

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	I ² C, MMC, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I2S, POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 8x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam3s2aa-mu

2. SAM3S Block Diagram

Figure 2-1. SAM3S 100-pin Version Block Diagram

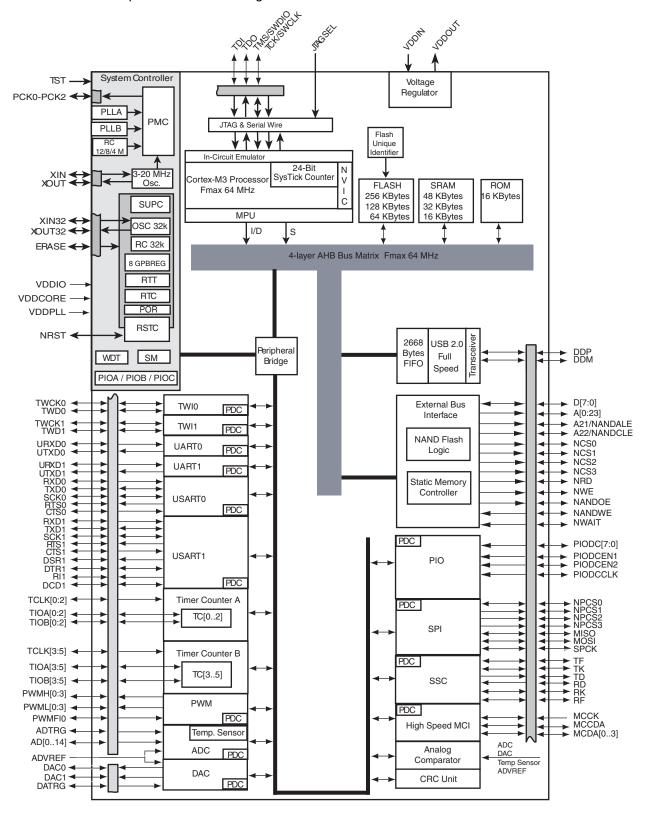
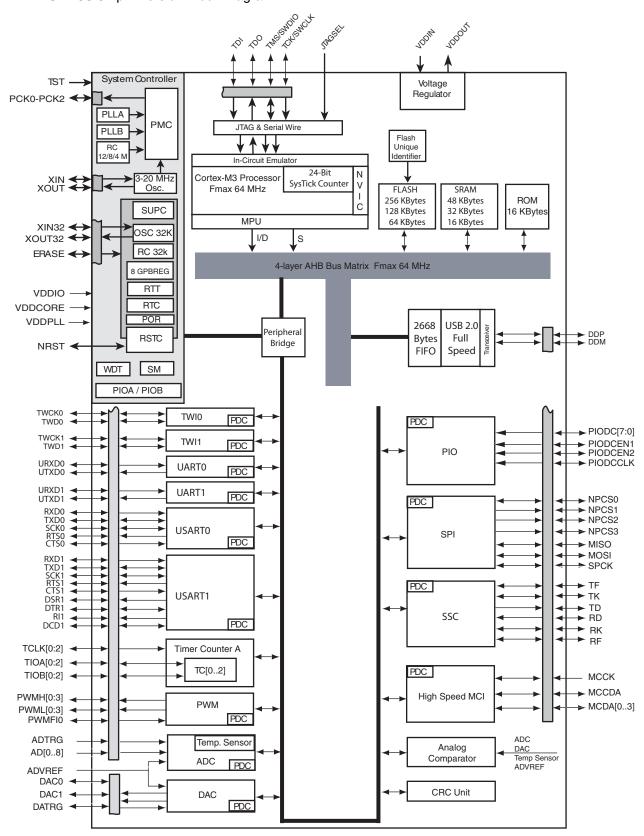



