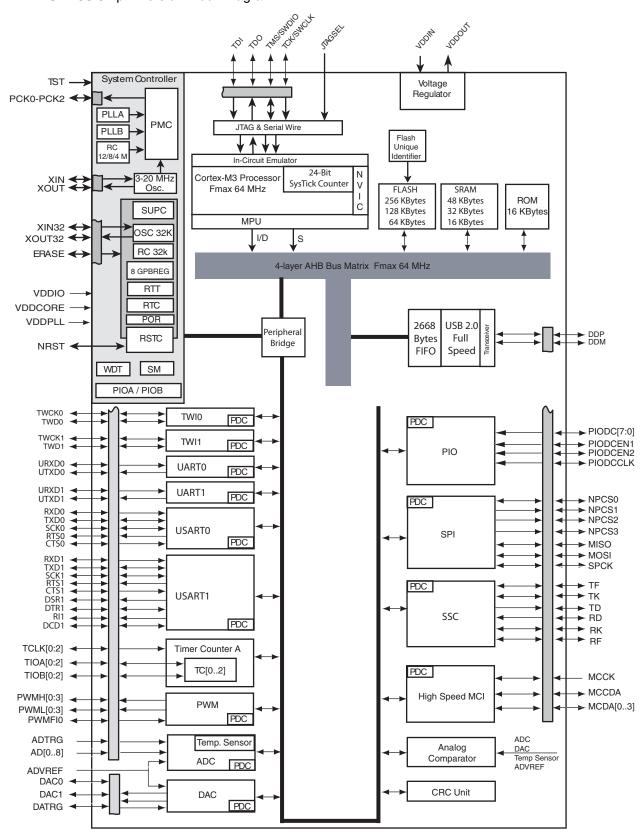


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?


"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	EBI/EMI, I ² C, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	79
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 15x10/12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam3s4ca-aur

Figure 2-2. SAM3S 64-pin Version Block Diagram

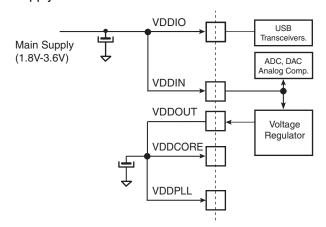
Table 3-1. Signal Description List (Continued)

Signal Name	Function	Туре	Active Level	Voltage reference	Comments				
Fast Flash Programming Interface - FFPI									
PGMEN0-PGMEN2	Programming Enabling	Input		VDDIO					
PGMM0-PGMM3	Programming Mode	Input							
PGMD0-PGMD15	Programming Data	I/O							
PGMRDY	Programming Ready	Output	High						
PGMNVALID	Data Direction	Output	Low	VDDIO					
PGMNOE	Programming Read	Input	Low						
PGMCK	Programming Clock	Input							
PGMNCMD	Programming Command	Input	Low						
	USB Full Sp	eed Device							
DDM	USB Full Speed Data -	Analog			Reset State:				
DDP	USB Full Speed Data +	Analog, Digital	0,		VDDIO	- USB Mode - Internal Pull-down ⁽³⁾			

- Notes: 1. Schmitt Triggers can be disabled through PIO registers.
 - 2. Some PIO lines are shared with System IOs.
 - 3. Refer to the USB sub section in the product Electrical Characteristics Section for Pull-down value in USB Mode.
 - 4. See Section 5.3 "Typical Powering Schematics" for restriction on voltage range of Analog Cells.

4.2.1 64-Lead LQFP and QFN Pinout

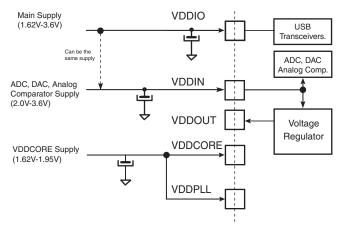
64-pin version SAM3S devices are pin-to-pin compatible with AT91SAM7S legacy products. Furthermore, SAM3S products have new functionalities shown in italic in Table 4-3.


