

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	S12Z
Core Size	16-Bit
Speed	50MHz
Connectivity	CANbus, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 40V
Data Converters	A/D 9x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	64-HLQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s912zvml64f2mkhr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

22.6	Interrupts		87	3
------	------------	--	----	---

Appendix A MCU Electrical Specifications

A.1	General	. 875
A.2	General Purpose I/O Characteristics	. 888
A.3	Supply Currents	. 890
A.4	ADC Calibration Configuration	. 893

Appendix B

CPMU Electrical Specifications (VREG, OSC, IRC, PLL)

B .1	VREG Electrical Specifications	895
B.2	Reset and Stop Timing Characteristics	897
B.3	IRC and OSC Electrical Specifications	898
B .4	Phase Locked Loop	. 898

Appendix C ADC Electrical Specifications

C.1	ADC Operating Characteristics	901
-----	-------------------------------	-----

Appendix D

LIN/HV PHY Electrical Specifications

D.1	Static Electrical Characteristics.	907
D.2	Dynamic Electrical Characteristics	908

Appendix E

GDU Electrical Specifications

E.1	GDU specifications for devices featuring GDU V4 or V6	911
E.2	Preliminary GDU specifications for devices featuring GDU V5	914

Appendix F

NVM Electrical Parameters

F.1	NVM Timing Parameters	. 919
F.2	NVM Reliability Parameters	. 926
F.3	NVM Factory Shipping Condition	. 926

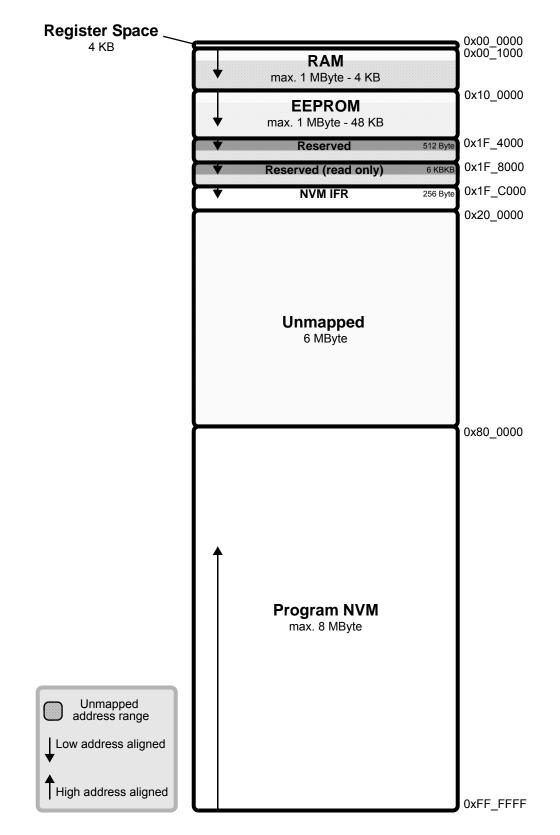
Appendix G BATS Electrical Specifications

G.1	Static Electrical Characteristics	927
G.2	Dynamic Electrical Characteristics	928

Address	Module	Size (Bytes)
0x06E0-0x06EF	Reserved	16
0x06F0-0x06F7	BATS	8
0x06F8-0x06FF	Reserved	8
0x0700–0x0707	SCI0	8
0x0708–0x070F	Reserved	8
0x0710–0x0717	SCI1	8
0x0718–0x077F	Reserved	104
0x0780–0x0787 SPI0		8
0x0788–0x07FF	Reserved	120
0x0800-0x083F	CAN0	64
0x0840–0x097F	Reserved	320
0x0980-0x0987	LINPHY (S12ZVML derivatives)	8
0x0980–0x0987	HV Physical Interface (S12ZVM32, S12ZVM16 derivatives)	8
0x0988–0x098F	Reserved	8
0x0990-0x0997	CANPHY (ZVMC256 only)	8
0x0998-0x0FFF	Reserved	1640

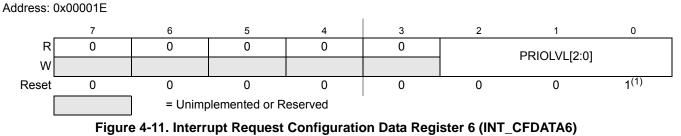
Table 1-5. Module Register Address Ranges

