

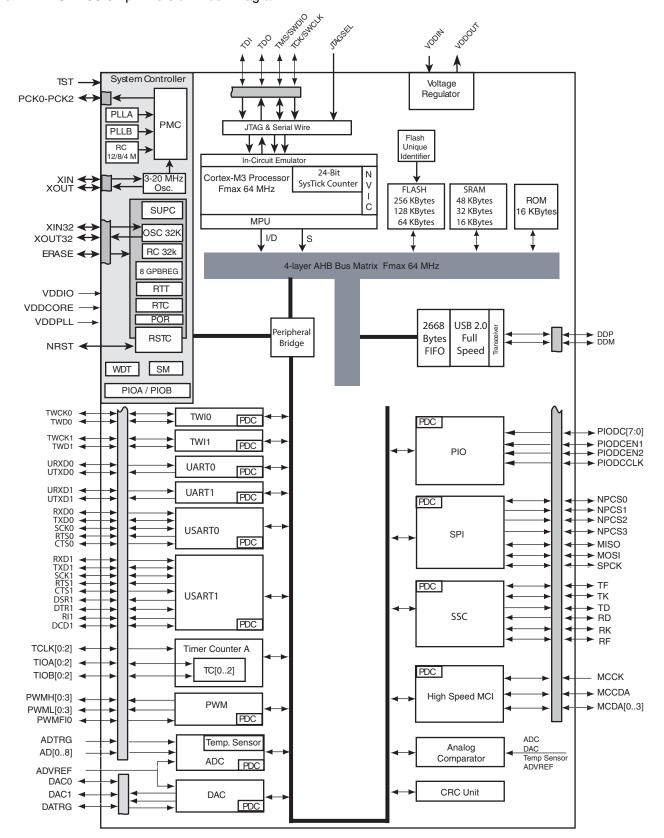
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Obsolete
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	EBI/EMI, I ² C, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	79
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 15x10/12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam3s1ca-cur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-2. SAM3S 64-pin Version Block Diagram

4

3. Signal Description

Table 3-1 gives details on the signal names classified by peripheral.

Table 3-1.	Signal Description List
------------	-------------------------

Signal Name	Function	Туре	Active Level	Voltage reference	Comments
	Power	Supplies			
VDDIO	Peripherals I/O Lines and USB transceiver Power Supply	Power			1.62V to 3.6V
VDDIN	Voltage Regulator Input, ADC, DAC and Analog Comparator Power Supply				1.8V to 3.6V ⁽⁴⁾
VDDOUT	Voltage Regulator Output	Power			1.8V Output
VDDPLL	Oscillator and PLL Power Supply	Power			1.62 V to 1.95V
VDDCORE	Power the core, the embedded memories and the peripherals	Power			1.62V to 1.95V
GND	Ground	Ground			
	Clocks, Oscilla	ators and PLI	_S		
XIN	Main Oscillator Input	Input			Reset State:
XOUT	Main Oscillator Output	Output			- PIO Input
XIN32	Slow Clock Oscillator Input	Input			- Internal Pull-up disabled
XOUT32	Slow Clock Oscillator Output	Output		VDDIO	- Schmitt Trigger enabled ⁽¹⁾
PCK0 - PCK2	Programmable Clock Output	Output			Reset State: - PIO Input - Internal Pull-up enabled - Schmitt Trigger enabled ⁽¹⁾
	Serial Wire/JTAG D	ebug Port - S	WJ-DP		
TCK/SWCLK	Test Clock/Serial Wire Clock	Input			
TDI	Test Data In	Input			Reset State: - SWJ-DP Mode
TDO/TRACESWO	Test Data Out / Trace Asynchronous Data Out	Output		VDDIO	 Internal pull-up disabled Schmitt Trigger enabled⁽¹⁾
TMS/SWDIO	Test Mode Select /Serial Wire Input/Output	Input / I/O		_	
JTAGSEL	JTAG Selection	Input	High		Permanent Internal pull-down
	Flash M	lemory			
ERASE	SE Flash and NVM Configuration Bits Erase Input High VDDIO		VDDIO	Reset State: - Erase Input - Internal pull-down enabled - Schmitt Trigger enabled ⁽¹⁾	
	Rese	t/Test			
NRST	Synchronous Microcontroller Reset	I/O	Low	VDDIO	Permanent Internal pull-up
TST	Test Select	Input			Permanent Internal pull-down

