E·XFL

NXP USA Inc. - MKE06Z128VLH4 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	LVD, PWM, WDT
Number of I/O	58
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b; D/A 2x6b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mke06z128vlh4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Orde	ering parts4					
	1.1	Determ	ining valid orderable parts4				
2	Part	identific	ation				
	2.1	Descrip	tion4				
	2.2	Format.					
	2.3	Fields	4				
	2.4	Exampl	e5				
3	Para	meter cla	assification5				
4	Rati	tings6					
	4.1	4.1 Thermal handling ratings					
	re handling ratings						
	4.3	ESD ha	ndling ratings6				
	4.4	Voltage	and current operating ratings7				
5	Gen	eral					
	5.1	Nonswi	tching electrical specifications7				
		5.1.1	DC characteristics7				
		5.1.2	Supply current characteristics				
		5.1.3	EMC performance				
	5.2	Switchi	ng specifications16				
		5.2.1	Control timing				
		5.2.2	FTM module timing17				

	5.3	Therma	1 specifications					
		5.3.1	Thermal operating requirements					
		5.3.2	Thermal characteristics					
6	Perij	pheral op	perating requirements and behaviors					
	6.1	Core me	odules					
		6.1.1	SWD electricals20					
	6.2	Externa	l oscillator (OSC) and ICS characteristics21					
	6.3	NVM sj	pecifications					
	6.4	Analog.						
		6.4.1	ADC characteristics					
		6.4.2	Analog comparator (ACMP) electricals27					
	6.5	Commu	inication interfaces					
		6.5.1	SPI switching specifications					
		6.5.2	MSCAN					
7	Dim	ensions						
	7.1	Obtaini	ng package dimensions					
8	Pino	ut						
	8.1	Signal r	nultiplexing and pin assignments					
	8.2	Device pin assignment						
9	Revi	sion hist	ory37					

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **nxp.com** and perform a part number search for the following device numbers: KE06Z.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q KE## A FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KE##	Kinetis family	• KE06
A	Key attribute	• Z = M0+ core
FFF	Program flash memory size	• 128 = 128 KB
R	Silicon revision	 (Blank) = Main A = Revision after main
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	• LD = 44 LQFP (10 mm x 10 mm)

Table continues on the next page...

4 Ratings

4.1 Thermal handling ratings

Symbol	ol Description		Max.	Unit	Notes
T _{STG}	T _{STG} Storage temperature		150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

4.3 ESD handling ratings

Symbol	Symbol Description		Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 125°C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test.
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass ±100 mA I-test with I_{DD} current limit at 400 mA.
 - I/O pins pass +50/-100 mA I-test with I_{DD} current limit at 1000 mA.
 - Supply groups pass 1.5 V_{ccmax}.
 - RESET pin was only tested with negative I-test due to product conditioning requirement.

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol	Description	Min.	Max.	Unit
V _{DD} Digital supply voltage			6.0	V
I _{DD}	Maximum current into V _{DD}	—	120	mA
V _{IN}	Input voltage except true open drain pins	-0.3	V _{DD} + 0.3 ¹	V
	Input voltage of true open drain pins	-0.3	6	V
Ι _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

 Table 2.
 Voltage and current operating ratings

1. Maximum rating of V_{DD} also applies to $V_{\text{IN}}.$

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Γ	Symbol	С	Descriptions	Min	Typical ¹	Max	Unit	
		_	Operating voltage	_	2.7	_	5.5	V

Table continues on the next page ...