Figure 2-2. SAM3S 64-pin Version Block Diagram

4.1.3 100-Lead LQFP Pinout

Table 4-1. 100-lead LQFP SAM3S4/2/1C Pinout

1	ADVREF			
2	GND			
3	PB0/AD4			
4	PC29/AD13			
5	PB1/AD5			
6	PC30/AD14			
7	PB2/AD6			
8	PC31			
9	PB3/AD7			
10	VDDIN			
11	VDDOUT			
12	PA17/PGMD5/AD0			
13	PC26			
14	PA18/PGMD6/AD1			
15	PA21/PGMD9/AD8			
16	VDDCORE			
17	PC27			
18	PA19/PGMD7/AD2			
19	PC15/AD11			
20	PA22/PGMD10/AD9			
21	PC13/AD10			
22	PA23/PGMD1			
23	PC12/AD12			
24	PA20/PGMD8/AD3			
25	PC0			
	·			

77 (1010 - 1727 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
26	GND			
27	VDDIO			
28	PA16/PGMD4			
29	PC7			
30	PA15/PGMD3			
31	PA14/PGMD2			
32	PC6			
33	PA13/PGMD1			
34	PA24/PGMD12			
35	PC5			
36	VDDCORE			
37	PC4			
38	PA25/PGMD13			
39	PA26/PGMD14			
40	PC3			
41	PA12/PGMD0			
42	PA11/PGMM3			
43	PC2			
44	PA10/PGMM2			
45	GND			
46	PA9/PGMM1			
47	PC1			
48	PA8/XOUT32/ PGMM0			
49	PA7/XIN32/ PGMNVALID			
50	VDDIO			
50	VDDIO			

51	TDI/PB4
52	PA6/PGMNOE
53	PA5/PGMRDY
54	PC28
55	PA4/PGMNCMD
56	VDDCORE
57	PA27/PGMD15
58	PC8
59	PA28
60	NRST
61	TST
62	PC9
63	PA29
64	PA30
65	PC10
66	PA3
67	PA2/PGMEN2
68	PC11
69	VDDIO
70	GND
71	PC14
72	PA1/PGMEN1
73	PC16
74	PA0/PGMEN0
75	PC17

76	TDO/TRACESWO/PB		
77	JTAGSEL		
78	PC18		
79	TMS/SWDIO/PB6		
80	PC19		
81	PA31		
82	PC20		
83	TCK/SWCLK/PB7		
84	PC21		
85	VDDCORE		
86	PC22		
87	ERASE/PB12		
88	DDM/PB10		
89	DDP/PB11		
90	PC23		
91	VDDIO		
92	PC24		
93	PB13/DAC0		
94	PC25		
95	GND		
96	PB8/XOUT		
97	PB9/PGMCK/XIN		
98	VDDIO		
99	PB14/DAC1		
100	VDDPLL		

4.1.4 100-ball LFBGA Pinout

Table 4-2. 100-ball LFBGA SAM3S4/2/1C Pinout

A1	PB1/AD5		
A2	PC29		
А3	VDDIO		
A4	PB9/PGMCK/XIN		
A 5	PB8/XOUT		
A6	PB13/DAC0		
A7	DDP/PB11		
A8	DDM/PB10		
A9	TMS/SWDIO/PB6		
A10	JTAGSEL		
B1	PC30		
B2	ADVREF		
В3	GNDANA		
B4	PB14/DAC1		
B5	PC21		
В6	PC20		
В7	PA31		
В8	PC19		
В9	PC18		
B10	TDO/TRACESWO/ PB5		
C1	PB2/AD6		
C2	VDDPLL		
C3	PC25		
C4	PC23		
C5	ERASE/PB12		

1				
C6	TCK/SWCLK/PB7			
C7	PC16			
C8	PA1/PGMEN1			
C9	PC17			
C10	PA0/PGMEN0			
D1	PB3/AD7			
D2	PB0/AD4			
D3	PC24			
D4	PC22			
D5	GND			
D6	GND			
D7	VDDCORE			
D8	PA2/PGMEN2			
D9	PC11			
D10	PC14			
E1	PA17/PGMD5/AD0			
E2	PC31			
E3	VDDIN			
E4	GND			
E5	GND			
E6	NRST			
E7	PA29/AD13			
E8	PA30/AD14			
E9	PC10			
E10	PA3			