Signal Name	Function	Туре	Active Level	Voltage reference	Comments			
	Fast Flash Programming Interface - FFPI							
PGMEN0-PGMEN2	Programming Enabling	Input		VDDIO				
PGMM0-PGMM3	Programming Mode	Input						
PGMD0-PGMD15	Programming Data	I/O						
PGMRDY	Programming Ready	Output	High					
PGMNVALID	Data Direction	Output	Low	VDDIO				
PGMNOE	Programming Read	Input	Low					
PGMCK	Programming Clock	Input						
PGMNCMD	Programming Command	Input	Low					
	USB Full Speed Device							
DDM	USB Full Speed Data -	Angles			Reset State:			
DDP	USB Full Speed Data +	Analog, Digital		VDDIO	- USB Mode - Internal Pull-down ⁽³⁾			

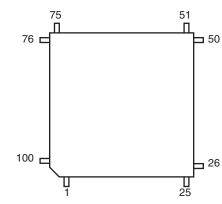
Table 3-1. Signal Description List (Continued)

Notes: 1. Schmitt Triggers can be disabled through PIO registers.

2. Some PIO lines are shared with System IOs.

3. Refer to the USB sub section in the product Electrical Characteristics Section for Pull-down value in USB Mode.

4. See Section 5.3 "Typical Powering Schematics" for restriction on voltage range of Analog Cells.


4. Package and Pinout

4.1 SAM3S4/2/1C Package and Pinout

Figure 4-2 shows the orientation of the 100-ball LFBGA Package

4.1.1 100-lead LQFP Package Outline

Figure 4-1. Orientation of the 100-lead LQFP Package

4.1.2 100-ball LFBGA Package Outline

The 100-Ball LFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its dimensions are $9 \times 9 \times 1.1$ mm.

Figure 4-2. Orientation of the 100-BALL LFBGA Package

			-	TO	ΡV	IEV	V			
10	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0
1	o°	0	0	0	0	0	0	0	0	0
	A	В	С	D	Е	F	G	Н	J	Κ
BALL	_ A1									

4.1.3 100-Lead LQFP Pinout

1	ADVREF				
2	GND				
3	PB0/AD4				
4	PC29/AD13				
5	PB1/AD5				
6	PC30/AD14				
7	PB2/AD6				
8	PC31				
9	PB3/AD7				
10	VDDIN				
11	VDDOUT				
12	PA17/PGMD5/AD0				
13	PC26				
14	PA18/PGMD6/AD1				
15	PA21/PGMD9/AD8				
16	VDDCORE				
17	PC27				
18	PA19/PGMD7/AD2				
19	PC15/AD11				
20	PA22/PGMD10/AD9				
21	PC13/AD10				
22	PA23/PGMD1				
23	PC12/AD12				
24	PA20/PGMD8/AD3				
25	PC0				

 Table 4-1.
 100-lead LQFP SAM3S4/2/1C Pinout

26	GND				
27	VDDIO				
28	PA16/PGMD4				
29	PC7				
30	PA15/PGMD3				
31	PA14/PGMD2				
32	PC6				
33	PA13/PGMD1				
34	PA24/PGMD12				
35	PC5				
36	VDDCORE				
37	PC4				
38	PA25/PGMD13				
39	PA26/PGMD14				
40	PC3				
41	PA12/PGMD0				
42	PA11/PGMM3				
43	PC2				
44	PA10/PGMM2				
45	GND				
46	PA9/PGMM1				
47	PC1				
48	PA8/XOUT32/ PGMM0				
49	PA7/XIN32/ PGMNVALID				
50	VDDIO				

