

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	LVD, PWM, WDT
Number of I/O	71
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b; D/A 2x6b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mke06z128vlk4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **nxp.com** and perform a part number search for the following device numbers: KE06Z.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q KE## A FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KE##	Kinetis family	• KE06
A	Key attribute	• Z = M0+ core
FFF	Program flash memory size	• 128 = 128 KB
R	Silicon revision	 (Blank) = Main A = Revision after main
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	• LD = 44 LQFP (10 mm x 10 mm)

Table continues on the next page...

KE06 Sub-Family Data Sheet, Rev. 4, 07/2016

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

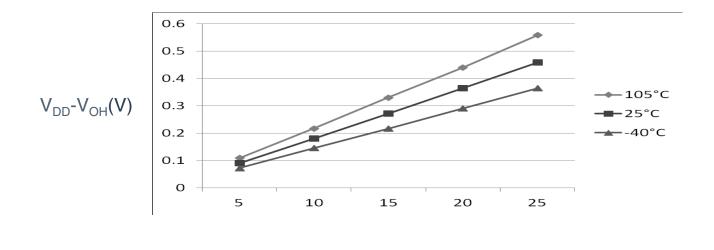
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

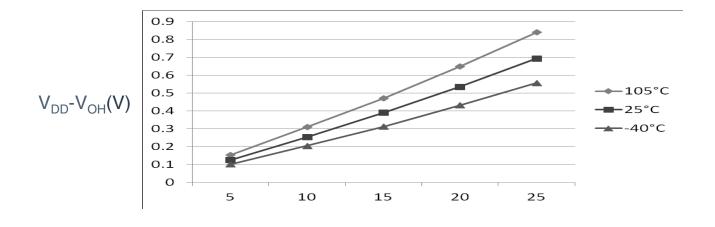
4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

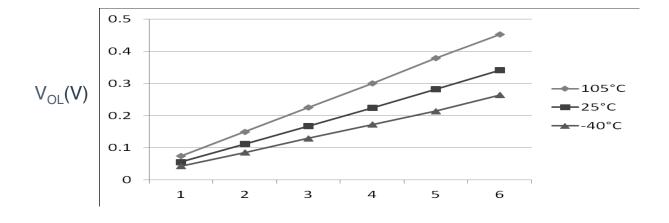

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 125°C	-100	+100	mA	3


1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test.
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass ±100 mA I-test with I_{DD} current limit at 400 mA.
 - I/O pins pass +50/-100 mA I-test with I_{DD} current limit at 1000 mA.
 - Supply groups pass 1.5 V_{ccmax}.
 - RESET pin was only tested with negative I-test due to product conditioning requirement.



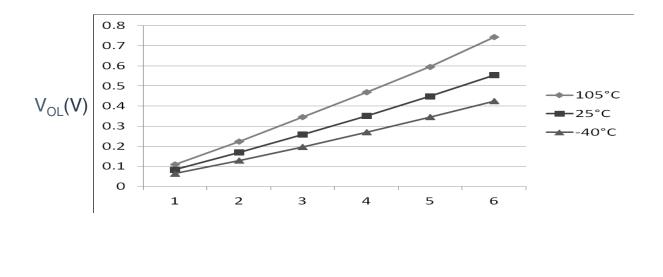

I_{OH}(mA)

Figure 4. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 3 V)

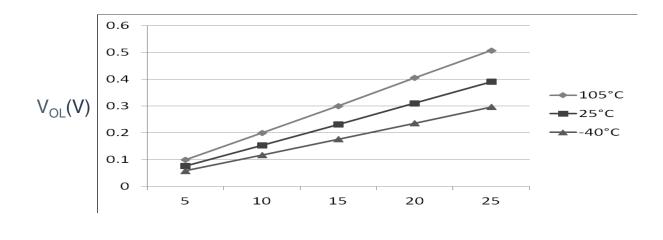

I_{OL}(mA)

Figure 5. Typical V_{OL} Vs. I_{OL} (standard drive strength) (V_{DD} = 5 V)