F1	PA18/PGMD6/AD1			
F2	PC26			
F3	VDDOUT			
F4	GND			
F5	VDDIO			
F6	PA27/PGMD15			
F7	PC8			
F8	PA28			
F9	TST			
F10	PC9			
G1	PA21/PGMD9/AD8			
G2	PC27			
G3	PA15/PGMD3			
G4	VDDCORE			
G5	VDDCORE			
G6	PA26/PGMD14			
G7	PA12/PGMD0			
G8	PC28			
G9	PA4/PGMNCMD			
G10	PA5/PGMRDY			
H1	PA19/PGMD7/AD2			
H2	PA23/PGMD11			
НЗ	PC7			
H4	PA14/PGMD2			
H5	PA13/PGMD1			

H6	PC4			
H7	PA11/PGMM3			
Н8	PC1			
H9	PA6/PGMNOE			
H10	TDI/PB4			
J1	PC15/AD11			
J2	PC0			
J3	PA16/PGMD4			
J4	PC6			
J5	PA24/PGMD12			
J6	PA25/PGMD13			
J7	PA10/PGMM2			
J8	GND			
J9	VDDCORE			
J10	VDDIO			
K1	PA22/PGMD10/AD9			
K2	PC13/AD10			
КЗ	PC12/AD12			
K4	PA20/PGMD8/AD3			
K5	PC5			
K6	PC3			
K7	PC2			
K8	PA9/PGMM1			
K9	PA8/XOUT32/PGMM0			
K10	PA7/XIN32/ PGMNVALID			

4.2 SAM3S4/2/1B Package and Pinout

Figure 4-3. Orientation of the 64-pad QFN Package

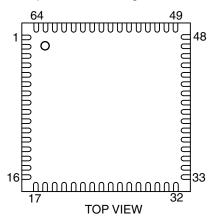
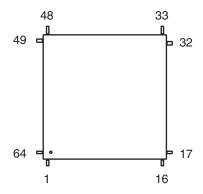



Figure 4-4. Orientation of the 64-lead LQFP Package

4.3 SAM3S4/2/1A Package and Pinout

Figure 4-5. Orientation of the 48-pad QFN Package

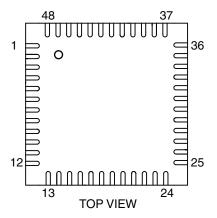
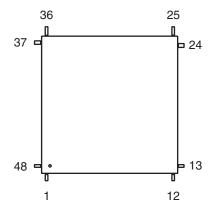



Figure 4-6. Orientation of the 48-lead LQFP Package

5. Power Considerations

5.1 Power Supplies

The SAM3S product has several types of power supply pins:

- VDDCORE pins: Power the core, the embedded memories and the peripherals; voltage ranges from 1.62V and 1.95V.
- VDDIO pins: Power the Peripherals I/O lines (Input/Output Buffers); USB transceiver; Backup part, 32kHz crystal oscillator and oscillator pads; ranges from 1.62V and 3.6V
- VDDIN pin: Voltage Regulator Input, ADC, DAC and Analog Comparator Power Supply; Voltage ranges from 1.8V to 3.6V
- VDDPLL pin: Powers the PLLA, PLLB, the Fast RC and the 3 to 20 MHz oscillator; voltage ranges from 1.62V and 1.95V.

5.2 Voltage Regulator

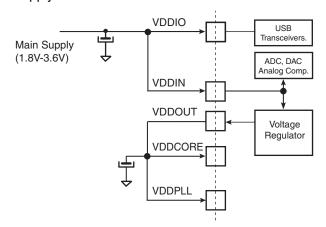
The SAM3S embeds a voltage regulator that is managed by the Supply Controller.

This internal regulator is intended to supply the internal core of SAM3S. It features two different operating modes:

- In Normal mode, the voltage regulator consumes less than 700 μA static current and draws 80 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current depending on the required load current. In Wait Mode quiescent current is only 7 μA.
- In Backup mode, the voltage regulator consumes less than 1 μ A while its output (VDDOUT) is driven internally to GND. The default output voltage is 1.80V and the start-up time to reach Normal mode is inferior to 100 μ s.