51	TDI/PB4				
52	PA6/PGMNOE				
53	PA5/PGMRDY				
54	PC28				
55	PA4/PGMNCMD				
56	VDDCORE				
57	PA27/PGMD15				
58	PC8				
59	PA28				
60	NRST				
61	TST				
62	PC9				
63	PA29				
64	PA30				
65	PC10				
66	PA3				
67	PA2/PGMEN2				
68	PC11				
69	VDDIO				
70	GND				
71	PC14				
72	PA1/PGMEN1				
73	PC16				
74	PA0/PGMEN0				
75	PC17				

76	TDO/TRACESWO/PE 5			
77	JTAGSEL			
78	PC18			
79	TMS/SWDIO/PB6			
80	PC19			
81	PA31			
82	PC20			
83	TCK/SWCLK/PB7			
84	PC21			
85	VDDCORE			
86	PC22			
87	ERASE/PB12			
88	DDM/PB10			
89	DDP/PB11			
90	PC23			
91	VDDIO			
92	PC24			
93	PB13/DAC0			
94	PC25			
95	GND			
96	PB8/XOUT			
97	PB9/PGMCK/XIN			
98	VDDIO			
99	PB14/DAC1			
100	VDDPLL			

4.2.1 64-Lead LQFP and QFN Pinout

64-pin version SAM3S devices are pin-to-pin compatible with AT91SAM7S legacy products. Furthermore, SAM3S products have new functionalities shown in italic in Table 4-3.

		-					
1	ADVREF	17	GND	33	TDI/PB4	49	TDO/TRACESWO/PB5
2	GND	18	VDDIO	34	PA6/PGMNOE	50	JTAGSEL
3	PB0/AD4	19	PA16/PGMD4	35	PA5/PGMRDY	51	TMS/SWDIO/PB6
4	PB1/AD5	20	PA15/PGMD3	36	PA4/PGMNCMD	52	PA31
5	PB2/AD6	21	PA14/PGMD2	37	PA27/PGMD15	53	TCK/SWCLK/PB7
6	PB3/AD7	22	PA13/PGMD1	38	PA28	54	VDDCORE
7	VDDIN	23	PA24/PGMD12	39	NRST	55	ERASE/PB12
8	VDDOUT	24	VDDCORE	40	TST	56	DDM/PB10
9	PA17/PGMD5/ AD <i>0</i>	25	PA25/PGMD13	41	PA29	57	DDP/PB11
10	PA18/PGMD6/ AD1	26	PA26/PGMD14	42	PA30	58	VDDIO
11	PA21/PGMD9/ AD8	27	PA12/PGMD0	43	PA3	59	PB13/DAC0
12	VDDCORE	28	PA11/PGMM3	44	PA2/PGMEN2	60	GND
13	PA19/PGMD7/ AD2	29	PA10/PGMM2	45	VDDIO	61	XOUT/PB8
14	PA22/PGMD10/ AD9	30	PA9/PGMM1	46	GND	62	XIN/PGMCK/PB9
15	PA23/PGMD11	31	PA8/ <i>XOUT32/</i> PGMM0	47	PA1/PGMEN1	63	PB14/DAC1
16	PA20/PGMD8/ AD3	32	PA7/ <i>XIN32/</i> PGMNVALID	48	PA0/PGMEN0	64	VDDPLL

Table 4-3.64-pin SAM3S4/2/1B Pinout

Note: The bottom pad of the QFN package must be connected to ground.

4.3 SAM3S4/2/1A Package and Pinout

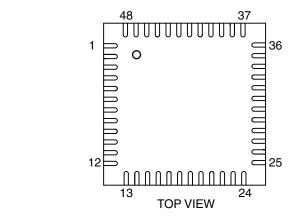
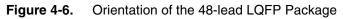
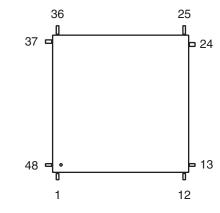




Figure 4-5. Orientation of the 48-pad QFN Package

- WKUPEN0-15 pins (level transition, configurable debouncing)
- Supply Monitor alarm
- RTC alarm
- RTT alarm

5.5.2 Wait Mode

The purpose of the wait mode is to achieve very low power consumption while maintaining the whole device in a powered state for a startup time of less than 10 μ s. Current Consumption in Wait mode is typically 15 μ A (total current consumption) if the internal voltage regulator is used or 8 μ A if an external regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and memories power supplies are still powered. From this mode, a fast start up is available.