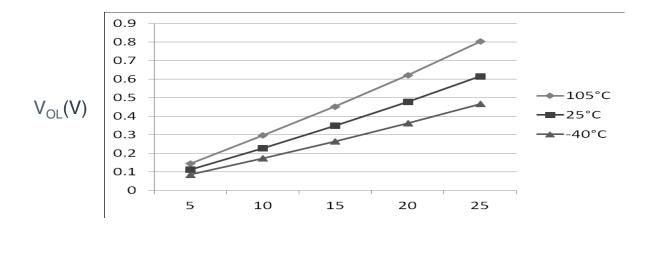

I_{OL}(mA)

Figure 6. Typical V_{OL} Vs. I_{OL} (standard drive strength) (V_{DD} = 3 V)

I_{OL}(mA)

Figure 7. Typical V_{OL} Vs. I_{OL} (high drive strength) (V_{DD} = 5 V)

 $I_{OL}(mA) \label{eq:IOL}$ Figure 8. Typical V_{OL} Vs. I_{OL} (high drive strength) (V_{DD} = 3 V)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
С	Run supply current FEI	RI _{DD}	48/24 MHz	5	11.1		mA	-40 to 105 °C
С	mode, all modules clocks enabled; run from flash		24/24 MHz		8			
С	enabled, full from hash		12/12 MHz		5			
С			1/1 MHz		2.4			
С			48/24 MHz	3	11			
С			24/24 MHz		7.9			
С			12/12 MHz		4.9	_		
			1/1 MHz		2.3			
С	Run supply current FEI	RI _{DD}	48/24 MHz	5	7.8	—	mA	-40 to 105 °C
С	mode, all modules clocks disabled and gated; run		24/24 MHz		5.5	—		
С	from flash		12/12 MHz		3.8	—		
С			1/1 MHz		2.3			
С			48/24 MHz	3	7.7			
С			24/24 MHz		5.4			
С			12/12 MHz		3.7			
С			1/1 MHz		2.2			
С	Run supply current FBE	RI _{DD}	48/24 MHz	5	14.7		mA	-40 to 105 °C
Р	mode, all modules clocks enabled; run from RAM		24/24 MHz		9.8	14.9		
С			12/12 MHz		6			
С			1/1 MHz		2.4			
С			48/24 MHz	3	14.6	—		
Р			24/24 MHz		9.6	12.8		
С			12/12 MHz		5.9			
С			1/1 MHz		2.3			
С	Run supply current FBE	RI _{DD}	48/24 MHz	5	11.4		mA	-40 to 105 °C
Р	mode, all modules clocks disabled and gated; run		24/24 MHz		7.7	12.5		
С	from RAM		12/12 MHz		4.7			
С			1/1 MHz		2.3			
С			48/24 MHz	3	11.3			
Р			24/24 MHz		7.6	9.5		
С			12/12 MHz		4.6			
			1/1 MHz		2.2			

Table 5. Supply current characteristics

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
С	Wait mode current FEI	WI _{DD}	48/24 MHz	5	8.4	_	mA	-40 to 105 °C
Р	mode, all modules clocks enabled		24/24 MHz		6.5	7.2		
С	enabled		12/12 MHz		4.3	_		
С			1/1 MHz		2.4			
С			48/24 MHz	3	8.3	_		
Р			24/24 MHz		6.4	7		
С			12/12 MHz		4.2	_		
С			1/1 MHz		2.3	_		
Р	Stop mode supply current	SI _{DD}		5	2	105	μA	-40 to 105 °C
Р	no clocks active (except 1 kHz LPO clock) ³			3	1.9	95		-40 to 105 °C
С	ADC adder to Stop	—	—	5	86	_	μA	-40 to 105 °C
С	ADLPC = 1			3	82	_		
	ADLSMP = 1							
	ADCO = 1							
	MODE = 10B							
	ADICLK = 11B							
С	ACMP adder to Stop	—	_	5	12	_	μA	-40 to 105 °C
С				3	12		1	
С	LVD adder to Stop ⁴		—	5	130	_	μA	-40 to 105 °C
С				3	125	_]	

Table 5. Supply current characteristics (continued)

1. Data in Typical column was characterized at 5.0 V, 25 $^{\circ}\text{C}$ or is typical recommended value.

2. The Max current is observed at high temperature of 105 °C.

3. RTC adder cause <1 µA I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.

4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following applications notes, available on **nxp.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers

