

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Detaile	
Details	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	EBI/EMI, I ² C, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I2S, POR, PWM, WDT
Number of I/O	79
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 15x10/12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam3s4ca-cu

Figure 2-2. SAM3S 64-pin Version Block Diagram

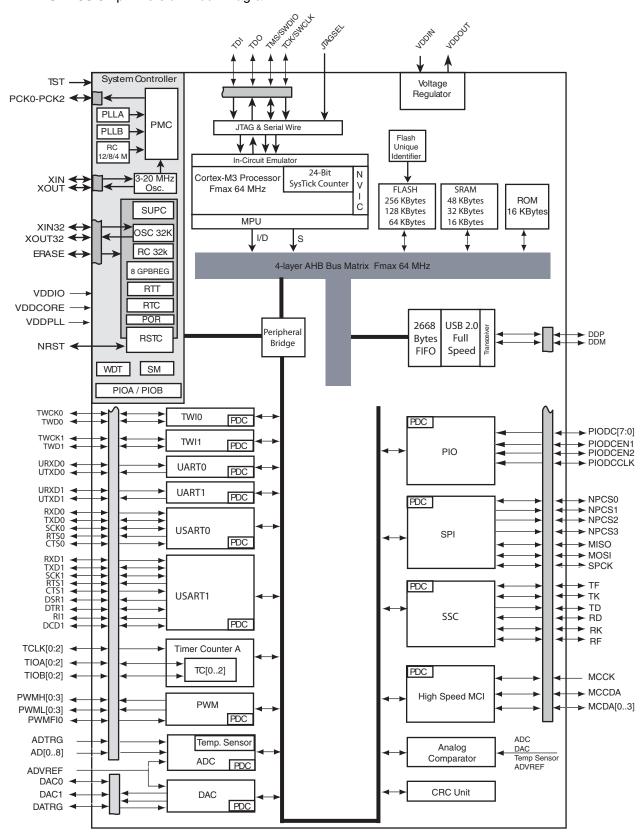
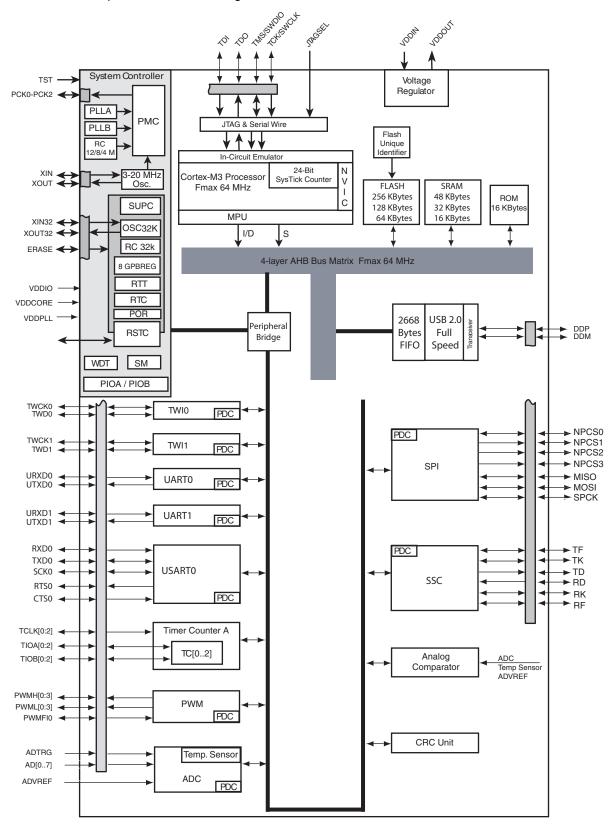



Figure 2-3. SAM3S 48-pin Version Block Diagram

3. Signal Description

Table 3-1 gives details on the signal names classified by peripheral.