This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in PMC_FSMR). The Cortex-M3 is able to handle external events or internal events in order to wake-up the core (WFE). This is done by configuring the external lines WUP0-15 as fast startup wake-up pins (refer to Section 5.7 "Fast Startup"). RTC or RTT Alarm and USB wake-up events can be used to wake up the CPU (exit from WFE).

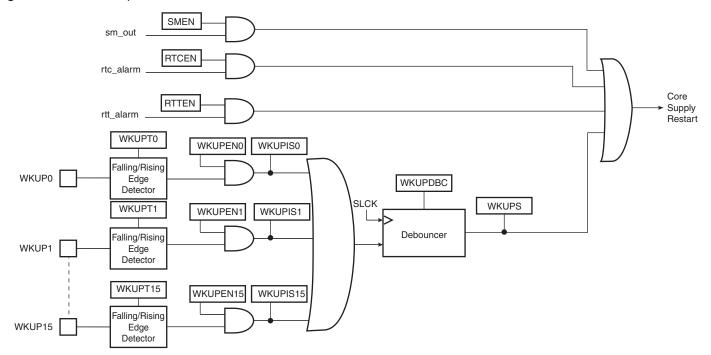
Entering Wait Mode:

- Select the 4/8/12 MHz fast RC oscillator as Main Clock
- Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)
- Execute the Wait-For-Event (WFE) instruction of the processor
- Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN bit and the effective entry in Wait mode. Depending on the user application, Waiting for MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired instructions.

5.5.3 Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is application dependent.

This mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with LPM = 0 in PMC_FSMR.


The processor can be woke up from an interrupt if WFI instruction of the Cortex M3 is used, or from an event if the WFE instruction is used to enter this mode.

5.6 Wake-up Sources

The wake-up events allow the device to exit the backup mode. When a wake-up event is detected, the Supply Controller performs a sequence which automatically reenables the core power supply and the SRAM power supply, if they are not already enabled.

Figure 5-4. Wake-up Source

SYSTEM_IO bit number	Default function after reset	Other function	Constraints for normal start	Configuration	
12	ERASE	PB12	Low Level at startup ⁽¹⁾		
10	DDM	PB10	-		
11	DDP	PB11	-	In Matrix User Interface Registers	
7	TCK/SWCLK	PB7	-	(Refer to the SystemIO Configuration Register in the Bus Matrix section of	
6	TMS/SWDIO	PB6	-	the product datasheet.)	
5	TDO/TRACESWO	PB5	-		
4	TDI	PB4	-		
-	PA7	XIN32	-		
-	PA8	XOUT32	-	See footnote ⁽²⁾ below	
-	PB9	XIN	-	On a factor sta (3) had sur	
-	PB8	XOUT	-	See footnote ⁽³⁾ below	

Table 6-1. System I/O Configuration Pin List.

Notes: 1. If PB12 is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the user application sets PB12 into PIO mode,

- 2. In the product Datasheet Refer to: Slow Clock Generator of the Supply Controller section.
- 3. In the product Datasheet Refer to: 3 to 20 MHZ Crystal Oscillator information in PMC section.

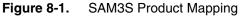
6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 3-1 on page 6.

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Please refer to the Debug and Test Section of the product datasheet.

SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins when the debug port is not needed in the end application. Mode selection between SWJ-DP mode (System IO mode) and general IO mode is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent pull-down resistor of about 15 k Ω to GND, so that it can be left unconnected for normal operations.


By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.


The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be used with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, please refer to the Debug and Test Section.