Table 4-3.64-pin SAM3S4/2/1B Pinout

TDO/TRACESWO/PB5 JTAGSEL
JTAGSEL
TMS/SWDIO/PB6
PA31
TCK/SWCLK/PB7
VDDCORE
ERASE/PB12
DDM/PB10
DDP/PB11
VDDIO
PB13/DAC0
GND
XOUT/PB8
XIN/PGMCK/PB9
PB14/DAC1
VDDPLL

Note: The bottom pad of the QFN package must be connected to ground.

Figure 5-1. Single Supply



Note: Restrictions

With Main Supply < 2.0 V, USB and ADC/DAC and Analog comparator are not usable.

With Main Supply \geq 2.0V and < 3V, USB is not usable. With Main Supply \geq 3V, all peripherals are usable.

Figure 5-2. Core Externally Supplied

Note: Restrictions

With Main Supply < 2.0V, USB is not usable.

With VDDIN < 2.0V, ADC/DAC and Analog comparator are not usable.

With Main Supply \geq 2.0V and < 3V, USB is not usable.

With Main Supply and VDDIN ≥ 3V, all peripherals are usable.

Figure 5-3 below provides an example of the powering scheme when using a backup battery. Since the PIO state is preserved when in backup mode, any free PIO line can be used to switch off the external regulator by driving the PIO line at low level (PIO is input, pull-up enabled after backup reset). External wake-up of the system can be from a push button or any signal. See Section 5.6 "Wake-up Sources" for further details.

- WKUPEN0-15 pins (level transition, configurable debouncing)
- Supply Monitor alarm
- RTC alarm
- RTT alarm

5.5.2 Wait Mode

The purpose of the wait mode is to achieve very low power consumption while maintaining the whole device in a powered state for a startup time of less than 10 μ s. Current Consumption in Wait mode is typically 15 μ A (total current consumption) if the internal voltage regulator is used or 8 μ A if an external regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and memories power supplies are still powered. From this mode, a fast start up is available.

This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in PMC_FSMR). The Cortex-M3 is able to handle external events or internal events in order to wake-up the core (WFE). This is done by configuring the external lines WUP0-15 as fast startup wake-up pins (refer to Section 5.7 "Fast Startup"). RTC or RTT Alarm and USB wake-up events can be used to wake up the CPU (exit from WFE).

Entering Wait Mode:

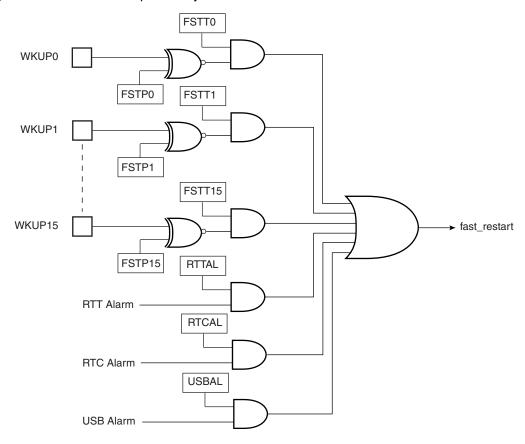
- Select the 4/8/12 MHz fast RC oscillator as Main Clock
- Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)
- Execute the Wait-For-Event (WFE) instruction of the processor

Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN bit and the effective entry in Wait mode. Depending on the user application, Waiting for MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired instructions.

5.5.3 Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is application dependent.

This mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with LPM = 0 in PMC FSMR.


The processor can be woke up from an interrupt if WFI instruction of the Cortex M3 is used, or from an event if the WFE instruction is used to enter this mode.

5.7 Fast Startup

The device allows the processor to restart in a few microseconds while the processor is in wait mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up inputs (WKUP0 to 15 + SM + RTC + RTT).