 Table 3-1.
 Signal Description List

Signal Name	Function	Туре	Active Level	Voltage reference	Comments
	Power S	Supplies			1
VDDIO	Peripherals I/O Lines and USB transceiver Power Supply	Power			1.62V to 3.6V
VDDIN	Voltage Regulator Input, ADC, DAC and Analog Comparator Power Supply	Power			1.8V to 3.6V ⁽⁴⁾
VDDOUT	Voltage Regulator Output	Power			1.8V Output
VDDPLL	Oscillator and PLL Power Supply	Power			1.62 V to 1.95V
VDDCORE	Power the core, the embedded memories and the peripherals	Power			1.62V to 1.95V
GND	Ground	Ground			
	Clocks, Oscilla	ators and PLI	_s	1	
XIN	Main Oscillator Input	Input			Reset State:
XOUT	Main Oscillator Output	Output		=	- PIO Input
XIN32	Slow Clock Oscillator Input	Input		=	- Internal Pull-up disabled
XOUT32	Slow Clock Oscillator Output	Output		VDDIO	- Schmitt Trigger enabled ⁽¹⁾
PCK0 - PCK2	Programmable Clock Output	Output			Reset State: - PIO Input - Internal Pull-up enabled - Schmitt Trigger enabled ⁽¹⁾
	Serial Wire/JTAG De	ebug Port - S	WJ-DP		
TCK/SWCLK	Test Clock/Serial Wire Clock	Input			
TDI	Test Data In	Input			Reset State: - SWJ-DP Mode - Internal pull-up disabled - Schmitt Trigger enabled ⁽¹⁾
TDO/TRACESWO	Test Data Out / Trace Asynchronous Data Out	Output		VDDIO	
TMS/SWDIO	Test Mode Select /Serial Wire Input/Output	Input / I/O			
JTAGSEL	JTAG Selection	Input	High		Permanent Internal pull-down
Flash Memory					
ERASE	Flash and NVM Configuration Bits Erase Command	Input	High	VDDIO	Reset State: - Erase Input - Internal pull-down enabled - Schmitt Trigger enabled ⁽¹⁾
	Rese	t/Test			
NRST	Synchronous Microcontroller Reset	I/O	Low	VDDIO	Permanent Internal pull-up
TST	Test Select	Input			Permanent Internal pull-down

4.1.4 100-ball LFBGA Pinout

Table 4-2. 100-ball LFBGA SAM3S4/2/1C Pinout

A1	PB1/AD5	
A2	PC29	
А3	VDDIO	
A4	PB9/PGMCK/XIN	
A 5	PB8/XOUT	
A6	PB13/DAC0	
A7	DDP/PB11	
A8	DDM/PB10	
A9	TMS/SWDIO/PB6	
A10	JTAGSEL	
B1	PC30	
B2	ADVREF	
В3	GNDANA	
B4	PB14/DAC1	
B5	PC21	
В6	PC20	
В7	PA31	
В8	PC19	
В9	PC18	
B10	TDO/TRACESWO/ PB5	
C1	PB2/AD6	
C2	VDDPLL	
C3	PC25	
C4	PC23	
C5	ERASE/PB12	

C6	TCK/SWCLK/PB7			
C7	PC16			
C8	PA1/PGMEN1			
C9	PC17			
C10	PA0/PGMEN0			
D1	PB3/AD7			
D2	PB0/AD4			
D3	PC24			
D4	PC22			
D5	GND			
D6	GND			
D7	VDDCORE			
D8	PA2/PGMEN2			
D9	PC11			
D10	PC14			
E1	PA17/PGMD5/AD0			
E2	PC31			
E3	VDDIN			
E4	GND			
E5	GND			
E6	NRST			
E7	PA29/AD13			
E8	PA30/AD14			
E9	PC10			
E10	PA3			

F1	PA18/PGMD6/AD1	
F2	PC26	
F3	VDDOUT	
F4	GND	
F5	VDDIO	
F6	PA27/PGMD15	
F7	PC8	
F8	PA28	
F9	TST	
F10	PC9	
G1	PA21/PGMD9/AD8	
G2	PC27	
G3	PA15/PGMD3	
G4	VDDCORE	
G5	VDDCORE	
G6	PA26/PGMD14	
G7	PA12/PGMD0	
G8	PC28	
G9	PA4/PGMNCMD	
G10	PA5/PGMRDY	
H1	PA19/PGMD7/AD2	
H2	PA23/PGMD11	
НЗ	PC7	
H4	PA14/PGMD2	
H5	PA13/PGMD1	