1. Reading from the first 16 locations in this reserved range returns undefined data

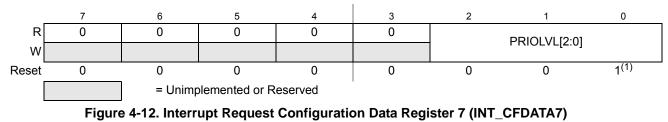

2. Address range = 0x0690-0x069F on Maskset N06E

NOTE

Reserved register space shown above is not allocated to any module. This register space is reserved for future use. Writing to these locations has no effect. Read access to these locations returns zero.


1.6.1 Flash Module

This device family instantiates different flash modules, depending on derivative. The flash documentation for the all devices is featured in the FTMRZ section.



Chapter 4 Interrupt (S12ZINTV0)

1. Please refer to the notes following the PRIOLVL[2:0] description below.

Address: 0x00001F

1. Please refer to the notes following the PRIOLVL[2:0] description below.

Read: Anytime

Write: Anytime

Table 4-6. INT_CFDATA0-7 Field Descriptions

Field	Description			
2–0 PRIOLVL[2:0]	 Interrupt Request Priority Level Bits — The PRIOLVL[2:0] bits configure the interrupt request priority level of the associated interrupt request. Out of reset all interrupt requests are enabled at the lowest active level ("1"). Please also refer to Table 4-7 for available interrupt request priority levels. Note: Write accesses to configuration data registers of unused interrupt channels are ignored and read accesses return all 0s. For information about what interrupt channels are used in a specific MCU, please refer to the Device Reference Manual for that MCU. 			
	Note: When non I-bit maskable request vectors are selected, writes to the corresponding INT_CFDATA registers are ignored and read accesses return all 0s. The corresponding vectors do not have configuration data registers associated with them.			
	Note: Write accesses to the configuration register for the spurious interrupt vector request (vector base + 0x0001DC) are ignored and read accesses return 0x07 (request is handled by the CPU, PRIOLVL = 7).			

Table 4-7.	Interrupt	Priority	v Levels
	micriupi	THOM	

Priority	PRIOLVL2	PRIOLVL1	PRIOLVL0	Meaning	
	0	0	0	Interrupt request is disabled	
low	0	0	1	Priority level 1	
	0	1	0	Priority level 2	
	0	1	1	Priority level 3	

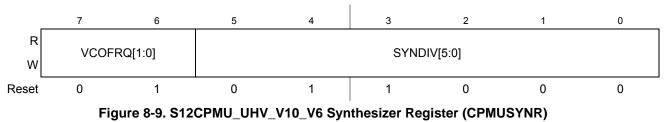

Field	Description
6 PORF	 Power on Reset Flag — PORF is set to 1 when a power on reset occurs. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 Power on reset has not occurred. 1 Power on reset has occurred.
5 LVRF	 Low Voltage Reset Flag — LVRF is set to 1 when a low voltage reset occurs on the VDD, VDDF or VDDX domain. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 Low voltage reset has not occurred. 1 Low voltage reset has occurred.
3 COPRF	 COP Reset Flag — COPRF is set to 1 when a COP (Computer Operating Properly) reset occurs. Refer to 8.5.5, "Computer Operating Properly Watchdog (COP) Reset and 8.3.2.12, "S12CPMU_UHV_V10_V6 COP Control Register (CPMUCOP) for details. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 COP reset has not occurred. 1 COP reset has occurred.
1 OMRF	Oscillator Clock Monitor Reset Flag — OMRF is set to 1 when a loss of oscillator (crystal) clock occurs. Refer to8.5.3, "Oscillator Clock Monitor Reset for details. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 Loss of oscillator clock reset has not occurred. 1 Loss of oscillator clock reset has occurred.
0 PMRF	 PLL Clock Monitor Reset Flag — PMRF is set to 1 when a loss of PLL clock occurs. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 Loss of PLL clock reset has not occurred. 1 Loss of PLL clock reset has occurred.

Table 8-2. CPMURFLG Field Descriptions

8.3.2.4 S12CPMU_UHV_V10_V6 Synthesizer Register (CPMUSYNR)

The CPMUSYNR register controls the multiplication factor of the PLL and selects the VCO frequency range.