KE06 Sub-Family Data Sheet, Rev. 4, 07/2016

Switching specifications

- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

5.1.3.1 EMC radiated emissions operating behaviors Table 6. EMC radiated emissions operating behaviors for 80-pin LQFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	6	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	6	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	11	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	5	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	N ³	—	2, 4

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2. $V_{DD} = 5.0 \text{ V}, \text{ T}_{A} = 25 \text{ °C}, \text{ f}_{OSC} = 8 \text{ MHz} \text{ (crystal)}, \text{ f}_{SYS} = 40 \text{ MHz}, \text{ f}_{BUS} = 20 \text{ MHz}$
- 3. IEC/SAE Level Maximums: N≤12 dBµV, M≤18 dBµV, K≤30 dBµV, I ≤36 dBµV, H≤42 dBµV.
- 4. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2 Switching specifications

5.2.1 Control timing

Num	С	Rating	J	Symbol	Min	Typical ¹	Max	Unit
1	D	System and core clock		f _{Sys}	DC	—	48	MHz
2	Р	Bus frequency $(t_{cyc} = 1/f_{Bus})$)	f _{Bus}	DC	_	24	MHz
3	Р	Internal low power oscillato	r frequency	f _{LPO}	0.67	1.0	1.25	KHz
4	D	External reset pulse width ²	External reset pulse width ²		1.5 ×	_	—	ns
					t _{cyc}			
5	D	Reset low drive		t _{rstdrv}	$34 imes t_{cyc}$	_	—	ns
6	D	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	—	_	ns
	D]	Synchronous path ³	t _{IHIL}	1.5 × t _{cyc}	_	—	ns

Table 7. Control timing

Num	С	Rating		Symbol	Min	Typical ¹	Max	Unit
7	D	Keyboard interrupt pulse width	Asynchronous path ²	tı∟ıн	100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 imes t_{cyc}$	_	—	ns
8	С	Port rise and fall time -	_	t _{Rise}	—	10.2	—	ns
	С	Normal drive strength (load = 50 pF) ⁴		t _{Fall}	_	9.5	—	ns
	С	Port rise and fall time -	_	t _{Rise}	—	5.4	—	ns
	С	high drive strength (load = 50 pF) ⁴		t _{Fall}		4.6		ns

Table 7. Control timing (continued)

- 1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.
- 3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 105 °C.

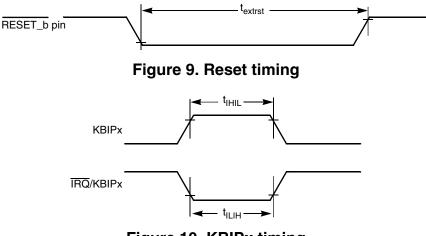


Figure 10. KBIPx timing

5.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

С	Function	Symbol	Min	Мах	Unit
D	Timer clock frequency	f _{Timer}	f _{Bus}	f _{Sys}	Hz
D	External clock frequency	f _{TCLK}	0	f _{Timer} /4	Hz

Table 8. FTM input timing

Thermal specifications

С	Function	Symbol	Min	Max	Unit
D	External clock period	t _{TCLK}	4	_	t _{Timer} , 1
D	External clock high time	t _{clkh}	1.5	_	t _{Timer} 1
D	External clock low time	t _{ciki}	1.5	_	t _{Timer} 1
D	Input capture pulse width	t _{ICPW}	1.5		t _{Timer} 1

 Table 8. FTM input timing (continued)

1. $t_{Timer} = 1/f_{Timer}$

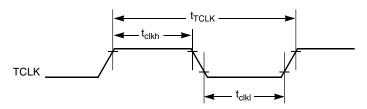


Figure 11. Timer external clock

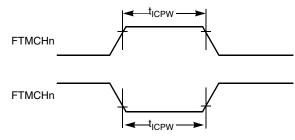


Figure 12. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal operating requirements

l able 9.	Inermai	operatin	g require	ments	

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J . The simplest method to determine T_J is: $T_J = T_A + \theta_{JA} x$ chip power dissipation

Peripheral operating requirements and behaviors

Where:

 T_A = Ambient temperature, °C

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

 $P_{\rm D} = K \div (T_{\rm J} + 273 \ ^{\circ}{\rm C})$

Solving the equations above for K gives:

 $\mathbf{K} = \mathbf{P}_{\mathrm{D}} \times (\mathbf{T}_{\mathrm{A}} + 273 \ ^{\circ}\mathrm{C}) + \mathbf{\theta}_{\mathrm{JA}} \times (\mathbf{P}_{\mathrm{D}})^{2}$

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for an known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving the above equations iteratively for any value of T_A .