H6	PC4		
H7	PA11/PGMM3		
Н8	PC1		
H9	PA6/PGMNOE		
H10	TDI/PB4		
J1	PC15/AD11		
J2	PC0		
J3	PA16/PGMD4		
J4	PC6		
J5	PA24/PGMD12		
J6	PA25/PGMD13		
J7	PA10/PGMM2		
J8	GND		
J9	VDDCORE		
J10	VDDIO		
K1	PA22/PGMD10/AD9		
K2	PC13/AD10		
КЗ	PC12/AD12		
K4	PA20/PGMD8/AD3		
K5	PC5		
K6	PC3		
K7	PC2		
K8	PA9/PGMM1		
K9	PA8/XOUT32/PGMM0		
K10	PA7/XIN32/ PGMNVALID		

4.3.1 48-Lead LQFP and QFN Pinout

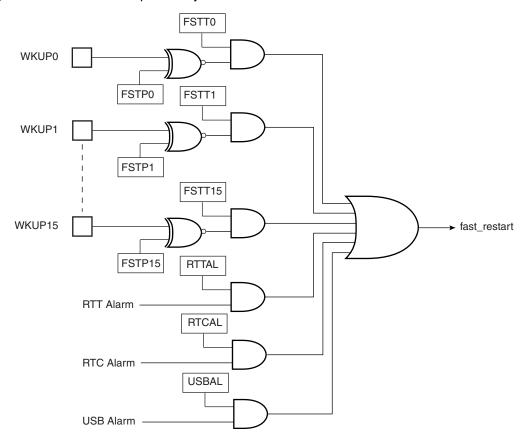
Table 4-4. 48-pin SAM3S4/2/1A Pinout

Iable	40-piii 3Aivi334/2/		
1	ADVREF		13
2	GND		14
3	PB0/AD4		15
4	PB1/AD5		16
5	PB2/AD6		17
6	PB3/AD7		18
7	VDDIN		19
8	VDDOUT		20
9	PA17/PGMD5/ AD0		21
10	PA18/PGMD6/ AD1		22
11	PA19/PGMD7/ AD2		23
12	PA20/AD3		24

13	VDDIO		
14	PA16/PGMD4		
15	PA15/PGMD3		
16	PA14/PGMD2		
17	PA13/PGMD1		
18	VDDCORE		
19	PA12/PGMD0		
20	PA11/PGMM3		
21	PA10/PGMM2		
22	PA9/PGMM1		
23	PA8/XOUT32/		
	PGMM0		
24	PA7/XIN32/		
24	PGMNVALID		

25	TDI/PB4	
26	PA6/PGMNOE	
27	PA5/PGMRDY	
28	PA4/PGMNCMD	
29	NRST	
30	TST	
31	PA3	
32	PA2/PGMEN2	
33	VDDIO	
34	GND	
35	PA1/PGMEN1	
36	PA0/PGMEN0	

37	TDO/TRACESWO/ PB5	
38	JTAGSEL	
39	TMS/SWDIO/PB6	
40	TCK/SWCLK/PB7	
41	VDDCORE	
42	ERASE/PB12	
43	DDM/PB10	
44	DDP/PB11	
45	XOUT/PB8	
46	XIN/PB9/PGMCK	
47	VDDIO	
48	VDDPLL	


Note: The bottom pad of the QFN package must be connected to ground.

5.7 Fast Startup

The device allows the processor to restart in a few microseconds while the processor is in wait mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up inputs (WKUP0 to 15 + SM + RTC + RTT).

The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast start-up signal to the Power Management Controller. As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded 4/8/12 MHz fast RC oscillator, switches the master clock on this 4MHz clock and reenables the processor clock.