The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast start-up signal to the Power Management Controller. As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded 4/8/12 MHz fast RC oscillator, switches the master clock on this 4MHz clock and reenables the processor clock.

Figure 5-5. Fast Start-Up Circuitry

9. Memories

9.1 Embedded Memories

9.1.1 Internal SRAM

The ATSAM3S4 product (256-Kbyte internal Flash version) embeds a total of 48 Kbytes high-speed SRAM.

The ATSAM3S2 product (128-Kbyte internal Flash version) embeds a total of 32 Kbytes high-speed SRAM.

The ATSAM3S1 product (64-Kbyte internal Flash version) embeds a total of 16 Kbytes high-speed SRAM.

The SRAM is accessible over System Cortex-M3 bus at address 0x2000 0000.

The SRAM is in the bit band region. The bit band alias region is mapped from 0x2200 0000 to 0x23FF FFFF.

9.1.2 Internal ROM

The SAM3S product embeds an Internal ROM, which contains the SAM Boot Assistant (SAM-BA), In Application Programming routines (IAP) and Fast Flash Programming Interface (FFPI).

At any time, the ROM is mapped at address 0x0080 0000.

9.1.3 Embedded Flash

9.1.3.1 Flash Overview

The Flash of the ATSAM3S4 (256-Kbytes internal Flash version) is organized in one bank of 1024 pages (Single plane) of 256 bytes.

The Flash of the ATSAM3S2 (128-Kbytes internal Flash version) is organized in one bank of 512 pages (Single plane) of 256 bytes.

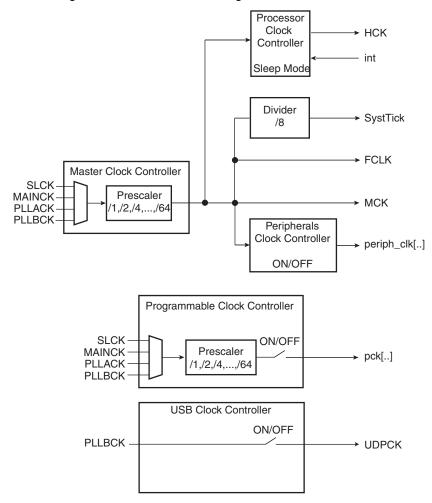
The Flash of the ATSAM3S1 (64-Kbytes internal Flash version) is organized in one bank of 256 pages (Single plane) of 256 bytes.

The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.

9.1.3.2 Flash Power Supply

The Flash is supplied by VDDCORE.

9.1.3.3 Enhanced Embedded Flash Controller


The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the masters of the system. It enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32-bit internal bus. Its 128-bit wide memory interface increases performance.

The user can choose between high performance or lower current consumption by selecting either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

Figure 10-3. SAM3S Power Management Controller Block Diagram

The SysTick calibration value is fixed at 8000 which allows the generation of a time base of 1 ms with SystTick clock at 8 MHz (max HCLK/8 = 64 MHz/8).

10.7 Watchdog Timer

- 16-bit key-protected only-once-Programmable Counter
- Windowed, prevents the processor to be in a dead-lock on the watchdog access.

10.8 SysTick Timer

- 24-bit down counter
- · Self-reload capability
- Flexible System timer

10.9 Real Time Timer

- Real Time Timer, allowing backup of time with different accuracies
 - 32-bit free-running back-up counter
 - Integrates a 16-bit programmable prescaler running on slow clock

11.2 Peripheral Signal Multiplexing on I/O Lines

The SAM3S product features 2 PIO controllers on 48-pin and 64-pin versions (PIOA, PIOB) or 3 PIO controllers on the 100-pin version, (PIOA, PIOB, PIOC), that multiplex the I/O lines of the peripheral set.