Module Base + 0x0004

Read: Anytime

Write: If PROT=0 (CPMUPROT register) and PLLSEL=1 (CPMUCLKS register), then write anytime. Else write has no effect.

NOTE

Writing to this register clears the LOCK and UPOSC status bits.

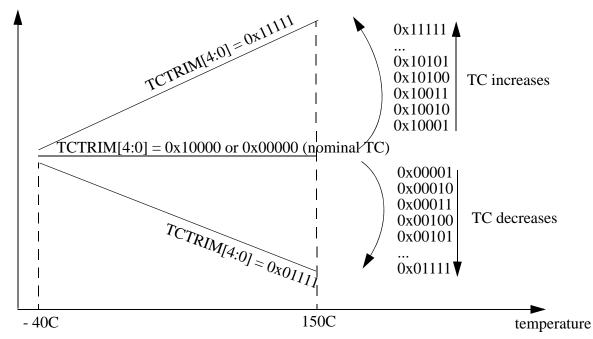
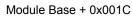
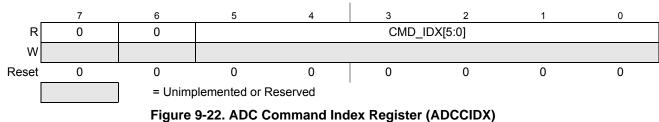


Figure 8-34. Influence of TCTRIM[4:0] on the Temperature Coefficient


NOTE


The frequency is not necessarily linear with the temperature (in most cases it will not be). The above diagram is meant only to give the direction (positive or negative) of the variation of the TC, relative to the nominal TC.

Setting TCTRIM[4:0] at 0x00000 or 0x10000 does not mean that the temperature coefficient will be zero. These two combinations basically switch off the TC compensation module, which results in the nominal TC of the IRC1M.

9.5.2.19 ADC Command Index Register (ADCCIDX)

It is important to note that these bits do not represent absolute addresses instead it is a sample index (object size 32bit).

Read: Anytime

Write: NA

Field	Description
5-0 CMD_IDX [5:0]	ADC Command Index Bits — These bits represent the command index value for the conversion commands relative to the two CSL start addresses in the memory map. These bits do not represent absolute addresses instead it is a sample index (object size 32bit). See also Section 9.6.3.2.2, "Introduction of the two Command Sequence Lists (CSLs) for more details.

11.2 External Signal Description

The TIM16B4CV3 module has a selected number of external pins. Refer to device specification for exact number.

11.2.1 IOC3 - IOC0 — Input Capture and Output Compare Channel 3-0

Those pins serve as input capture or output compare for TIM16B4CV3 channel.

NOTE

For the description of interrupts see Section 11.6, "Interrupts".

11.3 Memory Map and Register Definition

This section provides a detailed description of all memory and registers.

11.3.1 Module Memory Map

The memory map for the TIM16B4CV3 module is given below in Figure 11-3. The address listed for each register is the address offset. The total address for each register is the sum of the base address for the TIM16B4CV3 module and the address offset for each register.

11.3.2 Register Descriptions

This section consists of register descriptions in address order. Each description includes a standard register diagram with an associated figure number. Details of register bit and field function follow the register diagrams, in bit order.

Register Name		Bit 7	6	5	4	3	2	1	Bit 0
0x0000 TIOS	R W	RESERV ED	RESERV ED	RESERV ED	RESERV ED	IOS3	IOS2	IOS1	IOS0
0x0001	R	0	0	0	0	0	0	0	0
CFORC	W	RESERV ED	RESERV ED	RESERV ED	RESERV ED	FOC3	FOC2	FOC1	FOC0
0x0004 TCNTH	R W	TCNT15	TCNT14	TCNT13	TCNT12	TCNT11	TCNT10	TCNT9	TCNT8
0x0005 TCNTL	R W	TCNT7	TCNT6	TCNT5	TCNT4	TCNT3	TCNT2	TCNT1	TCNT0
0x0006	R	TEN	TSWAI	TSFRZ	TFFCA	PRNT	0	0	0
TSCR1	W		IOWAI	101112	IIIOA				
0x0007 TTOV	R W	RESERV ED	RESERV ED	RESERV ED	RESERV ED	TOV3	TOV2	TOV1	TOV0
0x0008	R	RESERV	RESERV	RESERV	RESERV	RESERV	RESERV	RESERV	RESERV
TCTL1	W	ED	ED	ED	ED	ED	ED	ED	ED

Only bits related to implemented channels are valid.