Figure 5-5. Fast Start-Up Circuitry

6.3 Test Pin

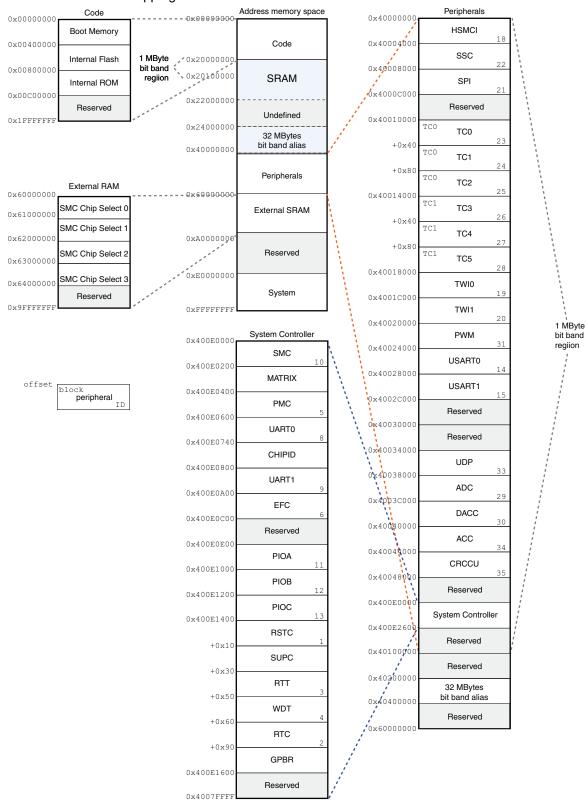
The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the SAM3S series. The TST pin integrates a permanent pull-down resistor of about 15 k Ω to GND, so that it can be left unconnected for normal operations. To enter fast programming mode, see the Fast Flash Programming Interface (FFPI) section. For more on the manufacturing and test mode, refer to the "Debug and Test" section of the product datasheet.

6.4 NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset signal to the external components or asserted low externally to reset the microcontroller. It will reset the Core and the peripherals except the Backup region (RTC, RTT and Supply Controller). There is no constraint on the length of the reset pulse and the reset controller can guarantee a minimum pulse length. The NRST pin integrates a permanent pull-up resistor to VDDIO of about 100 k Ω By default, the NRST pin is configured as an input.

6.5 ERASE Pin

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read as logic level 1). It integrates a pull-down resistor of about 100 k Ω to GND, so that it can be left unconnected for normal operations.


This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high during less than 100 ms, it is not taken into account. The pin must be tied high during more than 220 ms to perform a Flash erase operation.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE pin is not configured as a PIO pin. If the ERASE pin is used as a standard I/O, startup level of this pin must be low to prevent unwanted erasing. Please refer to Section 11.2 "Peripheral Signal Multiplexing on I/O Lines" on page 43. Also, if the ERASE pin is used as a standard I/O output, asserting the pin to low does not erase the Flash.

8. Product Mapping

Figure 8-1. SAM3S Product Mapping

9.1.3.9 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered when TST and PA0 and PA1are tied low.

9.1.3.10 SAM-BA® Boot

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the UART and USB.

The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

9.1.3.11 GPNVM Bits

The SAM3S features two GPNVM bits that can be cleared or set respectively through the commands "Clear GPNVM Bit" and "Set GPNVM Bit" of the EEFC User Interface.

Table 9-2. General Purpose Non-volatile Memory Bits

GPNVMBit[#]	Function
0	Security bit
1	Boot mode selection

9.1.4 Boot Strategies

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory layout can be changed via GPNVM.

A general-purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.

The GPNVM bit can be cleared or set respectively through the commands "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EEFC User Interface.

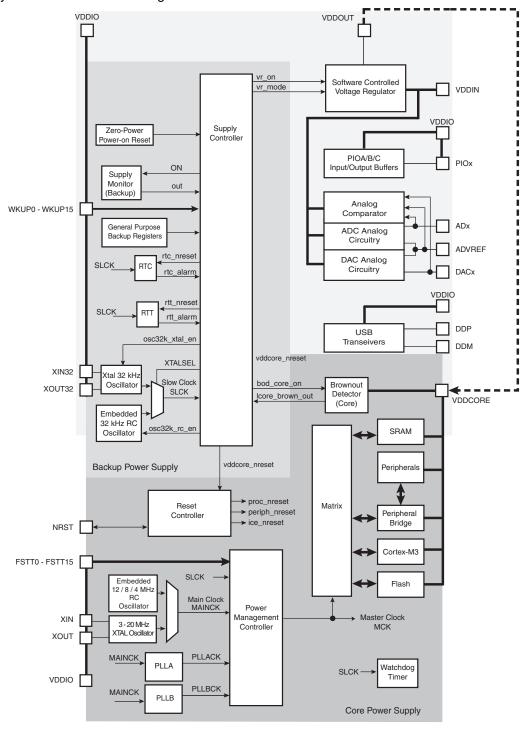
Setting GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM. Asserting ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by default.