The SAM3S 64-pin and 100-pin PIO Controllers control up to 32 lines. (See, Table 10-2.) Each line can be assigned to one of three peripheral functions: A, B or C. The multiplexing tables in the following pages define how the I/O lines of the peripherals A, B and C are multiplexed on the PIO Controllers. The column "Comments" has been inserted in this table for the user's own comments; it may be used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

11.2.1 PIO Controller A Multiplexing

Table 11-2. Multiplexing on PIO Controller A (PIOA)

I/O Line	Peripheral A	Peripheral B	Peripheral C	Extra Function	System Function	Comments
PA0	PWMH0	TIOA0	A17	WKUP0		High drive
PA1	PWMH1	TIOB0	A18	WKUP1		High drive
PA2	PWMH2	SCK0	DATRG	WKUP2		High drive
PA3	TWD0	NPCS3				High drive
PA4	TWCK0	TCLK0		WKUP3		
PA5	RXD0	NPCS3		WKUP4		
PA6	TXD0	PCK0				
PA7	RTS0	PWMH3			XIN32	
PA8	CTS0	ADTRG		WKUP5	XOUT32	
PA9	URXD0	NPCS1	PWMFI0	WKUP6		
PA10	UTXD0	NPCS2				
PA11	NPCS0	PWMH0		WKUP7		
PA12	MISO	PWMH1				
PA13	MOSI	PWMH2				
PA14	SPCK	PWMH3		WKUP8		
PA15	TF	TIOA1	PWML3	WKUP14/PIODCEN1		
PA16	TK	TIOB1	PWML2	WKUP15/PIODCEN2		
PA17	TD	PCK1	PWMH3	AD0		
PA18	RD	PCK2	A14	AD1		
PA19	RK	PWML0	A15	AD2/WKUP9		
PA20	RF	PWML1	A16	AD3/WKUP10		
PA21	RXD1	PCK1		AD8		64/100-pin versions
PA22	TXD1	NPCS3	NCS2	AD9		64/100-pin versions
PA23	SCK1	PWMH0	A19	PIODCCLK		64/100-pin versions
PA24	RTS1	PWMH1	A20	PIODC0		64/100-pin versions
PA25	CTS1	PWMH2	A23	PIODC1		64/100-pin versions
PA26	DCD1	TIOA2	MCDA2	PIODC2		64/100-pin versions
PA27	DTR1	TIOB2	MCDA3	PIODC3		64/100-pin versions
PA28	DSR1	TCLK1	MCCDA	PIODC4		64/100-pin versions
PA29	RI1	TCLK2	MCCK	PIODC5		64/100-pin versions
PA30	PWML2	NPCS2	MCDA0	WKUP11/PIODC6		64/100-pin versions
PA31	NPCS1	PCK2	MCDA1	PIODC7		64/100-pin versions

11.2.2 PIO Controller B Multiplexing

 Table 11-3.
 Multiplexing on PIO Controller B (PIOB)

I/O Line	Peripheral A	Peripheral B	Peripheral C	Extra Function	System Function	Comments
PB0	PWMH0			AD4		
PB1	PWMH1			AD5		
PB2	URXD1	NPCS2		AD6/ WKUP12		
PB3	UTXD1	PCK2		AD7		
PB4	TWD1	PWMH2			TDI	
PB5	TWCK1	PWML0		WKUP13	TDO/TRACESWO	
PB6					TMS/SWDIO	
PB7					TCK/SWCLK	
PB8					XOUT	
PB9					XIN	
PB10					DDM	
PB11					DDP	
PB12	PWML1				ERASE	
PB13	PWML2	PCK0		DAC0		64/100-pin versions
PB14	NPCS1	PWMH3		DAC1		64/100-pin versions

11.2.3 PIO Controller C Multiplexing

Table 11-4. Multiplexing on PIO Controller C (PIOC)