Symbol	С		Descriptions		Min	Typical ¹	Max	Un
V _{OH}	Р	Output	All I/O pins, except PTA2	5 V, I _{load} = -5 mA	V _{DD} – 0.8		_	V
	С	high voltage	and PTA3, standard- drive strength	3 V, $I_{load} = -2.5 \text{ mA}$	$V_{DD} - 0.8$	—	—	V
	Р		High current drive pins,	5 V, $I_{load} = -20 \text{ mA}$	$V_{\text{DD}} - 0.8$	—	_	V
	С		high-drive strength ²	3 V, I _{load} = -10 mA	V _{DD} – 0.8	—		V
I _{OHT}	D Output		Max total I _{OH} for all ports	5 V	—	—	-100	mA
		high current		3 V	—	—	-60	
V _{OL}	Р	Output	All I/O pins, standard-	5 V, I_{load} = 5 mA		—	0.8	V
	С	low voltage	drive strength	3 V, I_{load} = 2.5 mA	_	—	0.8	V
	Р	Vollago	High current drive pins,	5 V, I _{load} =20 mA	_	—	0.8	V
	С		high-drive strength ²	3 V, I _{load} = 10 mA	—	—	0.8	V
I _{OLT}	D	Output	Max total I _{OL} for all ports	5 V	—	—	100	mA
		low current		3 V	—	—	60	
V _{IH} P	Р	Input	All digital inputs	4.5≤V _{DD} <5.5 V	$0.65 \times V_{DD}$	—	_	V
		high voltage		2.7≤V _{DD} <4.5 V	$0.70 \times V_{DD}$	—	_	
V _{IL}	Р	Input low voltage	All digital inputs	4.5≤V _{DD} <5.5 V	—	—	0.35 × V _{DD}	V
				2.7≤V _{DD} <4.5 V	—	_	$0.30 \times V_{DD}$	
V _{hys}	С	Input hysteresi s	All digital inputs	—	$0.06 \times V_{DD}$	—	_	m\
ll _{in} l	Р	Input leakage current	Per pin (pins in high impedance input mode)	$V_{IN} = V_{DD} \text{ or } V_{SS}$	_	0.1	1	μA
{INTOT}	С	Total leakage combine d for all port pins	Pins in high impedance input mode	$V{IN} = V_{DD}$ or V_{SS}	-	_	2	μA
R _{PU}	Р	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Р	Pullup resistors	PTA2 and PTA3 pins	—	30.0	-	60.0	k۵
I _{IC}	D	DC	Single pin limit	$V_{\rm IN}$ < $V_{\rm SS}$, $V_{\rm IN}$ >	-2		2	m/
		injection current ^{4,} 5, 6	Total MCU limit, includes sum of all stressed pins	V _{DD}	-5	_	25	
C _{In}	С	Input	capacitance, all pins	_	_		7	pF
V _{RAM}	С	-	M retention voltage		2.0			V

Table 3.	DC characteristics	(continued)
----------	--------------------	-------------

1. Typical values are measured at 25 °C. Characterized, not tested.

- 2. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0 (64-pin and 80-pin packages only), and PTH1 (64-pin and 80-pin packages only) support high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}. PTA2 and PTA3 are true open drain I/O pins that are internally clamped to V_{SS}.
- 5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).

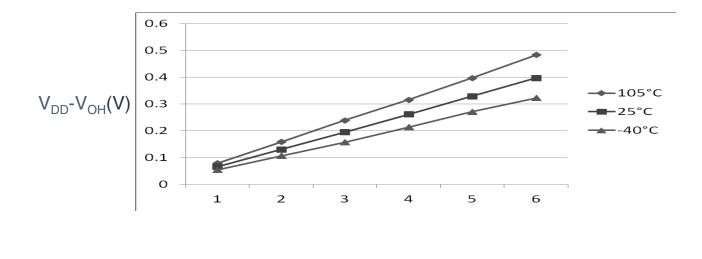

Symbol	С	Desc	ription	Min	Тур	Max	Unit
V _{POR}	D	POR re-ar	rm voltage ¹	1.5	1.75	2.0	V
V _{LVDH}	С	threshold-hig	voltage detect jh range (LVDV 1) ²	4.2	4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold— high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С		Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		low-voltage ng hysteresis	_	100	_	mV
V _{LVDL}	С	threshold-lov	voltage detect w range (LVDV 0)	2.56	2.61	2.66	V
V _{LVW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVW2L}	С	warning threshold—	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVW3L}	С	— low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С		/-voltage detect eresis	—	40		mV
V _{HYSWL}	С		low-voltage hysteresis	_	80	—	mV
V _{BG}	Р	Buffered ban	idgap output 3	1.14	1.16	1.18	V