Figure 11-3. TIM16B4CV3 Register Summary (Sheet 1 of 2)

Offset Address	Register				
0x00X0	IDR0 — Identifier Register 0	R/W			
0x00X1	IDR1 — Identifier Register 1	R/W			
0x00X2	IDR2 — Identifier Register 2	R/W			
0x00X3	IDR3 — Identifier Register 3	R/W			
0x00X4	DSR0 — Data Segment Register 0	R/W			
0x00X5	DSR1 — Data Segment Register 1	R/W			
0x00X6	DSR2 — Data Segment Register 2	R/W			
0x00X7	DSR3 — Data Segment Register 3	R/W			
0x00X8	DSR4 — Data Segment Register 4	R/W			
0x00X9	DSR5 — Data Segment Register 5	R/W			
0x00XA	DSR6 — Data Segment Register 6	R/W			
0x00XB	DSR7 — Data Segment Register 7	R/W			
0x00XC	DLR — Data Length Register	R/W			
0x00XD	TBPR — Transmit Buffer Priority Register ⁽¹⁾	R/W			
0x00XE	TSRH — Time Stamp Register (High Byte)	R			
0x00XF	TSRL — Time Stamp Register (Low Byte)	R			

1. Not applicable for receive buffers

Figure 13-24 shows the common 13-byte data structure of receive and transmit buffers for extended identifiers. The mapping of standard identifiers into the IDR registers is shown in Figure 13-25.

All bits of the receive and transmit buffers are 'x' out of reset because of RAM-based implementation¹. All reserved or unused bits of the receive and transmit buffers always read 'x'.

1. Exception: The transmit buffer priority registers are 0 out of reset.

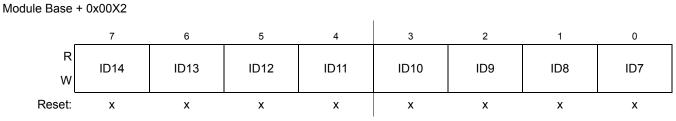


Figure 13-28. Identifier Register 2 (IDR2) — Extended Identifier Mapping

Table 13-28.	IDR2 Register	Field Descr	iptions — Ex	tended

Field	Description
7-0 ID[14:7]	Extended Format Identifier — The identifiers consist of 29 bits (ID[28:0]) for the extended format. ID28 is the most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an identifier is defined to be highest for the smallest binary number.

Module Base + 0x00X3

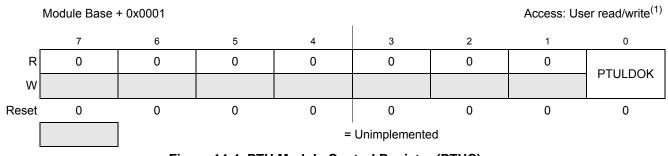

	7	6	5	4	3	2	1	0
R W	ID6	ID5	ID4	ID3	ID2	ID1	ID0	RTR
Reset:	х	x	х	x	х	х	х	x

Figure 13-29. Identifier Register 3 (IDR3) — Extended Identifier Mapping

Table 13-29. IDR3 Register Field Descriptions — Extended

Field	Description
7-1 ID[6:0]	Extended Format Identifier — The identifiers consist of 29 bits (ID[28:0]) for the extended format. ID28 is the most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an identifier is defined to be highest for the smallest binary number.
0 RTR	 Remote Transmission Request — This flag reflects the status of the remote transmission request bit in the CAN frame. In the case of a receive buffer, it indicates the status of the received frame and supports the transmission of an answering frame in software. In the case of a transmit buffer, this flag defines the setting of the RTR bit to be sent. 0 Data frame 1 Remote frame