9.2 External Memories

The SAM3S features an External Bus Interface to provide the interface to a wide range of external memories and to any parallel peripheral.

9.2.1 Static Memory Controller

- 8-bit Data Bus
- Up to 24-bit Address Bus (up to 16 MBytes linear per chip select)
- Up to 4 chip selects, Configurable Assignment
- Multiple Access Modes supported
 - Chip Select, Write enable or Read enable Control Mode



10. System Controller

The System Controller is a set of peripherals, which allow handling of key elements of the system, such as power, resets, clocks, time, interrupts, watchdog, etc...

See the system controller block diagram in Figure 10-1 on page 35.

Figure 10-1. System Controller Block Diagram

 ${\sf FSTT0} - {\sf FSTT15} \ are \ possible \ {\sf Fast \ Startup \ Sources}, \ generated \ by \ WKUP0-WKUP15 \ Pins, but are not physical pins.$

SAM3S Summary

The reset circuitry is based on a zero-power power-on reset cell and a brownout detector cell. The zero-power power-on reset allows the Supply Controller to start properly, while the software-programmable brownout detector allows detection of either a battery discharge or main voltage loss.

The Slow Clock generator is based on a 32 kHz crystal oscillator and an embedded 32 kHz RC oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the crystal oscillator and select it as the Slow Clock source.

The Supply Controller starts up the device by sequentially enabling the internal power switches and the Voltage Regulator, then it generates the proper reset signals to the core power supply.

It also enables to set the system in different low power modes and to wake it up from a wide range of events.

10.5 Clock Generator

The Clock Generator is made up of:

- One Low Power 32768Hz Slow Clock oscillator with bypass mode
- One Low-Power RC oscillator
- One 3-20 MHz Crystal Oscillator, which can be bypassed
- One Fast RC oscillator factory programmed, 3 output frequencies can be selected: 4, 8 or 12 MHz. By default 4 MHz is selected.
- One 60 to 130 MHz PLL (PLLB) providing a clock for the USB Full Speed Controller
- One 60 to 130 MHz programmable PLL (PLLA), capable to provide the clock MCK to the processor and to the peripherals. The PLLA input frequency is from 3.5 to 20 MHz.

10.14 UART

- Two-pin UART
 - Implemented features are 100% compatible with the standard Atmel USART
 - Independent receiver and transmitter with a common programmable Baud Rate Generator
 - Even, Odd, Mark or Space Parity Generation
 - Parity, Framing and Overrun Error Detection
 - Automatic Echo, Local Loopback and Remote Loopback Channel Modes
 - Support for two PDC channels with connection to receiver and transmitter

10.15 PIO Controllers

- 3 PIO Controllers, PIOA, PIOB and PIOC (100-pin version only) controlling a maximum of 79 I/O Lines
- Fully programmable through Set/Clear Registers

Table 10-2. PIO available according to pin count

Version	48 pin	64 pin	100 pin
PIOA	21	32	32
PIOB	13	15	15
PIOC	-	-	32

- Multiplexing of four peripheral functions per I/O Line
- For each I/O Line (whether assigned to a peripheral or used as general purpose I/O)
 - Input change, rising edge, falling edge, low level and level interrupt
 - Debouncing and Glitch filter
 - Multi-drive option enables driving in open drain
 - Programmable pull-up or pull-down on each I/O line
 - Pin data status register, supplies visibility of the level on the pin at any time
- Synchronous output, provides Set and Clear of several I/O lines in a single write