Table 4. LVD and POR specification

1. Maximum is highest voltage that POR is guaranteed.

2. Rising thresholds are falling threshold + hysteresis.

3. voltage Factory trimmed at V_{DD} = 5.0 V, Temp = 25 °C

I_{OH}(mA)

Figure 1. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 5 V)

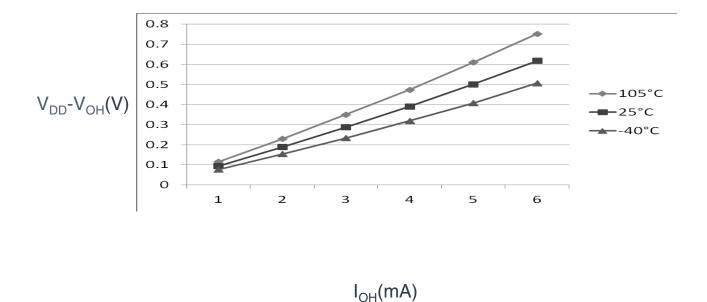
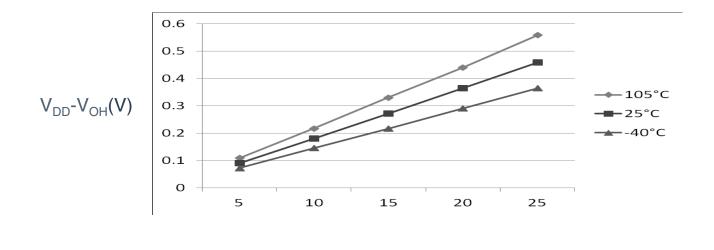
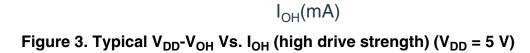
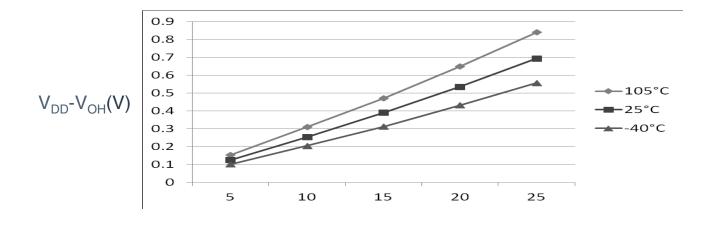





Figure 2. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 3 V)



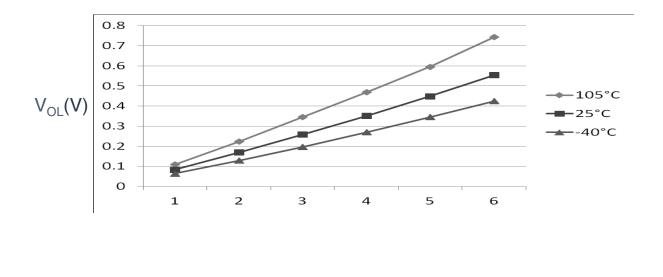

I_{OH}(mA)

Figure 4. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 3 V)

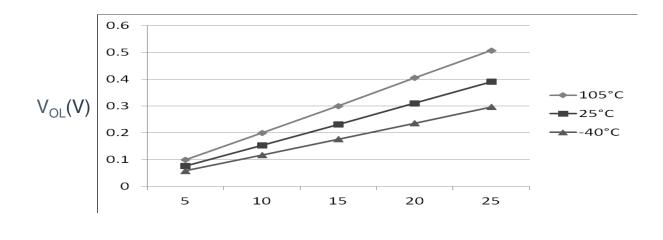

I_{OL}(mA)