14.3.2.1 PTU Module Enable Register (PTUE)


^{1.} Read: Anytime

Write: Anytime

Table 14-3. PTUE Register Field Description

Field	Description
6 PTUFRZ	 PTU Stop in Freeze Mode — In freeze mode, there is an option to disable the input clock to the PTU time base counter. If this bit is set, whenever the MCU is in freeze mode, the input clock to the time base counter is disabled. In this way, the counters can be stopped while in freeze mode so that once normal program flow is continued, the counter is re-enabled. 0 Allow time base counter to continue while in freeze mode 1 Disable time base counter clock whenever the part is in freeze mode
1 TG1EN	 Trigger Generator 1 Enable — This bit enables trigger generator 1. 0 Trigger generator 1 is disabled 1 Trigger generator 1 is enabled
0 TG0EN	 Trigger Generator 0 Enable — This bit enables trigger generator 0. 0 Trigger generator 0 is disabled 1 Trigger generator 0 is enabled

14.3.2.2 PTU Module Control Register (PTUC)

Figure 14-4. PTU Module Control Register (PTUC)

1. Read: Anytime

Write: write 1 anytime, write 0 if TG0EN and TG1EN is cleared

Chapter 15 Pulse Width Modulator with Fault Protection (PMF15B6CV4)

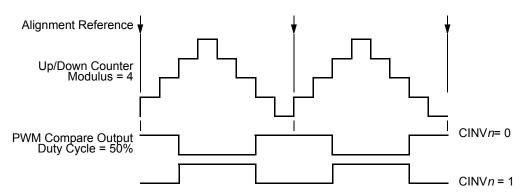


Figure 15-42. Center-Aligned PWM Output

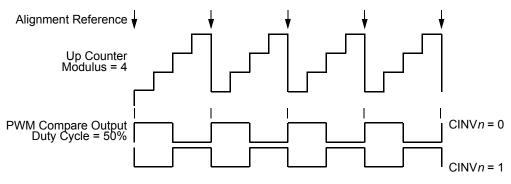


Figure 15-43. Edge-Aligned PWM Output

15.4.3.2 Period

A PWM period is determined by the value written to the PWM counter modulo registers PMFMODx.

The PWM counter is an up/down counter in center-aligned mode. In this mode the PWM highest output resolution is two core clock cycles.

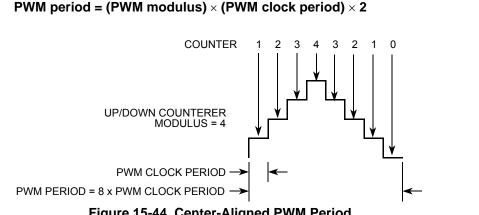
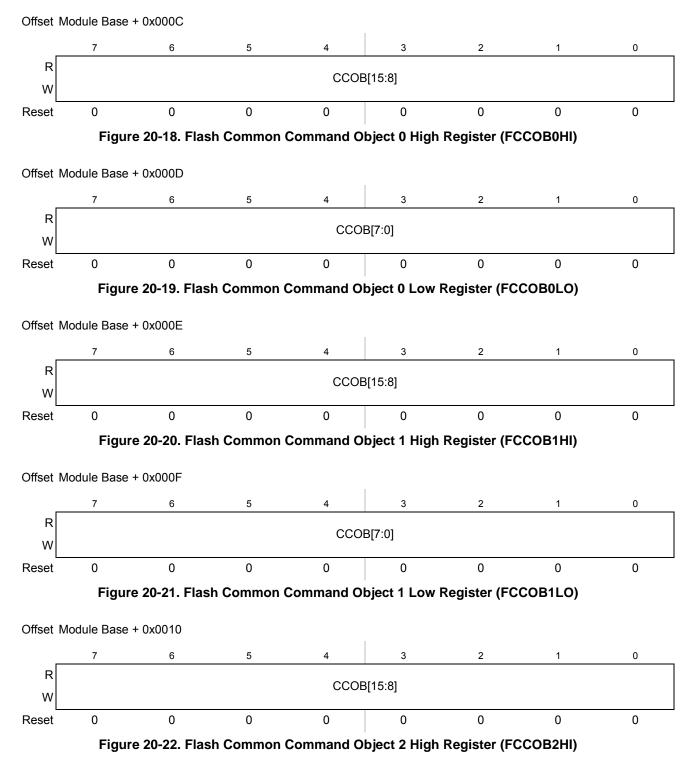


Figure 15-44. Center-Aligned PWM Period


MC9S12ZVM Family Reference Manual Rev. 2.11

Eqn. 15-4

Chapter 20 Flash Module (S12ZFTMRZ)

20.3.2.13 Flash Common Command Object Registers (FCCOB)

The FCCOB is an array of six words. Byte wide reads and writes are allowed to the FCCOB registers.