6 Peripheral operating requirements and behaviors

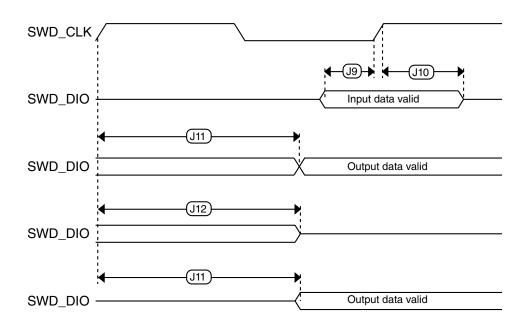
6.1 Core modules

6.1.1 SWD electricals

Table 11. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	5.5	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	24	MHz
J2	SWD_CLK cycle period	1/J1		ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	3		ns

Table continues on the next page...


KE06 Sub-Family Data Sheet, Rev. 4, 07/2016

Symbol	Description	Min.	Max.	Unit
J11	SWD_CLK high to SWD_DIO data valid	_	35	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

Table 11. SWD full voltage range electricals (continued)

6.2 External oscillator (OSC) and ICS characteristics

Table 12.	OSC and ICS specifications	(temperature range = -40 to 105 °C ambient)
-----------	----------------------------	---

Num	С	C	characteristic	Symbol	Min	Typical ¹	Мах	Unit
1	С	Crystal or	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	С	resonator frequency	High range (RANGE = 1)	f _{hi}	4	—	24	MHz

Table continues on the next page...

KE06 Sub-Family Data Sheet, Rev. 4, 07/2016

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient)(continued)

Num	С	C	haracteristic	Symbol	Min	Typical ¹	Мах	Unit
2	D	Lo	bad capacitors	C1, C2		See Note ²		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F	—	_	_	MΩ
			Low Frequency, High-Gain Mode		—	10	_	MΩ
			High Frequency, Low- Power Mode		—	1	_	MΩ
			High Frequency, High-Gain Mode	-	_	1	_	MΩ
4	D	Series resistor -	Low-Power Mode ³	R _S	—	0	_	kΩ
		Low Frequency	High-Gain Mode	Ī	_	200	_	kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ³	R _S		0	—	kΩ
	D	Series resistor -	Series resistor - 4 MHz		_	0	_	kΩ
	D	High Frequency, 8 MHz		Ī	_	0	_	kΩ
	D	High-Gain Mode	16 MHz	Ī	—	0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000		ms
	С	time low range = 32.768 kHz	Low range, high gain		_	800		ms
	С	crystal; High	High range, low power	t _{CSTH}	_	3	_	ms
	С	range = 20 MHz crystal ^{4,5}	High range, high gain	-	_	1.5		ms
7	Т	Internal re	eference start-up time	t _{IRST}	—	20	50	μs
8	Р	Internal reference	e clock (IRC) frequency trim range	f _{int_t}	31.25	_	39.0625	kHz
9	Ρ	Internal reference clock frequency, factory trimmed [,]	T = 25 °C, V _{DD} = 5 V	f _{int_ft}	_	37.5	_	kHz
10	Р	DCO output frequency range	FLL reference = fint_t, flo, or fhi/RDIV	f _{dco}	40	_	50	MHz
11	Р	Factory trimmed internal oscillator accuracy	T = 25 °C, V _{DD} = 5 V	∆f _{int_ft}	-0.5	_	0.5	%
12	С	Deviation of IRC over	Over temperature range from -40 °C to 105°C	Δf_{int_t}	-1	_	0.5	%
		temperature when trimmed at T = 25 °C, $V_{DD} = 5 V$	Over temperature range from 0 °C to 105°C	Δf_{int_t}	-0.5	_	0.5	
13	С	Frequency accuracy of	Over temperature range from -40 °C to 105°C	$\Delta f_{dco_{ft}}$	-1.5	-	1	%
		DCO output using factory trim value	Over temperature range from 0 °C to 105°C	$\Delta f_{dco_{ft}}$	-1	_	1	