Figure 5. Typical V_{OL} Vs. I_{OL} (standard drive strength) (V_{DD} = 5 V)

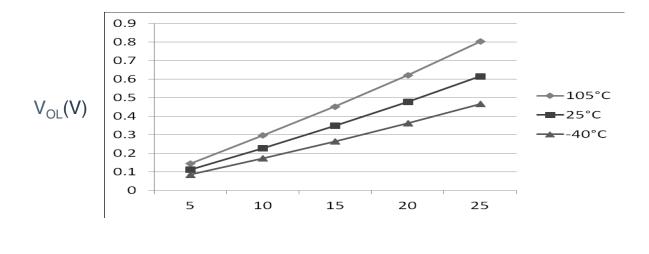

I_{OL}(mA)

Figure 6. Typical V_{OL} Vs. I_{OL} (standard drive strength) (V_{DD} = 3 V)

I_{OL}(mA)

Figure 7. Typical V_{OL} Vs. I_{OL} (high drive strength) (V_{DD} = 5 V)

 $I_{OL}(mA) \label{eq:IOL}$ Figure 8. Typical V_{OL} Vs. I_{OL} (high drive strength) (V_{DD} = 3 V)

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
С	Wait mode current FEI	WI _{DD}	48/24 MHz	5	8.4	_	mA	-40 to 105 °C
Р	mode, all modules clocks enabled		24/24 MHz		6.5	7.2		
С	enabled		12/12 MHz		4.3	_		
С			1/1 MHz		2.4			
С			48/24 MHz	3	8.3	_		
Р			24/24 MHz		6.4	7		
С			12/12 MHz		4.2	_		
С			1/1 MHz		2.3	_		
Р	Stop mode supply current	SI _{DD}		5	2	105	μA	-40 to 105 °C
Р	no clocks active (except 1 kHz LPO clock) ³			3	1.9	95		-40 to 105 °C
С	ADC adder to Stop	—	—	5	86	_	μA	-40 to 105 °C
С	ADLPC = 1			3	82	_		
	ADLSMP = 1							
	ADCO = 1							
	MODE = 10B							
	ADICLK = 11B							
С	ACMP adder to Stop	—	_	5	12	_	μA	-40 to 105 °C
С				3	12		1	
С	LVD adder to Stop ⁴		—	5	130	_	μA	-40 to 105 °C
С				3	125	_]	

Table 5. Supply current characteristics (continued)

1. Data in Typical column was characterized at 5.0 V, 25 $^{\circ}\text{C}$ or is typical recommended value.

2. The Max current is observed at high temperature of 105 °C.

3. RTC adder cause <1 µA I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.

4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following applications notes, available on **nxp.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers

Switching specifications

- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

5.1.3.1 EMC radiated emissions operating behaviors Table 6. EMC radiated emissions operating behaviors for 80-pin LQFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	6	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	6	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	11	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	5	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	N ³	—	2, 4

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2. $V_{DD} = 5.0 \text{ V}, \text{ T}_{A} = 25 \text{ °C}, \text{ f}_{OSC} = 8 \text{ MHz} \text{ (crystal)}, \text{ f}_{SYS} = 40 \text{ MHz}, \text{ f}_{BUS} = 20 \text{ MHz}$
- 3. IEC/SAE Level Maximums: N≤12 dBµV, M≤18 dBµV, K≤30 dBµV, I ≤36 dBµV, H≤42 dBµV.
- 4. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2 Switching specifications

5.2.1 Control timing

Num	С	Rating	I	Symbol	Min	Typical ¹	Мах	Unit
1	D	System and core clock	f _{Sys}	DC		48	MHz	
2	Р	Bus frequency ($t_{cyc} = 1/f_{Bus}$)	f _{Bus}	DC	_	24	MHz	
3	Р	Internal low power oscillato	f _{LPO}	0.67	1.0	1.25	KHz	
4	D	External reset pulse width ²		t _{extrst}	1.5 ×	_	_	ns
					t _{cyc}			
5	D	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
6	D	IRQ pulse width Asynchronous path ²		tı∟ıн	100	—	—	ns
	D]	Synchronous path ³	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns

Table 7. Control timing

Table continues on the next page...