I/O Line	Peripheral A	Peripheral B	Peripheral C	Extra Function	System Function	Comments
PC0	D0	PWML0				100-pin version
PC1	D1	PWML1				100-pin version
PC2	D2	PWML2				100-pin version
PC3	D3	PWML3				100-pin version
PC4	D4	NPCS1				100-pin version
PC5	D5					100-pin version
PC6	D6					100-pin version
PC7	D7					100-pin version
PC8	NWE					100-pin version
PC9	NANDOE					100-pin version
PC10	NANDWE					100-pin version
PC11	NRD					100-pin version
PC12	NCS3			AD12		100-pin version
PC13	NWAIT	PWML0		AD10		100-pin version
PC14	NCS0					100-pin version
PC15	NCS1	PWML1		AD11		100-pin version
PC16	A21/NANDALE					100-pin version
PC17	A22/NANDCLE					100-pin version
PC18	A0	PWMH0				100-pin version
PC19	A1	PWMH1				100-pin version
PC20	A2	PWMH2				100-pin version
PC21	А3	PWMH3				100-pin version
PC22	A4	PWML3				100-pin version
PC23	A5	TIOA3				100-pin version
PC24	A6	TIOB3				100-pin version
PC25	A7	TCLK3				100-pin version
PC26	A8	TIOA4				100-pin version
PC27	A9	TIOB4				100-pin version
PC28	A10	TCLK4				100-pin version
PC29	A11	TIOA5		AD13		100-pin version
PC30	A12	TIOB5		AD14		100-pin version
PC31	A13	TCLK5				100-pin version

- Interval Measurement
- Pulse Generation
- Delay Timing
- Pulse Width Modulation
- Up/down Capabilities
- Each channel is user-configurable and contains:
 - Three external clock inputs
 - Five internal clock inputs
 - Two multi-purpose input/output signals
- Two global registers that act on all three TC Channels
- · Quadrature decoder
 - Advanced line filtering
 - Position / revolution / speed
- 2-bit Gray Up/Down Counter for Stepper Motor

12.7 Pulse Width Modulation Controller (PWM)

- One Four-channel 16-bit PWM Controller, 16-bit counter per channel
- Common clock generator, providing Thirteen Different Clocks
 - A Modulo n counter providing eleven clocks
 - Two independent Linear Dividers working on modulo n counter outputs
 - High Frequency Asynchronous clocking mode
- Independent channel programming
 - Independent Enable Disable Commands
 - Independent Clock Selection
 - Independent Period and Duty Cycle, with Double Buffering
 - Programmable selection of the output waveform polarity
 - Programmable center or left aligned output waveform
 - Independent Output Override for each channel
 - Independent complementary Outputs with 12-bit dead time generator for each channel
 - Independent Enable Disable Commands
 - Independent Clock Selection
 - Independent Period and Duty Cycle, with Double Buffering
- Synchronous Channel mode
 - Synchronous Channels share the same counter
 - Mode to update the synchronous channels registers after a programmable number of periods
- Connection to one PDC channel
 - Offers Buffer transfer without Processor Intervention, to update duty cycle of synchronous channels
- independent event lines which can send up to 4 triggers on ADC within a period

- Programmable Fault Input providing an asynchronous protection of outputs
- Stepper motor control (2 Channels)

12.8 High Speed Multimedia Card Interface (HSMCI)

- 4-bit or 1-bit Interface
- Compatibility with MultiMedia Card Specification Version 4.3
- Compatibility with SD and SDHC Memory Card Specification Version 2.0
- Compatibility with SDIO Specification Version V1.1.
- Compatibility with CE-ATA Specification 1.1
- · Cards clock rate up to Master Clock divided by 2
- Boot Operation Mode support
- High Speed mode support
- Embedded power management to slow down clock rate when not used
- HSMCI has one slot supporting
 - One MultiMediaCard bus (up to 30 cards) or
 - One SD Memory Card
 - One SDIO Card
- Support for stream, block and multi-block data read and write