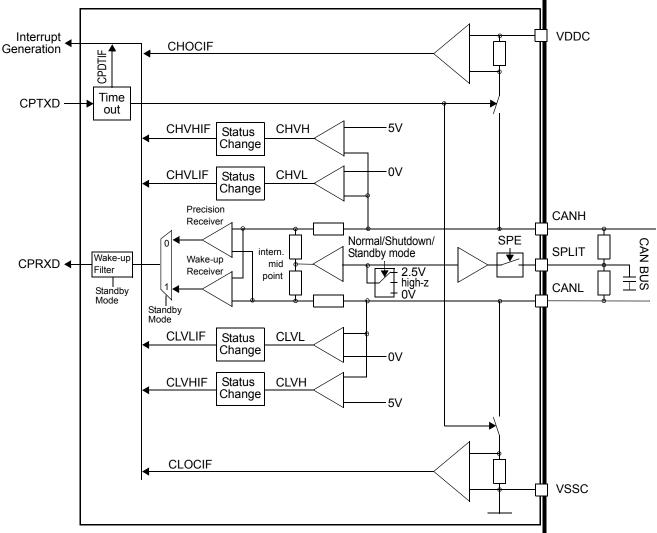


Figure 21-1. CAN Physical Layer Block Diagram

21.2 External Signal Description

Table 21-2 shows the external pins associated with the CAN Physical Layer.

Name	Function
CANH	CAN Bus High Pin
SPLIT	2.5 V Termination Pin
CANL	CAN Bus Low Pin
VDDC	Supply Pin for CAN Physical Layer
VSSC	Ground Pin for CAN Physical Layer

Table 21-2. CAN Physical Layer Signal Properties

Chapter 22 Pulse-Width Modulator (S12PWM8B8CV2)

Register Name	Bit 7	6	5	4	3	2	1	Bit 0		
0x0023 R PWMDTY7 ² W	Bit 7	6	5	4	3	2	1	Bit 0		
0x0024 R	0	0	0	0	0	0	0	0		
RESERVED W	/									
0x0025 R	0	0	0	0	0	0	0	0		
RESERVED W	/									
0x0026 R	0	0	0	0	0	0	0	0		
RESERVED W	/									
0x0027 R	0	0	0	0	0	0	0	0		
RESERVED W										
		= Unimplemented or Reserved								

Figure 22-2. The scalable PWM Register Summary (Sheet 4 of 4)

1. The related bit is available only if corresponding channel exists.

2. The register is available only if corresponding channel exists.

22.3.2.1 PWM Enable Register (PWME)

Each PWM channel has an enable bit (PWMEx) to start its waveform output. When any of the PWMEx bits are set (PWMEx = 1), the associated PWM output is enabled immediately. However, the actual PWM waveform is not available on the associated PWM output until its clock source begins its next cycle due to the synchronization of PWMEx and the clock source.

NOTE

The first PWM cycle after enabling the channel can be irregular.

An exception to this is when channels are concatenated. Once concatenated mode is enabled (CONxx bits set in PWMCTL register), enabling/disabling the corresponding 16-bit PWM channel is controlled by the low order PWMEx bit. In this case, the high order bytes PWMEx bits have no effect and their corresponding PWM output lines are disabled.

While in run mode, if all existing PWM channels are disabled (PWMEx-0=0), the prescaler counter shuts off for power savings.

Module Base + 0x0000

	7	6	5	4	3	2	1	0			
R W	PWME7	PWME6	PWME5	PWME4	PWME3	PWME2	PWME1	PWME0			
Reset	0	0	0	0	0	0	0	0			

Figure 22-3. PWM Enable Register (PWME)

Read: Anytime

Chapter 22 Pulse-Width Modulator (S12PWM8B8CV2)

The clock source of each PWM channel is determined by PCLKx bits in PWMCLK (see Section 22.3.2.3, "PWM Clock Select Register (PWMCLK)) and PCLKABx bits in PWMCLKAB as shown in Table 22-5 and Table 22-6.