Peripheral operating requirements and behaviors

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	NVM Bus frequency	f _{NVMBUS}	1	—	24	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	—	—	2605	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	_	—	2579	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	—	—	485	t _{cyc}
D	Read Once	t _{RDONCE}	—	—	464	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.13	0.31	ms
D	Program Flash (4 word)	t _{PGM4}	0.21	0.21	0.49	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
D	Erase All Blocks	t _{ERSALL}	95.42	100.18	100.30	ms
D	Erase Flash Block	t _{ERSBLK}	95.42	100.18	100.30	ms
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.09	ms
D	Unsecure Flash	t _{UNSECU}	95.42	100.19	100.31	ms
D	Verify Backdoor Access Key	t _{VFYKEY}	_	_	482	t _{cyc}
D	Set User Margin Level	t _{MLOADU}	_	—	415	t _{cyc}
С	FLASH Program/erase endurance T_L to T_H = -40 °C to 105 °C	n _{FLPE}	10 k	100 k	—	Cycles
С	Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

Table 13. Flash characteristics (continued)

1. Minimum times are based on maximum f_{NVMOP} and maximum f_{NVMBUS}

2. Typical times are based on typical f_{NVMOP} and maximum f_{NVMBUS}

3. Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging

4. $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual.

6.4 Analog

6.4.1 ADC characteristics

 Table 14. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symbol	Min	Typ ¹	Мах	Unit	Comment
Reference potential	• Low • High	V _{REFL} V _{REFH}	V _{SSA} V _{DDA} /2	_	V _{DDA} /2 V _{DDA}	V	—

Characteri stic	Conditions	Symbol	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V _{DDA}	2.7	—	5.5	V	—
voltage	Delta to V _{DD} (V _{DD} -V _{DDA})	ΔV_{DDA}	-100	0	+100	mV	_
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	_
Input capacitance		C _{ADIN}	—	4.5	5.5	pF	_
Input resistance		R _{ADIN}	_	3	5	kΩ	-
Analog source	 12-bit mode f_{ADCK} > 4 MHz 	R _{AS}	_		2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz			—	5		
	 10-bit mode f_{ADCK} > 4 MHz 		—	_	5		
	• f _{ADCK} < 4 MHz		—	_	10		
	8-bit mode		_	_	10	-	
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	—	4.0		

Table 14. 5 V 12-bit ADC operating conditions (continued)

1. Typical values assume V_{DDA} = 5.0 V, Temp = 25°C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

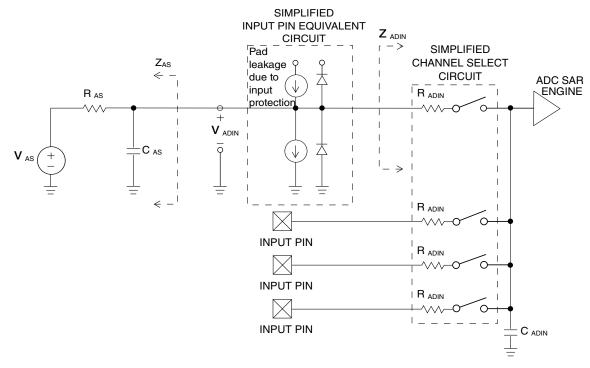
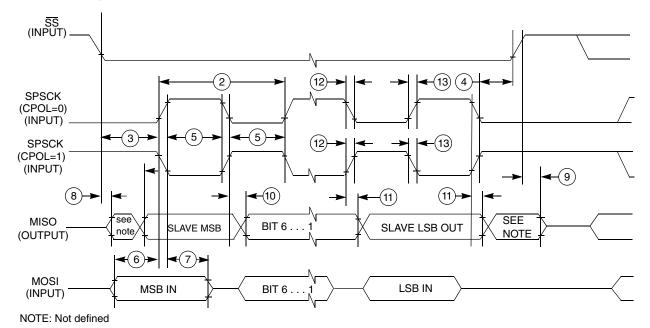