12.9 USB Device Port (UDP)

- USB V2.0 full-speed compliant, 12 Mbits per second.
- Embedded USB V2.0 full-speed transceiver
- Embedded 2688-byte dual-port RAM for endpoints
- · Eight endpoints
 - Endpoint 0: 64 bytes
 - Endpoint 1 and 2: 64 bytes ping-pong
 - Endpoint 3: 64 bytes
 - Endpoint 4 and 5: 512 bytes ping-pong
 - Endpoint 6 and 7: 64 bytes ping-pong
 - Ping-pong Mode (two memory banks) for Isochronous and bulk endpoints
- Suspend/resume logic
- Integrated Pull-up on DDP
- Pull-down resistor on DDM and DDP when disabled

12.10 Analog-to-Digital Converter (ADC)

- up to 16 Channels,
- 10/12-bit resolution
- up to 1 MSample/s
- programmable sequence of conversion on each channel
- · Integrated temperature sensor
- Single ended/differential conversion

• Programmable gain: 1, 2, 4

12.11 Digital-to-Analog Converter (DAC)

- Up to 2 channel 12-bit DAC
- Up to 2 mega-samples conversion rate in single channel mode
- Flexible conversion range
- Multiple trigger sources for each channel
- 2 Sample/Hold (S/H) outputs
- Built-in offset and gain calibration
- · Possibility to drive output to ground
- Possibility to use as input to analog comparator or ADC (as an internal wire and without S/H stage)
- Two PDC channels
- · Power reduction mode

12.12 Static Memory Controller

- 16-Mbyte Address Space per Chip Select
- 8- bit Data Bus
- Word, Halfword, Byte Transfers
- Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select
- Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select
- Programmable Data Float Time per Chip Select
- External Wait Request
- Automatic Switch to Slow Clock Mode
- Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes
- NAND FLASH additional logic supporting NAND Flash with Multiplexed Data/Address buses
- Hardware Configurable number of chip select from 1 to 4
- Programmable timing on a per chip select basis

12.13 Analog Comparator

- One analog comparator
- High speed option vs. low power option
- Selectable input hysteresis:
 - 0, 20 mV, 50 mV
- Minus input selection:
 - DAC outputs
 - Temperature Sensor
 - ADVREF
 - AD0 to AD3 ADC channels
- Plus input selection:
 - All analog inputs

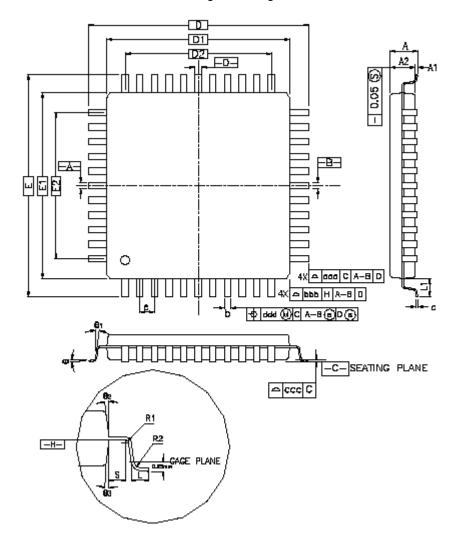


Figure 13-3. 64- and 48-lead LQFP Package Drawing

 Table 13-3.
 48-pad QFN Package Dimensions (in mm)

	Millimeter Inch						
Symbol		Millilletei			IIICII		
	Min	Nom	Max	Min	Nom	Max	
Α	_	_	090	_	_	0.035	
A1	_	_	0.050	_	_	0.002	
A2	_	0.65	0.70	_	0.026	0.028	
A3		0.20 REF			0.008 REF		
b	0.18	0.20	0.23	0.007	0.008	0.009	
D		7.00 bsc			0.276 bsc		
D2	5.45	5.60	5.75	0.215	0.220	0.226	
Е		7.00 bsc		0.276 bsc			
E2	5.45	5.60	5.75	0.215	0.220	0.226	
L	0.35	0.40	0.45	0.014	0.016	0.018	
е		0.50 bsc			0.020 bsc		
R	0.09	_	_	0.004	_	_	
Tolerances of Form and Position							
aaa	0.10				0.004		
bbb	0.10			0.004			
CCC	0.05 0.002						