11.2.1 PIO Controller A Multiplexing

Table 11-2. Multiplexing on PIO Controller A (PIOA)

I/O Line	Peripheral A	Peripheral B	Peripheral C	Extra Function	System Function	Comments
PA0	PWMH0	TIOA0	A17	WKUP0		High drive
PA1	PWMH1	TIOB0	A18	WKUP1		High drive
PA2	PWMH2	SCK0	DATRG	WKUP2		High drive
PA3	TWD0	NPCS3				High drive
PA4	TWCK0	TCLK0		WKUP3		
PA5	RXD0	NPCS3		WKUP4		
PA6	TXD0	PCK0				
PA7	RTS0	PWMH3			XIN32	
PA8	CTS0	ADTRG		WKUP5	XOUT32	
PA9	URXD0	NPCS1	PWMFI0	WKUP6		
PA10	UTXD0	NPCS2				
PA11	NPCS0	PWMH0		WKUP7		
PA12	MISO	PWMH1				
PA13	MOSI	PWMH2				
PA14	SPCK	PWMH3		WKUP8		
PA15	TF	TIOA1	PWML3	WKUP14/PIODCEN1		
PA16	TK	TIOB1	PWML2	WKUP15/PIODCEN2		
PA17	TD	PCK1	PWMH3	AD0		
PA18	RD	PCK2	A14	AD1		
PA19	RK	PWML0	A15	AD2/WKUP9		
PA20	RF	PWML1	A16	AD3/WKUP10		
PA21	RXD1	PCK1		AD8		64/100-pin versions
PA22	TXD1	NPCS3	NCS2	AD9		64/100-pin versions
PA23	SCK1	PWMH0	A19	PIODCCLK		64/100-pin versions
PA24	RTS1	PWMH1	A20	PIODC0		64/100-pin versions
PA25	CTS1	PWMH2	A23	PIODC1		64/100-pin versions
PA26	DCD1	TIOA2	MCDA2	PIODC2		64/100-pin versions
PA27	DTR1	TIOB2	MCDA3	PIODC3		64/100-pin versions
PA28	DSR1	TCLK1	MCCDA	PIODC4		64/100-pin versions
PA29	RI1	TCLK2	MCCK	PIODC5		64/100-pin versions
PA30	PWML2	NPCS2	MCDA0	WKUP11/PIODC6		64/100-pin versions
PA31	NPCS1	PCK2	MCDA1	PIODC7		64/100-pin versions

- Interval Measurement
- Pulse Generation
- Delay Timing
- Pulse Width Modulation
- Up/down Capabilities
- Each channel is user-configurable and contains:
 - Three external clock inputs
 - Five internal clock inputs
 - Two multi-purpose input/output signals
- Two global registers that act on all three TC Channels
- · Quadrature decoder
 - Advanced line filtering
 - Position / revolution / speed
- 2-bit Gray Up/Down Counter for Stepper Motor

12.7 Pulse Width Modulation Controller (PWM)

- One Four-channel 16-bit PWM Controller, 16-bit counter per channel
- Common clock generator, providing Thirteen Different Clocks
 - A Modulo n counter providing eleven clocks
 - Two independent Linear Dividers working on modulo n counter outputs
 - High Frequency Asynchronous clocking mode
- Independent channel programming
 - Independent Enable Disable Commands
 - Independent Clock Selection
 - Independent Period and Duty Cycle, with Double Buffering
 - Programmable selection of the output waveform polarity
 - Programmable center or left aligned output waveform
 - Independent Output Override for each channel
 - Independent complementary Outputs with 12-bit dead time generator for each channel
 - Independent Enable Disable Commands
 - Independent Clock Selection
 - Independent Period and Duty Cycle, with Double Buffering
- Synchronous Channel mode
 - Synchronous Channels share the same counter
 - Mode to update the synchronous channels registers after a programmable number of periods
- Connection to one PDC channel
 - Offers Buffer transfer without Processor Intervention, to update duty cycle of synchronous channels
- independent event lines which can send up to 4 triggers on ADC within a period

- Programmable Fault Input providing an asynchronous protection of outputs
- Stepper motor control (2 Channels)