8. Product Mapping

9. Memories

9.1 Embedded Memories

9.1.1 Internal SRAM

The ATSAM3S4 product (256-Kbyte internal Flash version) embeds a total of 48 Kbytes high-speed SRAM.

The ATSAM3S2 product (128-Kbyte internal Flash version) embeds a total of 32 Kbytes highspeed SRAM.

The ATSAM3S1 product (64-Kbyte internal Flash version) embeds a total of 16 Kbytes high-speed SRAM.

The SRAM is accessible over System Cortex-M3 bus at address 0x2000 0000.

The SRAM is in the bit band region. The bit band alias region is mapped from 0x2200 0000 to 0x23FF FFFF.

9.1.2 Internal ROM

The SAM3S product embeds an Internal ROM, which contains the SAM Boot Assistant (SAM-BA), In Application Programming routines (IAP) and Fast Flash Programming Interface (FFPI).

At any time, the ROM is mapped at address 0x0080 0000.

9.1.3 Embedded Flash

9.1.3.1 Flash Overview

The Flash of the ATSAM3S4 (256-Kbytes internal Flash version) is organized in one bank of 1024 pages (Single plane) of 256 bytes.

The Flash of the ATSAM3S2 (128-Kbytes internal Flash version) is organized in one bank of 512 pages (Single plane) of 256 bytes.

The Flash of the ATSAM3S1 (64-Kbytes internal Flash version) is organized in one bank of 256 pages (Single plane) of 256 bytes.

The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.

9.1.3.2 Flash Power Supply

The Flash is supplied by VDDCORE.

9.1.3.3 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the masters of the system. It enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32bit internal bus. Its 128-bit wide memory interface increases performance.

The user can choose between high performance or lower current consumption by selecting either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

9.1.3.9 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered when TST and PA0 and PA1are tied low.

9.1.3.10 SAM-BA[®] Boot

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the UART and USB.

The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

9.1.3.11 GPNVM Bits

The SAM3S features two GPNVM bits that can be cleared or set respectively through the commands "Clear GPNVM Bit" and "Set GPNVM Bit" of the EEFC User Interface.

 Table 9-2.
 General Purpose Non-volatile Memory Bits

GPNVMBit[#]	Function
0	Security bit
1	Boot mode selection

9.1.4 Boot Strategies

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory layout can be changed via GPNVM.

A general-purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.

The GPNVM bit can be cleared or set respectively through the commands "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EEFC User Interface.

Setting GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM. Asserting ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by default.

9.2 External Memories

The SAM3S features an External Bus Interface to provide the interface to a wide range of external memories and to any parallel peripheral.

9.2.1 Static Memory Controller

- 8-bit Data Bus
- Up to 24-bit Address Bus (up to 16 MBytes linear per chip select)
- Up to 4 chip selects, Configurable Assignment
- Multiple Access Modes supported
 - Chip Select, Write enable or Read enable Control Mode

 Alarm register capable to generate a wake-up of the system through the Shut Down Controller

10.10 Real Time Clock

- Low power consumption
- Full asynchronous design
- Two hundred year calendar
- Programmable Periodic Interrupt
- Alarm and update parallel load
- Control of alarm and update Time/Calendar Data In

10.11 General Purpose Backup Registers

• Eight 32-bit general-purpose backup registers

10.12 Nested Vectored Interrupt Controller

- Thirty maskable external interrupts
- Sixteen priority levels
- Processor state automatically saved on interrupt entry, and restored on
- Dynamic reprioritization of interrupts
- Priority grouping.
 - selection of preempting interrupt levels and non-preempting interrupt levels.
- Support for tail-chaining and late arrival of interrupts.
 - back-to-back interrupt processing without the overhead of state saving and restoration between interrupts.
- Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead.

10.13 Chip Identification

• Chip Identifier (CHIPID) registers permit recognition of the device and its revision.