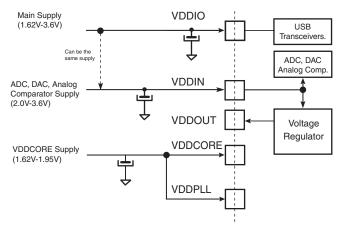
For adequate input and output power supply decoupling/bypassing, refer to the Voltage Regulator section in the Electrical Characteristics section of the datasheet.

5.3 Typical Powering Schematics


The SAM3S supports a 1.62V-3.6V single supply mode. The internal regulator input connected to the source and its output feeds VDDCORE. Figure 5-1 shows the power schematics.

As VDDIN powers the voltage regulator, the ADC/DAC and the analog comparator, when the user does not want to use the embedded voltage regulator, it can be disabled by software via the SUPC (note that it is different from Backup mode).

Figure 5-1. Single Supply



Note: Restrictions

With Main Supply < 2.0 V, USB and ADC/DAC and Analog comparator are not usable.

With Main Supply \geq 2.0V and < 3V, USB is not usable. With Main Supply \geq 3V, all peripherals are usable.

Figure 5-2. Core Externally Supplied

Note: Restrictions

With Main Supply < 2.0V, USB is not usable.

With VDDIN < 2.0V, ADC/DAC and Analog comparator are not usable.

With Main Supply \geq 2.0V and < 3V, USB is not usable.

With Main Supply and VDDIN \geq 3V, all peripherals are usable.

Figure 5-3 below provides an example of the powering scheme when using a backup battery. Since the PIO state is preserved when in backup mode, any free PIO line can be used to switch off the external regulator by driving the PIO line at low level (PIO is input, pull-up enabled after backup reset). External wake-up of the system can be from a push button or any signal. See Section 5.6 "Wake-up Sources" for further details.

- WKUPEN0-15 pins (level transition, configurable debouncing)
- Supply Monitor alarm
- RTC alarm
- RTT alarm

5.5.2 Wait Mode

The purpose of the wait mode is to achieve very low power consumption while maintaining the whole device in a powered state for a startup time of less than 10 μ s. Current Consumption in Wait mode is typically 15 μ A (total current consumption) if the internal voltage regulator is used or 8 μ A if an external regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and memories power supplies are still powered. From this mode, a fast start up is available.

This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in PMC_FSMR). The Cortex-M3 is able to handle external events or internal events in order to wake-up the core (WFE). This is done by configuring the external lines WUP0-15 as fast startup wake-up pins (refer to Section 5.7 "Fast Startup"). RTC or RTT Alarm and USB wake-up events can be used to wake up the CPU (exit from WFE).

Entering Wait Mode:

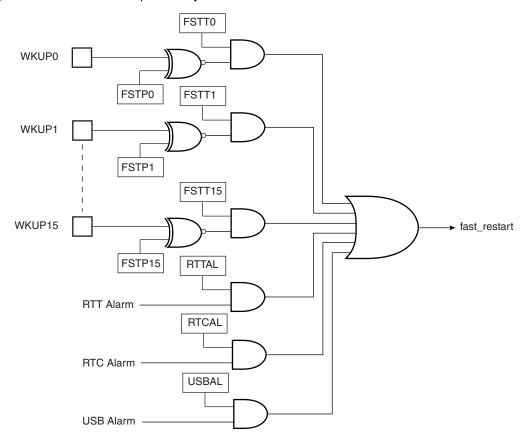
- Select the 4/8/12 MHz fast RC oscillator as Main Clock
- Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)
- Execute the Wait-For-Event (WFE) instruction of the processor

Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN bit and the effective entry in Wait mode. Depending on the user application, Waiting for MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired instructions.

5.5.3 Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is application dependent.

This mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with LPM = 0 in PMC FSMR.


The processor can be woke up from an interrupt if WFI instruction of the Cortex M3 is used, or from an event if the WFE instruction is used to enter this mode.

5.7 Fast Startup

The device allows the processor to restart in a few microseconds while the processor is in wait mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up inputs (WKUP0 to 15 + SM + RTC + RTT).

The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast start-up signal to the Power Management Controller. As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded 4/8/12 MHz fast RC oscillator, switches the master clock on this 4MHz clock and reenables the processor clock.