Figure 16. ADC input impedance equivalency diagram

Peripheral operating requirements and behaviors



Figure 20. SPI slave mode timing (CPHA=1)

6.5.2 MSCAN

Table 19. MSCAN wake-up pulse characteristics

Parameter	Symbol	Min	Тур	Мах	Unit
MSCAN wakeup dominant pulse filtered	t _{WUP}	-	-	1.5	μs
MSCAN wakeup dominant pulse pass	t _{WUP}	5	-	-	μs

Pinout

80 LQFP	64 LQFP /QFP	44 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	1	1	PTD1	DISABLED	PTD1	KBI0_P25	FTM2_CH3	SPI1_MOSI				
2	2	2	PTD0	DISABLED	PTD0	KBI0_P24	FTM2_CH2	SPI1_SCK				
3	3	_	PTH7	DISABLED	PTH7	KBI1_P31	PWT_IN1					
4	4	_	PTH6	DISABLED	PTH6	KBI1_P30	_					
5	_	_	PTH5	DISABLED	PTH5	KBI1_P29						
6	5	3	PTE7	DISABLED	PTE7	KBI1_P7	TCLK2		FTM1_CH1	CAN0_TX		
7	6	4	PTH2	DISABLED	PTH2	KBI1_P26	BUSOUT		FTM1_CH0	CAN0_RX		
8	7	5	VDD	VDD							VDD	
9	8	6	VDDA	VDDA						VREFH	VDDA	
10	_	_	VREFH	VREFH							VREFH	
11	9	7	VREFL	VREFL							VREFL	
12	10	8	VSS/ VSSA	VSS/ VSSA						VSSA	VSS	
13	11	9	PTB7	EXTAL	PTB7	KBI0_P15	I2C0_SCL				EXTAL	
14	12	10	PTB6	XTAL	PTB6	KBI0_P14	I2C0_SDA				XTAL	
15	13	11	PTI4	DISABLED	PTI4	_	IRQ					
16	_	_	PTI1	DISABLED	PTI1		IRQ	UART2_TX				
17	_	_	PTI0	DISABLED	PTIO		IRQ	UART2_RX				
18	14	_	PTH1	DISABLED	PTH1	KBI1_P25	FTM2_CH1					
19	15	_	PTH0	DISABLED	PTH0	KBI1_P24	FTM2_CH0					
20	16	_	PTE6	DISABLED	PTE6	KBI1_P6	_					
21	17	_	PTE5	DISABLED	PTE5	KBI1_P5						
22	18	12	PTB5	DISABLED	PTB5	KBI0_P13	FTM2_CH5	SPI0_PCS	ACMP1_OUT			
23	19	13	PTB4	NMI_b	PTB4	KBI0_P12	FTM2_CH4	SPI0_MISO	ACMP1_IN2	NMI_b		
24	20	14	PTC3	ADC0_SE11	PTC3	KBI0_P19	FTM2_CH3		ADC0_SE11			
25	21	15	PTC2	ADC0_SE10	PTC2	KBI0_P18	FTM2_CH2		ADC0_SE10			
26	22	16	PTD7	DISABLED	PTD7	KBI0_P31	UART2_TX					
27	23	17	PTD6	DISABLED	PTD6	KBI0_P30	UART2_RX					
28	24	18	PTD5	DISABLED	PTD5	KBI0_P29	PWT_IN0					
29	_	_	PTI6	DISABLED	PTI6	IRQ						
30	_	_	PTI5	DISABLED	PTI5	IRQ						
31	25	19	PTC1	ADC0_SE9	PTC1	KBI0_P17	FTM2_CH1		ADC0_SE9			
32	26	20	PTC0	ADC0_SE8	PTC0	KBI0_P16	FTM2_CH0		ADC0_SE8			
33	_	_	PTH4	DISABLED	PTH4	KBI1_P28	I2C1_SCL					
34	_	_	PTH3	DISABLED	PTH3	KBI1_P27	I2C1_SDA					
35	27	_	PTF7	ADC0_SE15	PTF7	KBI1_P15	1	1	ADC0_SE15			
36	28	_	PTF6	ADC0_SE14	PTF6	KBI1_P14			ADC0_SE14			
37	29	_	PTF5	ADC0_SE13	PTF5	KBI1_P13			ADC0_SE13			
38	30	_	PTF4	ADC0_SE12	PTF4	KBI1_P12			ADC0_SE12			
39	31	21	PTB3	ADC0_SE7	PTB3	KBI0_P11	SPI0_MOSI	FTM0_CH1	ADC0_SE7			
40	32	22	PTB2	ADC0_SE6	PTB2	KBI0_P10	SPI0_SCK	FTM0_CH0	ADC0_SE6			