Num	С	Rating		Symbol	Min	Typical ¹	Max	Unit
7	D	Keyboard interrupt pulse width	Asynchronous path ²	tı∟ıн	100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 imes t_{cyc}$	_	—	ns
8	С	Port rise and fall time -	_	t _{Rise}	—	10.2	—	ns
	С	Normal drive strength (load = 50 pF) ⁴		t _{Fall}	_	9.5	—	ns
	С	Port rise and fall time -	_	t _{Rise}	—	5.4	—	ns
	С	high drive strength (load = 50 pF) ⁴		t _{Fall}		4.6	—	ns

Table 7. Control timing (continued)

- 1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.
- 3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 105 °C.

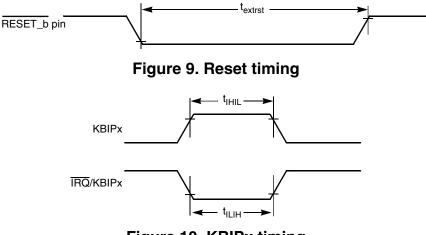


Figure 10. KBIPx timing

5.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

С	Function	Symbol	Min	Мах	Unit
D	Timer clock frequency	f _{Timer}	f _{Bus}	f _{Sys}	Hz
D	External clock frequency	f _{TCLK}	0	f _{Timer} /4	Hz

Table 8. FTM input timing

Table continues on the next page...

5.3.2 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Board type	Symbol	Description	64 LQFP	64 QFP	44 LQFP	80 LQFP	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	71	61	75	57	°C/W	1, 2
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	53	47	53	44	°C/W	1, 3
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	59	50	62	47	°C/W	1, 3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	46	41	47	38	°C/W	1, 3
_	R _{θJB}	Thermal resistance, junction to board	35	32	34	28	°C/W	4
_	R _{θJC}	Thermal resistance, junction to case	20	23	20	15	°C/W	5
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	5	8	5	3	°C/W	6

Table 10. Thermal attributes

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

The average chip-junction temperature (T_J) in $^{\circ}C$ can be obtained from:

 $T_J = T_A + (P_D \times \theta_{JA})$

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient)(continued)

Num	С	C	haracteristic	Symbol	Min	Typical ¹	Мах	Unit
2	D	Lo	bad capacitors	C1, C2		See Note ²		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F	—	_	_	MΩ
			Low Frequency, High-Gain Mode		—	10	_	MΩ
			High Frequency, Low- Power Mode		—	1	_	MΩ
			High Frequency, High-Gain Mode	-	_	1	_	MΩ
4	D	Series resistor -	Low-Power Mode ³	R _S	—	0	_	kΩ
		Low Frequency	High-Gain Mode	Ī	_	200	_	kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ³	R _S		0	—	kΩ
	D	Series resistor -	4 MHz	Ī	_	0	_	kΩ
	D	High Frequency,	8 MHz	Ī	_	0	_	kΩ
	D	High-Gain Mode	16 MHz	Ī	—	0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000		ms
	С	time low range = 32.768 kHz	Low range, high gain		_	800		ms
	С	crystal; High	High range, low power	t _{CSTH}	_	3	_	ms
	С	range = 20 MHz crystal ^{4,5}	High range, high gain	-	_	1.5		ms
7	Т	Internal re	eference start-up time	t _{IRST}	—	20	50	μs
8	Р	Internal reference	e clock (IRC) frequency trim range	f _{int_t}	31.25	_	39.0625	kHz
9	Ρ	Internal reference clock frequency, factory trimmed [,]	T = 25 °C, V _{DD} = 5 V	f _{int_ft}	_	37.5	_	kHz
10	Р	DCO output frequency range	FLL reference = fint_t, flo, or fhi/RDIV	f _{dco}	40	_	50	MHz
11	Р	Factory trimmed internal oscillator accuracy	T = 25 °C, V _{DD} = 5 V	∆f _{int_ft}	-0.5	_	0.5	%
12	С	Deviation of IRC over	Over temperature range from -40 °C to 105°C	Δf_{int_t}	-1	_	0.5	%
		temperature when trimmed at T = 25 °C, $V_{DD} = 5 V$	Over temperature range from 0 °C to 105°C	Δf_{int_t}	-0.5	-	0.5	
13	С	Frequency accuracy of	Over temperature range from -40 °C to 105°C	$\Delta f_{dco_{ft}}$	-1.5	-	1	%
		DCO output using factory trim value	Over temperature range from 0 °C to 105°C	$\Delta f_{dco_{ft}}$	-1	_	1	