12.8 High Speed Multimedia Card Interface (HSMCI)

- 4-bit or 1-bit Interface
- Compatibility with MultiMedia Card Specification Version 4.3
- Compatibility with SD and SDHC Memory Card Specification Version 2.0
- Compatibility with SDIO Specification Version V1.1.
- Compatibility with CE-ATA Specification 1.1
- · Cards clock rate up to Master Clock divided by 2
- Boot Operation Mode support
- High Speed mode support
- Embedded power management to slow down clock rate when not used
- HSMCI has one slot supporting
 - One MultiMediaCard bus (up to 30 cards) or
 - One SD Memory Card
 - One SDIO Card
- Support for stream, block and multi-block data read and write

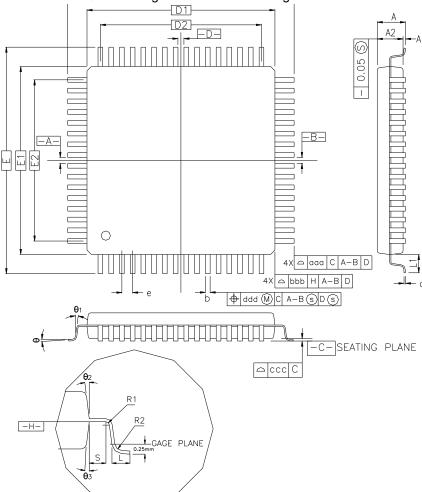
12.9 USB Device Port (UDP)

- USB V2.0 full-speed compliant, 12 Mbits per second.
- Embedded USB V2.0 full-speed transceiver
- Embedded 2688-byte dual-port RAM for endpoints
- · Eight endpoints
 - Endpoint 0: 64 bytes
 - Endpoint 1 and 2: 64 bytes ping-pong
 - Endpoint 3: 64 bytes
 - Endpoint 4 and 5: 512 bytes ping-pong
 - Endpoint 6 and 7: 64 bytes ping-pong
 - Ping-pong Mode (two memory banks) for Isochronous and bulk endpoints
- Suspend/resume logic
- Integrated Pull-up on DDP
- Pull-down resistor on DDM and DDP when disabled

12.10 Analog-to-Digital Converter (ADC)

- up to 16 Channels,
- 10/12-bit resolution
- up to 1 MSample/s
- programmable sequence of conversion on each channel
- · Integrated temperature sensor
- Single ended/differential conversion

- output selection:
 - Internal signal
 - external pin
 - selectable inverter
- Interrupt on:
 - Rising edge, Falling edge, toggle


12.14 Cyclic Redundancy Check Calculation Unit (CRCCU)

- 32-bit cyclic redundancy check automatic calculation
- CRC calculation between two addresses of the memory

13. Package Drawings

The SAM3S series devices are available in LQFP, QFN and LFBGA packages.

Figure 13-1. 100-lead LQFP Package Mechanical Drawing

COTROL	DIMENS	IONS A	RE IN	MILLIM	ETERS.		
SYMBOL	М	ILLIMETI	INCH				
SIMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	١	
А	_		1.60	_	_	0	
A1	0.05		0.15	0.002	(
A2	1.35	1.40	1.45	0.053	0.055		
D	16.00 BSC.		0.630 BSC				
D1	1	4.00 B	0.551 BSC				
E	1	5.00 B	SC.	0.630 BS			
E1	1-	4.00 B	SC.	0.551 BS			
R ₂	0.08	_	0.20	0.003	_	0	
R ₁	0.08		_	0.003	_	Γ.	
Θ	0.	3.5°	7*	0.	3.5°		
Θ1	0,		_	0.	_	Γ.	
θг	11*	12*	13°	1 1°	12*	Γ	
θз	11'	12*	13°	1 1°	12*	Γ	
С	0.09		0.20	0.004	_	0	
L	0.45	0.60	0.75	0.018	0.024	0	
L ₁	1	.00 RE	F	0.	0.024 C		
S	0.20	_	_	0.008	_		
Ь	0.17	0.20	0.27	0.007	0.008	C	
е	0.50 BSC.			0.020 BSC.			
D2	12.00			0.472			
E2		12.00	0.472				
	TOLERA	NCES	OF FO	RM AND	POSIT	ΓIC	
aaa		0.20	0.008				
bbb		0.20	0.008				
ССС		0.08	0.003				

Note: 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026 for additional information.