14. Ordering Information

Table 14-1. Ordering Codes for SAM3S Devices

Ordering Code	MRL	Flash (Kbytes)	Package (Kbytes)	Package Type	Temperature Operating Range
ATSAM3S4CA-AU	А	256	QFP100	Green	Industrial -40°C to 85°C
ATSAM3S4CA-CU	Α	256	BGA100	Green	Industrial -40°C to 85°C
ATSAM3S4BA-AU	А	256	QFP64	Green	Industrial -40°C to 85°C
ATSAM3S4BA-MU	Α	256	QFN64	Green	Industrial -40°C to 85°C
ATSAM3S4AA-AU	Α	256	QFP48	Green	Industrial -40°C to 85°C
ATSAM3S4AA-MU	А	256	QFN48	Green	Industrial -40°C to 85°C
ATSAM3S2CA-AU	А	128	QFP100	Green	Industrial -40°C to 85°C
ATSAM3S2CA-CU	А	128	BGA100	Green	Industrial -40°C to 85°C
ATSAM3S2BA-AU	А	128	QFP64	Green	Industrial -40°C to 85°C
ATSAM3S2BA-MU	Α	128	QFN64	Green	Industrial -40°C to 85°C
ATSAM3S2AA-AU	Α	128	QFP48	Green	Industrial -40°C to 85°C
ATSAM3S2AA-MU	А	128	QFN48	Green	Industrial -40°C to 85°C
ATSAM3S1CA-AU	А	64	QFP100	Green	Industrial -40°C to 85°C
ATSAM3S1CA-CU	А	64	BGA100	Green	Industrial -40°C to 85°C
ATSAM3S1BA-AU	Α	64	QFP64	Green	Industrial -40°C to 85°C
ATSAM3S1BA-MU	А	64	QFN64	Green	Industrial -40°C to 85°C
ATSAM3S1AA-AU	А	64	QFP48	Green	Industrial -40°C to 85°C
ATSAM3S1AA-MU	Α	64	QFN48	Green	Industrial -40°C to 85°C

Revision History

Doc. Rev	Comments	Change Request Ref.
	Missing PGMD8 to 15 added to Table 4-1, "100-lead LQFP SAM3S4/2/1C Pinout" and Table 4-2, "100-ball LFBGA SAM3S4/2/1C Pinout".	rfo
6500CS	Section 5.7 "Fast Startup" updated. Typo fixed on back page: 'techincal'> 'technical'. Typos fixed in Section 1. "SAM3S Description". Missing title added to Table 14-1. PLLA input frequency range updated in Section 10.5 "Clock Generator". A sentence completed in Section 5.5.2 "Wait Mode". Last sentence removed from Section 9.1.3.10 "SAM-BA® Boot". 'three GPNVM bits' replaced by 'two GPNVM bits' in Section 9.1.3.11 "GPNVM Bits".	7536 7524 7494 7492 7428
6500BS	Leftover sentence removed from Section 4.1 "SAM3S4/2/1C Package and Pinout". "Packages" on page 1, package size or pitch updated. Table 1-1, "Configuration Summary", ADC column updated, footnote gives precision on reserved channel. Table 4-2, "100-ball LFBGA SAM3S4/2/1C Pinout", pinout information is available. Figure 5-1, "Single Supply", Figure 5-2, "Core Externally Supplied", updated notes below figures. Figure 5-2, "Core Externally Supplied", Figure 5-3, "Backup Battery", ADC, DAC, Analog Comparator supply is 2.0V-3.6V. Section 12.13 "Analog Comparator", "Peripherals" on page 1, reference to "window function" removed. Section 9.1.3.8 "Unique Identifier", Each device integrates its own 128-bit unique identifier.	7214 6981 7201 7243/rfo 7103 7307
6500AS	First issue	

