	if conditions are satisfied then PC←PC+sign-extend(disp9)	When conditions are satisfied	2 Note 2	2 Note 2	2 Note 2						
				When conditions are not satisfied	1	1	1						
BSH	reg2,reg3	rrrr11111100000 wwwww01101000010	GR[reg3]←GR[reg2] (23 : 16) II GR GR[reg2] (7 : 0) II GR[reg2] (15 : 8)	[reg2] (31 : 24) II	1	1	1	×	0	×	×		
BSW	reg2,reg3	rrrr11111100000 wwww01101000000	GR[reg3]←GR[reg2] (7 : 0) II GR[re [reg2] (23 : 16) II GR[reg2] (31 : 24)	g2] (15 : 8) ll GR	1	1	1	×	0	×	×		
CALLT	imm6	000000100011111	CTPC←PC+2(return PC) CTPSW←PSW adr←CTBP+zero-extend(imm6 logic PC←CTBP+zero-extend(Load-mem	CTPC←PC+2(return PC) CTPSW←PSW adr←CTBP+zero-extend(imm6 logically shift left by 1)			4						
CLR1	bit#3,disp16[reg1]	10bbb111110RRRRR ddddddddddddddd	adr←GR[reg1]+sign-extend(disp16 Z flag←Not(Load-memory-bit(adr,b Store-memory-bit(adr,bit#3,0)	3 Note 3	3 Note 3	3 Note 3				×			
	reg2,[reg1]	rrrr111111RRRRR 0000000011100100	adr←GR[reg1] Z flag←Not(Load-memory-bit(adr,re Store-memory-bit(adr,reg2,0)	3 Note 3	3 Note 3	3 Note 3	6			×			
CMOV	cccc,imm5,reg2,reg3	rrrrr111111iiii wwwww011000cccc0	if conditions are satisfied then GR[reg3]←sign-extended(imm else GR[reg3]←GR[reg2]	15)	1	1	1						
	cccc,reg1,reg2,reg3	rrrrr111111RRRR wwwww011001cccc0	if conditions are satisfied then GR[reg3]←GR[reg1] else GR[reg3]←GR[reg2]		1	1	1						
CMP	reg1,reg2	rrrrr001111RRRRR	result←GR[reg2]–GR[reg1]		1	1	1	×	×	×	×		
	imm5,reg2	rrrrr010011iiiii	result←GR[reg2]–sign-extend(imm	5)	1	1	1	×	×	×	×		
CTRET		0000011111100000 0000000101000100	PC←CTPC PSW←CTPSW		3	3	3	R	R	R	R	R	
DBRET		0000011111100000 0000000101000110	PC←DBPC PSW←DBPSW		3	3	3	R	R	R	R	R	