Figure 5-5. Fast Start-Up Circuitry

6.3 Test Pin

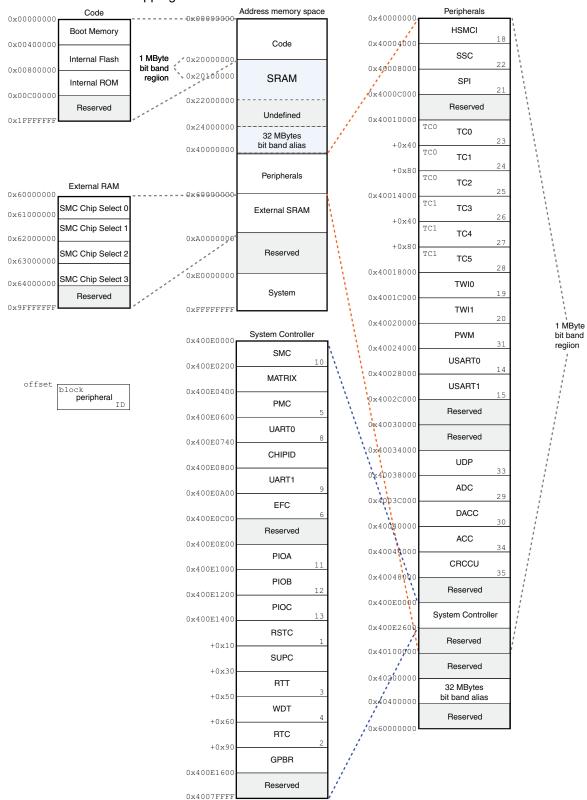
The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the SAM3S series. The TST pin integrates a permanent pull-down resistor of about 15 k Ω to GND, so that it can be left unconnected for normal operations. To enter fast programming mode, see the Fast Flash Programming Interface (FFPI) section. For more on the manufacturing and test mode, refer to the "Debug and Test" section of the product datasheet.

6.4 NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset signal to the external components or asserted low externally to reset the microcontroller. It will reset the Core and the peripherals except the Backup region (RTC, RTT and Supply Controller). There is no constraint on the length of the reset pulse and the reset controller can guarantee a minimum pulse length. The NRST pin integrates a permanent pull-up resistor to VDDIO of about 100 k Ω By default, the NRST pin is configured as an input.

6.5 ERASE Pin

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read as logic level 1). It integrates a pull-down resistor of about 100 k Ω to GND, so that it can be left unconnected for normal operations.


This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high during less than 100 ms, it is not taken into account. The pin must be tied high during more than 220 ms to perform a Flash erase operation.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE pin is not configured as a PIO pin. If the ERASE pin is used as a standard I/O, startup level of this pin must be low to prevent unwanted erasing. Please refer to Section 11.2 "Peripheral Signal Multiplexing on I/O Lines" on page 43. Also, if the ERASE pin is used as a standard I/O output, asserting the pin to low does not erase the Flash.

8. Product Mapping

Figure 8-1. SAM3S Product Mapping

9. Memories

9.1 Embedded Memories

9.1.1 Internal SRAM

The ATSAM3S4 product (256-Kbyte internal Flash version) embeds a total of 48 Kbytes high-speed SRAM.

The ATSAM3S2 product (128-Kbyte internal Flash version) embeds a total of 32 Kbytes high-speed SRAM.

The ATSAM3S1 product (64-Kbyte internal Flash version) embeds a total of 16 Kbytes high-speed SRAM.

The SRAM is accessible over System Cortex-M3 bus at address 0x2000 0000.

The SRAM is in the bit band region. The bit band alias region is mapped from 0x2200 0000 to 0x23FF FFFF.

9.1.2 Internal ROM

The SAM3S product embeds an Internal ROM, which contains the SAM Boot Assistant (SAM-BA), In Application Programming routines (IAP) and Fast Flash Programming Interface (FFPI).

At any time, the ROM is mapped at address 0x0080 0000.

9.1.3 Embedded Flash

9.1.3.1 Flash Overview

The Flash of the ATSAM3S4 (256-Kbytes internal Flash version) is organized in one bank of 1024 pages (Single plane) of 256 bytes.

The Flash of the ATSAM3S2 (128-Kbytes internal Flash version) is organized in one bank of 512 pages (Single plane) of 256 bytes.