Figure 13-2. 100-ball LFBGA Package Drawing

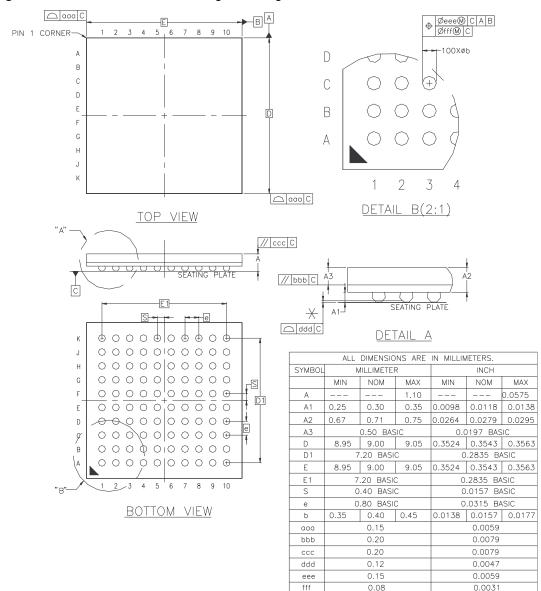


Figure 13-4. 48-pad QFN Package

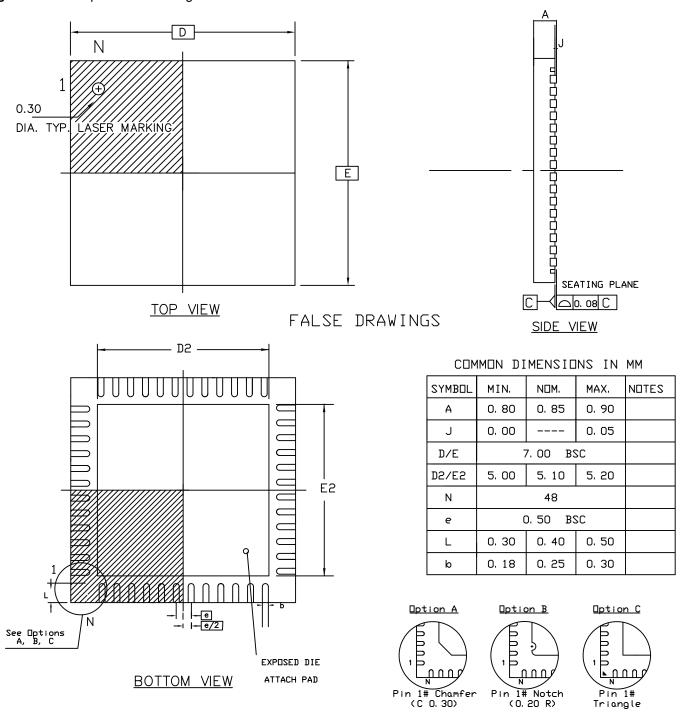


 Table 13-3.
 48-pad QFN Package Dimensions (in mm)

		Millimeter		Inch			
Symbol		Millilletei		inch			
	Min	Nom	Max	Min	Nom	Max	
Α	_	_	090	_	_	0.035	
A1	_	_	0.050	_	_	0.002	
A2	_	0.65	0.70	_	0.026	0.028	
A3	0.20 REF			0.008 REF			
b	0.18	0.20	0.23	0.007	0.008	0.009	
D	7.00 bsc			0.276 bsc			
D2	5.45	5.60	5.75	0.215	0.220	0.226	
Е	7.00 bsc			0.276 bsc			
E2	5.45	5.60	5.75	0.215	0.220	0.226	
L	0.35	0.40	0.45	0.014	0.016	0.018	
е	0.50 bsc			0.020 bsc			
R	0.09	_	_	0.004	_	_	
Tolerances of Form and Position							
aaa	0.10			0.004			
bbb		0.10		0.004			
CCC		0.05		0.002			