 Table 10-1.
 SAM3S Chip IDs Register

	Flash Size			
Chip Name	(KBytes)	Pin Count	DBGU_CIDR	CHIPID_EXID
ATSAM3S4A (Rev A)	256	48	0x28800960	0x0
ATSAM3S2A (Rev A)	128	48	0x288A0760	0x0
ATSAM3S1A (Rev A)	64	48	0x28890560	0x0
ATSAM3S4B (Rev A)	256	64	0x28900960	0x0
ATSAM3S2B (Rev A)	128	64	0x289A0760	0x0
ATSAM3S1B (Rev A)	64	64	0x28990560	0x0
ATSAM3S4C (Rev A)	256	100	0x28A00960	0x0
ATSAM3S2C (Rev A)	128	100	0x28AA0760	0x0
ATSAM3S1C (Rev A)	64	100	0x28A90560	0x0

• JTAG ID: 0x05B2D03F

11.2 Peripheral Signal Multiplexing on I/O Lines

The SAM3S product features 2 PIO controllers on 48-pin and 64-pin versions (PIOA, PIOB) or 3 PIO controllers on the 100-pin version, (PIOA, PIOB, PIOC), that multiplex the I/O lines of the peripheral set.

The SAM3S 64-pin and 100-pin PIO Controllers control up to 32 lines. (See, Table 10-2.) Each line can be assigned to one of three peripheral functions: A, B or C. The multiplexing tables in the following pages define how the I/O lines of the peripherals A, B and C are multiplexed on the PIO Controllers. The column "Comments" has been inserted in this table for the user's own comments; it may be used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

11.2.3 PIO Controller C Multiplexing

Table 11-4.	Multiplexing on	PIO Controller C	(PIOC)			
I/O Line	Peripheral A	Peripheral B	Peripheral C	Extra Function	System Function	Comments
PC0	D0	PWML0				100-pin version
PC1	D1	PWML1				100-pin version
PC2	D2	PWML2				100-pin version
PC3	D3	PWML3				100-pin version
PC4	D4	NPCS1				100-pin version
PC5	D5					100-pin version
PC6	D6					100-pin version
PC7	D7					100-pin version
PC8	NWE					100-pin version
PC9	NANDOE					100-pin version
PC10	NANDWE					100-pin version
PC11	NRD					100-pin version
PC12	NCS3			AD12		100-pin version
PC13	NWAIT	PWML0		AD10		100-pin version
PC14	NCS0					100-pin version
PC15	NCS1	PWML1		AD11		100-pin version
PC16	A21/NANDALE					100-pin version
PC17	A22/NANDCLE					100-pin version
PC18	A0	PWMH0				100-pin version
PC19	A1	PWMH1				100-pin version
PC20	A2	PWMH2				100-pin version
PC21	A3	PWMH3				100-pin version
PC22	A4	PWML3				100-pin version
PC23	A5	TIOA3				100-pin version
PC24	A6	TIOB3				100-pin version
PC25	A7	TCLK3				100-pin version
PC26	A8	TIOA4				100-pin version
PC27	A9	TIOB4				100-pin version
PC28	A10	TCLK4				100-pin version
PC29	A11	TIOA5		AD13		100-pin version
PC30	A12	TIOB5		AD14		100-pin version
PC31	A13	TCLK5				100-pin version

Table 11-4.Multiplexing on PIO Controller C (PIOC)

- Programmable Fault Input providing an asynchronous protection of outputs
- Stepper motor control (2 Channels)

12.8 High Speed Multimedia Card Interface (HSMCI)

- 4-bit or 1-bit Interface
- Compatibility with MultiMedia Card Specification Version 4.3
- Compatibility with SD and SDHC Memory Card Specification Version 2.0
- Compatibility with SDIO Specification Version V1.1.
- Compatibility with CE-ATA Specification 1.1
- Cards clock rate up to Master Clock divided by 2
- Boot Operation Mode support
- High Speed mode support
- Embedded power management to slow down clock rate when not used
- HSMCI has one slot supporting
 - One MultiMediaCard bus (up to 30 cards) or
 - One SD Memory Card
 - One SDIO Card
- Support for stream, block and multi-block data read and write