The Flash of the ATSAM3S1 (64-Kbytes internal Flash version) is organized in one bank of 256 pages (Single plane) of 256 bytes.

The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.

9.1.3.2 Flash Power Supply

The Flash is supplied by VDDCORE.

9.1.3.3 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the masters of the system. It enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32-bit internal bus. Its 128-bit wide memory interface increases performance.

The user can choose between high performance or lower current consumption by selecting either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

10.1 System Controller and Peripherals Mapping

Please refer to Section 8-1 "SAM3S Product Mapping" on page 30.

All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power-on-Reset, Brownout and Supply Monitor

The SAM3S embeds three features to monitor, warn and/or reset the chip:

- Power-on-Reset on VDDIO
- Brownout Detector on VDDCORE
- Supply Monitor on VDDIO

10.2.1 Power-on-Reset

The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but also during power down. If VDDIO goes below the threshold voltage, the entire chip is reset. For more information, refer to the Electrical Characteristics section of the datasheet.

10.2.2 Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the Supply Controller (SUPC_MR). It is especially recommended to disable it during low-power modes such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more information, refer to the Supply Controller (SUPC) and Electrical Characteristics sections of the datasheet.

10.2.3 Supply Monitor on VDDIO

The Supply Monitor monitors VDDIO. It is not active by default. It can be activated by software and is fully programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is controlled by the Supply Controller (SUPC). A sample mode is possible. It allows to divide the supply monitor power consumption by a factor of up to 2048. For more information, refer to the SUPC and Electrical Characteristics sections of the datasheet.

10.3 Reset Controller

The Reset Controller is based on a Power-on-Reset cell, and a Supply Monitor on VDDCORE.

The Reset Controller is capable to return to the software the source of the last reset, either a general reset, a wake-up reset, a software reset, a user reset or a watchdog reset.

The Reset Controller controls the internal resets of the system and the NRST pin input/output. It is capable to shape a reset signal for the external devices, simplifying to a minimum connection of a push-button on the NRST pin to implement a manual reset.

The configuration of the Reset Controller is saved as supplied on VDDIO.

10.4 Supply Controller (SUPC)

The Supply Controller controls the power supplies of each section of the processor and the peripherals (via Voltage regulator control)

The Supply Controller has its own reset circuitry and is clocked by the 32 kHz Slow clock generator.

 Alarm register capable to generate a wake-up of the system through the Shut Down Controller

10.10 Real Time Clock

- Low power consumption
- Full asynchronous design
- Two hundred year calendar
- Programmable Periodic Interrupt
- Alarm and update parallel load
- Control of alarm and update Time/Calendar Data In

10.11 General Purpose Backup Registers

• Eight 32-bit general-purpose backup registers

10.12 Nested Vectored Interrupt Controller

- Thirty maskable external interrupts
- · Sixteen priority levels
- Processor state automatically saved on interrupt entry, and restored on
- · Dynamic reprioritization of interrupts
- Priority grouping.
 - selection of preempting interrupt levels and non-preempting interrupt levels.
- Support for tail-chaining and late arrival of interrupts.
 - back-to-back interrupt processing without the overhead of state saving and restoration between interrupts.
- Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead.

10.13 Chip Identification

• Chip Identifier (CHIPID) registers permit recognition of the device and its revision.

Table 10-1. SAM3S Chip IDs Register

Chip Name	Flash Size (KBytes)	Pin Count	DBGU CIDR	CHIPID_EXID
Cimp riamo	(RDytoo)	i iii oouiit	2202_0.511	OTHI ID_EXID
ATSAM3S4A (Rev A)	256	48	0x28800960	0x0
ATSAM3S2A (Rev A)	128	48	0x288A0760	0x0
ATSAM3S1A (Rev A)	64	48	0x28890560	0x0
ATSAM3S4B (Rev A)	256	64	0x28900960	0x0
ATSAM3S2B (Rev A)	128	64	0x289A0760	0x0
ATSAM3S1B (Rev A)	64	64	0x28990560	0x0
ATSAM3S4C (Rev A)	256	100	0x28A00960	0x0
ATSAM3S2C (Rev A)	128	100	0x28AA0760	0x0
ATSAM3S1C (Rev A)	64	100	0x28A90560	0x0