Table continues on the next page ...

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient)(continued)

Num	С	Characteristic	Symbol	Min	Typical ¹	Мах	Unit
14	С	FLL acquisition time ^{4,6}	t _{Acquire}	_	_	2	ms
15	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁷	C _{Jitter}		0.02	0.2	%f _{dco}

1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

- 2. See crystal or resonator manufacturer's recommendation.
- 3. Load capacitors (C_1 , C_2), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 4. This parameter is characterized and not tested on each device.
- 5. Proper PC board layout procedures must be followed to achieve specifications.
- This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

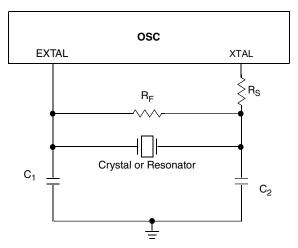


Figure 15. Typical crystal or resonator circuit

6.3 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash memories.

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase –40 °C to 105 °C	V _{prog/erase}	2.7	_	5.5	V
D	Supply voltage for read operation	V _{Read}	2.7		5.5	V

 Table 13.
 Flash characteristics

Table continues on the next page...

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **nxp.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin QFN	98ASA00473D
44-pin LQFP	98ASS23225W
64-pin QFP	98ASB42844B
64-pin LQFP	98ASS23234W
80-pin LQFP	98ASS23237W

8 Pinout

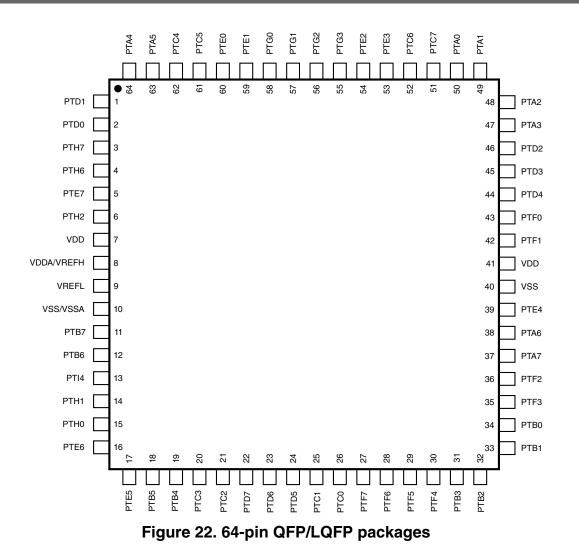
8.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

VSS and VSSA are internally connected.

VREFH and VDDA are internally connected in 64-pin packages.


PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 are high-current drive pins when operated as output.

PTA2 and PTA3 are true open-drain pins when operated as output.