22.3.2.8 PWM Scale A Register (PWMSCLA)

PWMSCLA is the programmable scale value used in scaling clock A to generate clock SA. Clock SA is generated by taking clock A, dividing it by the value in the PWMSCLA register and dividing that by two.

Clock SA = Clock A / (2 * PWMSCLA)

NOTE

When PWMSCLA = 00, PWMSCLA value is considered a full scale value of 256. Clock A is thus divided by 512.

Any value written to this register will cause the scale counter to load the new scale value (PWMSCLA).

Module Base + 0x0008

Read: Anytime

Write: Anytime (causes the scale counter to load the PWMSCLA value)

22.3.2.9 PWM Scale B Register (PWMSCLB)

PWMSCLB is the programmable scale value used in scaling clock B to generate clock SB. Clock SB is generated by taking clock B, dividing it by the value in the PWMSCLB register and dividing that by two.

Clock SB = Clock B / (2 * PWMSCLB)

NOTE

When PWMSCLB = \$00, PWMSCLB value is considered a full scale value of 256. Clock B is thus divided by 512.

Any value written to this register will cause the scale counter to load the new scale value (PWMSCLB).

Module Base + 0x0009

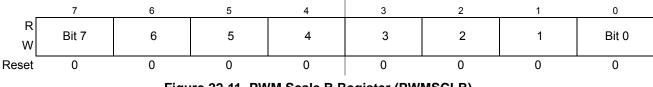


Figure 22-11. PWM Scale B Register (PWMSCLB)

Read: Anytime

Write: Anytime (causes the scale counter to load the PWMSCLB value).

	freescale	 PREESCALE SEMICONDUCTOR, NC. ALL RIGHTS RESERVED. ELECTRONC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY TRAIL INCODECURENT CONTROL REPOSITORY. PRINTED VERSION TRAIL TO DOCUMENT CONTROL REPOSITORY. "CONTROLLED COPY" IN RED. 	MECHANICAL OUTLINE DO NOT SCALE THIS DRAWING	
N(1. 2.	INTERPRET DI	RE IN MILLIMETERS. Mensions and tolerances And d to be determined a	AT DATUM PLANE H.	
<u></u>	, DIMENSION DC Shall Not C Than 0.08 M	AUSE THE LEAD WIDTH TO E M. DAMBAR CANNOT BE LOC.	G PLANE C. ROTRUSION. ALLOWABLE DAMBAR PROTRUSIO XCEED THE MAXIMUM DIMENSION BY MORE ATED ON THE LOWER RADIUS OR THE FOOT. D ADJACENT LEAD OR PROTRUSION 0.07 M	
	PER SIDE. DIM MISMATCH. EXACT SHAPE THESE DIMENS 0.25 MM FRC	MENSIONS ARE MAXIMUM PLA OF EACH CORNER IS OPTION	ECTION OF THE LEAD BETWEEN 0.10 MM AN	.D
TITLE:	0.5 F	X 12 X 1.4 PKG, Pitch, 80LD, 6 exposed pad	DOCUMENT NO: 98ASA00505D R STANDARD: NON-JEDEC SHEET:	REV: X2

M.6 0x0380-0x039F FTMRZ128K512 (continued)