• JTAG ID: 0x05B2D03F

10.14 UART

- Two-pin UART
 - Implemented features are 100% compatible with the standard Atmel USART
 - Independent receiver and transmitter with a common programmable Baud Rate Generator
 - Even, Odd, Mark or Space Parity Generation
 - Parity, Framing and Overrun Error Detection
 - Automatic Echo, Local Loopback and Remote Loopback Channel Modes
 - Support for two PDC channels with connection to receiver and transmitter

10.15 PIO Controllers

- 3 PIO Controllers, PIOA, PIOB and PIOC (100-pin version only) controlling a maximum of 79 I/O Lines
- Fully programmable through Set/Clear Registers

Table 10-2. PIO available according to pin count

Version	48 pin	64 pin	100 pin
PIOA	21	32	32
PIOB	13	15	15
PIOC	-	-	32

- Multiplexing of four peripheral functions per I/O Line
- For each I/O Line (whether assigned to a peripheral or used as general purpose I/O)
 - Input change, rising edge, falling edge, low level and level interrupt
 - Debouncing and Glitch filter
 - Multi-drive option enables driving in open drain
 - Programmable pull-up or pull-down on each I/O line
 - Pin data status register, supplies visibility of the level on the pin at any time
- Synchronous output, provides Set and Clear of several I/O lines in a single write

- Interval Measurement
- Pulse Generation
- Delay Timing
- Pulse Width Modulation
- Up/down Capabilities
- Each channel is user-configurable and contains:
 - Three external clock inputs
 - Five internal clock inputs
 - Two multi-purpose input/output signals
- Two global registers that act on all three TC Channels
- · Quadrature decoder
 - Advanced line filtering
 - Position / revolution / speed
- 2-bit Gray Up/Down Counter for Stepper Motor

12.7 Pulse Width Modulation Controller (PWM)

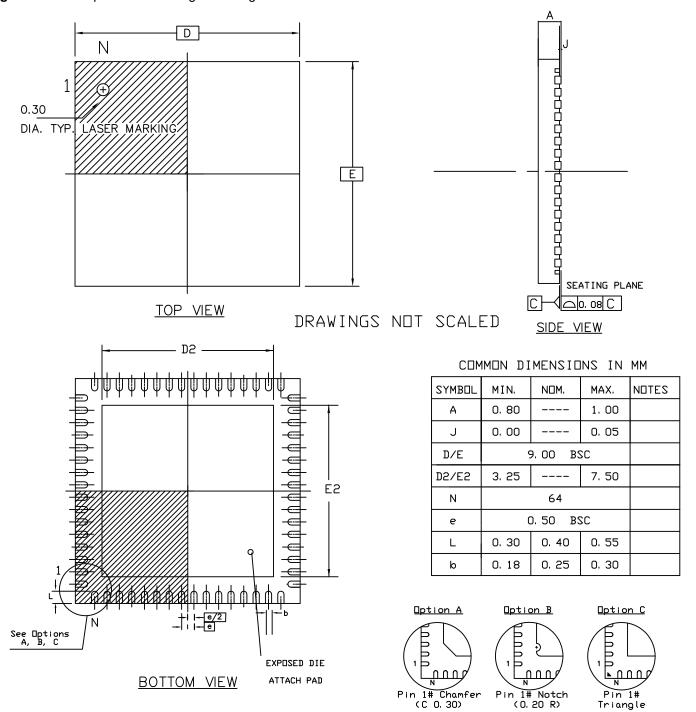
- One Four-channel 16-bit PWM Controller, 16-bit counter per channel
- Common clock generator, providing Thirteen Different Clocks
 - A Modulo n counter providing eleven clocks
 - Two independent Linear Dividers working on modulo n counter outputs
 - High Frequency Asynchronous clocking mode
- Independent channel programming
 - Independent Enable Disable Commands
 - Independent Clock Selection
 - Independent Period and Duty Cycle, with Double Buffering
 - Programmable selection of the output waveform polarity
 - Programmable center or left aligned output waveform
 - Independent Output Override for each channel
 - Independent complementary Outputs with 12-bit dead time generator for each channel
 - Independent Enable Disable Commands
 - Independent Clock Selection
 - Independent Period and Duty Cycle, with Double Buffering
- Synchronous Channel mode
 - Synchronous Channels share the same counter
 - Mode to update the synchronous channels registers after a programmable number of periods
- Connection to one PDC channel
 - Offers Buffer transfer without Processor Intervention, to update duty cycle of synchronous channels
- independent event lines which can send up to 4 triggers on ADC within a period