Pinout

80 LQFP	64 LQFP /QFP	44 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	1	1	PTD1	DISABLED	PTD1	KBI0_P25	FTM2_CH3	SPI1_MOSI				
2	2	2	PTD0	DISABLED	PTD0	KBI0_P24	FTM2_CH2	SPI1_SCK				
3	3	_	PTH7	DISABLED	PTH7	KBI1_P31	PWT_IN1					
4	4	_	PTH6	DISABLED	PTH6	KBI1_P30	_					
5	_	_	PTH5	DISABLED	PTH5	KBI1_P29						
6	5	3	PTE7	DISABLED	PTE7	KBI1_P7	TCLK2		FTM1_CH1	CAN0_TX		
7	6	4	PTH2	DISABLED	PTH2	KBI1_P26	BUSOUT		FTM1_CH0	CAN0_RX		
8	7	5	VDD	VDD							VDD	
9	8	6	VDDA	VDDA						VREFH	VDDA	
10	_	_	VREFH	VREFH							VREFH	
11	9	7	VREFL	VREFL							VREFL	
12	10	8	VSS/ VSSA	VSS/ VSSA						VSSA	VSS	
13	11	9	PTB7	EXTAL	PTB7	KBI0_P15	I2C0_SCL				EXTAL	
14	12	10	PTB6	XTAL	PTB6	KBI0_P14	I2C0_SDA				XTAL	
15	13	11	PTI4	DISABLED	PTI4	_	IRQ					
16	_	_	PTI1	DISABLED	PTI1		IRQ	UART2_TX				
17	_	_	PTI0	DISABLED	PTIO		IRQ	UART2_RX				
18	14	_	PTH1	DISABLED	PTH1	KBI1_P25	FTM2_CH1					
19	15	_	PTH0	DISABLED	PTH0	KBI1_P24	FTM2_CH0					
20	16	_	PTE6	DISABLED	PTE6	KBI1_P6	_					
21	17	_	PTE5	DISABLED	PTE5	KBI1_P5						
22	18	12	PTB5	DISABLED	PTB5	KBI0_P13	FTM2_CH5	SPI0_PCS	ACMP1_OUT			
23	19	13	PTB4	NMI_b	PTB4	KBI0_P12	FTM2_CH4	SPI0_MISO	ACMP1_IN2	NMI_b		
24	20	14	PTC3	ADC0_SE11	PTC3	KBI0_P19	FTM2_CH3		ADC0_SE11			
25	21	15	PTC2	ADC0_SE10	PTC2	KBI0_P18	FTM2_CH2		ADC0_SE10			
26	22	16	PTD7	DISABLED	PTD7	KBI0_P31	UART2_TX					
27	23	17	PTD6	DISABLED	PTD6	KBI0_P30	UART2_RX					
28	24	18	PTD5	DISABLED	PTD5	KBI0_P29	PWT_IN0					
29	_	_	PTI6	DISABLED	PTI6	IRQ						
30	_	_	PTI5	DISABLED	PTI5	IRQ						
31	25	19	PTC1	ADC0_SE9	PTC1	KBI0_P17	FTM2_CH1		ADC0_SE9			
32	26	20	PTC0	ADC0_SE8	PTC0	KBI0_P16	FTM2_CH0		ADC0_SE8			
33	_	_	PTH4	DISABLED	PTH4	KBI1_P28	I2C1_SCL					
34	_	_	PTH3	DISABLED	PTH3	KBI1_P27	I2C1_SDA					
35	27	_	PTF7	ADC0_SE15	PTF7	KBI1_P15	1	1	ADC0_SE15			
36	28	_	PTF6	ADC0_SE14	PTF6	KBI1_P14			ADC0_SE14			
37	29	_	PTF5	ADC0_SE13	PTF5	KBI1_P13			ADC0_SE13			
38	30	_	PTF4	ADC0_SE12	PTF4	KBI1_P12			ADC0_SE12			
39	31	21	PTB3	ADC0_SE7	PTB3	KBI0_P11	SPI0_MOSI	FTM0_CH1	ADC0_SE7			
40	32	22	PTB2	ADC0_SE6	PTB2	KBI0_P10	SPI0_SCK	FTM0_CH0	ADC0_SE6			

Pinout

KE06 Sub-Family Data Sheet, Rev. 4, 07/2016

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2013-2016 NXP B.V.

Document Number MKE06P80M48SF0 Revision 4, 07/2016