Address	Name		7	6	5	4	3	2	1	0
0x0384	FCNFG	R W	CCIE	0	ERSAREQ	IGNSF	WSTA	T[1:0]	FDFD	FSFD
0x0385	FERCNFG	R W	0	0	0	0	0	0	0	SFDIE
0x0386	FSTAT	R W	CCIF	0	ACCERR	FPVIOL	MGBUSY	RSVD	MGSTAT1	MGSTAT0
0x0387	FERSTAT	R W	0	0	0	0	0	0	DFDF	SFDIF
0x0388	FPROT	R W	FPOPEN	RNV6	FPHDIS	FPHS1	FPHS0	FPLDIS	FPLS1	FPLS0
0x0389	DFPROT	R W	DPOPEN	0	0	0	DPS3	DPS2	DPS1	DPS0
0x038A	FOPT	R W	NV7	NV6	NV5	NV4	NV3	NV2	NV1	NV0
0x038B	FRSV1	R W	0	0	0	0	0	0	0	0
0x038C	FCCOB0HI	R W	CCOB15	CCOB14	CCOB13	CCOB12	CCOB11	CCOB10	CCOB9	CCOB8
0x038D	FCCOB0LO	R W	CCOB7	CCOB6	CCOB5	CCOB4	CCOB3	CCOB2	CCOB1	CCOB0
0x038E	FCCOB1HI	R W	CCOB15	CCOB14	CCOB13	CCOB12	CCOB11	CCOB10	CCOB9	CCOB8
0x038F	FCCOB1LO	R W	CCOB7	CCOB6	CCOB5	CCOB4	CCOB3	CCOB2	CCOB1	CCOB0
0x0390	FCCOB2HI	R W	CCOB15	CCOB14	CCOB13	CCOB12	CCOB11	CCOB10	CCOB9	CCOB8
0x0391	FCCOB2LO	R W	CCOB7	CCOB6	CCOB5	CCOB4	CCOB3	CCOB2	CCOB1	CCOB0
0x0392	FCCOB3HI	R W	CCOB15	CCOB14	CCOB13	CCOB12	CCOB11	CCOB10	CCOB9	CCOB8
0x0393	FCCOB3LO	R W	CCOB7	CCOB6	CCOB5	CCOB4	CCOB3	CCOB2	CCOB1	CCOB0
0x0394	FCCOB4HI	R W	CCOB15	CCOB14	CCOB13	CCOB12	CCOB11	CCOB10	CCOB9	CCOB8
0x0395	FCCOB4LO	R W	CCOB7	CCOB6	CCOB5	CCOB4	CCOB3	CCOB2	CCOB1	CCOB0

M.12 0x05C0-0x05FF TIM0

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0
0x05D2	TIM0TC1H	R W Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0x05D3	TIM0TC1L	R W Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x05D4	TIM0TC2H	R W Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0x05D5	TIM0TC2L	R W Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x05D6	TIM0TC3H	R W Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0x05D7	TIM0TC3L	R W Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x05D8– 0x05DF	Reserved	R W							
0x05E0	Reserved	R W							
0x05E1	Reserved	R W							
0x05E2	Reserved	R W							
0x05E3	Reserved	R W							
0x05E4– 0x05EB	Reserved	R W							
0x05EC	TIM0OCPD	R W				OCPD3	OCPD2	OCPD1	OCPD0
0x05ED	Reserved	R W							
0x05EE	TIM0PTPSR	R W PTPS7	PTPS6	PTPS5	PTPS4	PTPS3	PTPS2	PTPS1	PTPS0
0x05EF	Reserved	R W							

M.17 0x06F0-0x06F7 BATS

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0
0x06F0	BATE	R 0 W	BVHS	BVLS	6[1:0]	BSUAE	BSUSE	0	0
0x06F1	BATSR	R 0 W	0	0	0	0	0	BVHC	BVLC
0x06F2	BATIE	R 0 W	0	0	0	0	0	BVHIE	BVLIE
0x06F3	BATIF	R 0 W	0	0	0	0	0	BVHIF	BVLIF
0x06F4 - 0x06F5	Reserved	R 0 W	0	0	0	0	0	0	0
0x06F6 - 0x06F7	Reserved	R W Reserved	Reserved						

M.18 0x0700-0x0707 SCI0

Address	Name	-	Bit 7	6	5	4	3	2	1	Bit 0
0x0700	SCI0BDH ¹	R W	SBR15	SBR14	SBR13	SBR12	SBR11	SBR10	SBR9	SBR8
0x0701	SCI0BDL ¹	R W	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
0x0702	SCI0CR1 ¹	R W	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT
0x0700	SCI0ASR1 ²	R W	RXEDGIF	0	0	0	0	BERRV	BERRIF	BKDIF
0x0701	SCI0ACR1 ²	R W	RXEDGIE	0	0	0	0	0	BERRIE	BKDIE
0x0702	SCI0ACR2 ²	R W	IREN	TNP1	TNP0	0	0	BERRM1	BERRM0	BKDFE
0x0703	SCI0CR2	R W	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
0x0704	SCI0SR1	R W	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF
0x0705	SCI0SR2	R W	AMAP	0	0	TXPOL	RXPOL	BRK13	TXDIR	RAF