- Programmable Fault Input providing an asynchronous protection of outputs
- Stepper motor control (2 Channels)

12.8 High Speed Multimedia Card Interface (HSMCI)

- 4-bit or 1-bit Interface
- Compatibility with MultiMedia Card Specification Version 4.3
- Compatibility with SD and SDHC Memory Card Specification Version 2.0
- Compatibility with SDIO Specification Version V1.1.
- Compatibility with CE-ATA Specification 1.1
- · Cards clock rate up to Master Clock divided by 2
- Boot Operation Mode support
- High Speed mode support
- Embedded power management to slow down clock rate when not used
- HSMCI has one slot supporting
 - One MultiMediaCard bus (up to 30 cards) or
 - One SD Memory Card
 - One SDIO Card
- Support for stream, block and multi-block data read and write

12.9 USB Device Port (UDP)


- USB V2.0 full-speed compliant, 12 Mbits per second.
- Embedded USB V2.0 full-speed transceiver
- Embedded 2688-byte dual-port RAM for endpoints
- · Eight endpoints
 - Endpoint 0: 64 bytes
 - Endpoint 1 and 2: 64 bytes ping-pong
 - Endpoint 3: 64 bytes
 - Endpoint 4 and 5: 512 bytes ping-pong
 - Endpoint 6 and 7: 64 bytes ping-pong
 - Ping-pong Mode (two memory banks) for Isochronous and bulk endpoints
- Suspend/resume logic
- Integrated Pull-up on DDP
- Pull-down resistor on DDM and DDP when disabled

12.10 Analog-to-Digital Converter (ADC)

- up to 16 Channels,
- 10/12-bit resolution
- up to 1 MSample/s
- programmable sequence of conversion on each channel
- · Integrated temperature sensor
- Single ended/differential conversion

Figure 13-5. 64-pad QFN Package Drawing

Revision History

Doc. Rev	Comments	Change Request Ref.
	Missing PGMD8 to 15 added to Table 4-1, "100-lead LQFP SAM3S4/2/1C Pinout" and Table 4-2, "100-ball LFBGA SAM3S4/2/1C Pinout".	rfo
6500CS	Section 5.7 "Fast Startup" updated. Typo fixed on back page: 'techincal'> 'technical'. Typos fixed in Section 1. "SAM3S Description". Missing title added to Table 14-1. PLLA input frequency range updated in Section 10.5 "Clock Generator". A sentence completed in Section 5.5.2 "Wait Mode". Last sentence removed from Section 9.1.3.10 "SAM-BA® Boot". 'three GPNVM bits' replaced by 'two GPNVM bits' in Section 9.1.3.11 "GPNVM Bits".	7536 7524 7494 7492 7428
6500BS	Leftover sentence removed from Section 4.1 "SAM3S4/2/1C Package and Pinout". "Packages" on page 1, package size or pitch updated. Table 1-1, "Configuration Summary", ADC column updated, footnote gives precision on reserved channel. Table 4-2, "100-ball LFBGA SAM3S4/2/1C Pinout", pinout information is available. Figure 5-1, "Single Supply", Figure 5-2, "Core Externally Supplied", updated notes below figures. Figure 5-2, "Core Externally Supplied", Figure 5-3, "Backup Battery", ADC, DAC, Analog Comparator supply is 2.0V-3.6V. Section 12.13 "Analog Comparator", "Peripherals" on page 1, reference to "window function" removed. Section 9.1.3.8 "Unique Identifier", Each device integrates its own 128-bit unique identifier.	7214 6981 7201 7243/rfo 7103 7307
6500AS	First issue	