12.9 USB Device Port (UDP)

- USB V2.0 full-speed compliant,12 Mbits per second.
- Embedded USB V2.0 full-speed transceiver
- Embedded 2688-byte dual-port RAM for endpoints
- Eight endpoints
 - Endpoint 0: 64 bytes
 - Endpoint 1 and 2: 64 bytes ping-pong
 - Endpoint 3: 64 bytes
 - Endpoint 4 and 5: 512 bytes ping-pong
 - Endpoint 6 and 7: 64 bytes ping-pong
 - Ping-pong Mode (two memory banks) for Isochronous and bulk endpoints
- Suspend/resume logic
- Integrated Pull-up on DDP
- Pull-down resistor on DDM and DDP when disabled

12.10 Analog-to-Digital Converter (ADC)

- up to 16 Channels,
- 10/12-bit resolution
- up to 1 MSample/s
- programmable sequence of conversion on each channel
- Integrated temperature sensor
- Single ended/differential conversion

• Programmable gain: 1, 2, 4

12.11 Digital-to-Analog Converter (DAC)

- Up to 2 channel 12-bit DAC
- Up to 2 mega-samples conversion rate in single channel mode
- Flexible conversion range
- Multiple trigger sources for each channel
- 2 Sample/Hold (S/H) outputs
- Built-in offset and gain calibration
- Possibility to drive output to ground
- Possibility to use as input to analog comparator or ADC (as an internal wire and without S/H stage)
- Two PDC channels
- Power reduction mode

12.12 Static Memory Controller

- 16-Mbyte Address Space per Chip Select
- 8- bit Data Bus
- Word, Halfword, Byte Transfers
- Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select
- Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select
- Programmable Data Float Time per Chip Select
- External Wait Request
- Automatic Switch to Slow Clock Mode
- Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes
- NAND FLASH additional logic supporting NAND Flash with Multiplexed Data/Address buses
- Hardware Configurable number of chip select from 1 to 4
- Programmable timing on a per chip select basis

12.13 Analog Comparator

- One analog comparator
- High speed option vs. low power option
- Selectable input hysteresis:
 - 0, 20 mV, 50 mV
- Minus input selection:
 - DAC outputs
 - Temperature Sensor
 - ADVREF
 - AD0 to AD3 ADC channels
- Plus input selection:
 - All analog inputs

- output selection:
 - Internal signal
 - external pin
 - selectable inverter
- Interrupt on:
 - Rising edge, Falling edge, toggle

12.14 Cyclic Redundancy Check Calculation Unit (CRCCU)

- 32-bit cyclic redundancy check automatic calculation
- CRC calculation between two addresses of the memory

Symbol	Millimeter				Inch		
	Min	Nom	Мах	Min	Nom	Мах	
А	-	_	1.60	_	_	0.063	
A1	0.05	-	0.15	0.002	_	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
D	9.00 BSC			0.354 BSC			
D1	7.00 BSC			0.276 BSC			
E	9.00 BSC			0.354 BSC			
E1	7.00 BSC			0.276 BSC			
R2	0.08	-	0.20	0.003	_	0.008	
R1	0.08	-	_	0.003	_	_	
q	0°	3.5°	7°	0°	3.5°	7 °	
θ_1	0°	-	_	0°	_	_	
θ_2	11°	12°	13°	11°	12°	13°	
θ_3	11°	12°	13°	11°	12°	13°	
С	0.09	-	0.20	0.004	_	0.008	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1	1.00 REF			0.039 REF			
S	0.20	-	-	0.008	-	_	
b	0.17	0.20	0.27	0.007	0.008	0.011	
е	0.50 BSC.			0.020 BSC.			
D2	5.50			0.217			
E2	5.50			0.217			
		Tolerance	es of Form and	d Position			
aaa	0.20			0.008			
bbb	0.20			0.008			
CCC	0.08			0.003			
ddd	0.08			0.003			

Table 13-1. 48-lead LQFP Package Dimensions (in mm)