Pinout

80 LQFP	64 LQFP /QFP	44 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
41	33	23	PTB1	ADC0_SE5	PTB1	KBI0_P9	UART0_TX		ADC0_SE5			
42	34	24	PTB0	ADC0_SE4	PTB0	KBI0_P8	UART0_RX	PWT_IN1	ADC0_SE4			
43	35	_	PTF3	DISABLED	PTF3	KBI1_P11	UART1_TX					
44	36	_	PTF2	DISABLED	PTF2	KBI1_P10	UART1_RX					
45	37	25	PTA7	ADC0_SE3	PTA7	KBI0_P7	FTM2_FLT2	ACMP1_IN1	ADC0_SE3			
46	38	26	PTA6	ADC0_SE2	PTA6	KBI0_P6	FTM2_FLT1	ACMP1_IN0	ADC0_SE2			
47	39	_	PTE4	DISABLED	PTE4	KBI1_P4						
48	40	27	VSS	VSS							VSS	
49	41	28	VDD	VDD							VDD	
50	_	_	PTG7	DISABLED	PTG7	KBI1_P23	FTM2_CH5	SPI1_PCS				
51	_		PTG6	DISABLED	PTG6	KBI1_P22	FTM2_CH4	SPI1_MISO				
52	_	_	PTG5	DISABLED	PTG5	KBI1_P21	FTM2_CH3	SPI1_MOSI				
53	_	_	PTG4	DISABLED	PTG4	KBI1_P20	FTM2_CH2	SPI1_SCK				
54	42	_	PTF1	DISABLED	PTF1	KBI1_P9	FTM2_CH1					
55	43	_	PTF0	DISABLED	PTF0	KBI1_P8	FTM2_CH0					
56	44	29	PTD4	DISABLED	PTD4	KBI0_P28						
57	45	30	PTD3	DISABLED	PTD3	KBI0_P27	SPI1_PCS					
58	46	31	PTD2	DISABLED	PTD2	KBI0_P26	SPI1_MISO					
59	47	32	PTA3	DISABLED	PTA3	KBI0_P3	UART0_TX	I2C0_SCL				
60	48	33	PTA2	DISABLED	PTA2	KBI0_P2	UART0_RX	I2C0_SDA				
61	49	34	PTA1	ADC0_SE1	PTA1	KBI0_P1	FTM0_CH1	I2C0_ 4WSDAOUT	ACMP0_IN1	ADC0_SE1		
62	50	35	PTA0	ADC0_SE0	PTA0	KBI0_P0	FTM0_CH0	I2C0_ 4WSCLOUT	ACMP0_IN0	ADC0_SE0		
63	51	36	PTC7	DISABLED	PTC7	KBI0_P23	UART1_TX			CAN0_TX		
64	52	37	PTC6	DISABLED	PTC6	KBI0_P22	UART1_RX			CAN0_RX		
65	_	_	PTI3	DISABLED	PTI3	IRQ						
66	_	_	PTI2	DISABLED	PTI2	IRQ						
67	53	l	PTE3	DISABLED	PTE3	KBI1_P3	SPI0_PCS					
68	54	38	PTE2	DISABLED	PTE2	KBI1_P2	SPI0_MISO	PWT_IN0				
69	—	—	VSS	VSS							VSS	
70	-	-	VDD	VDD							VDD	
71	55	—	PTG3	DISABLED	PTG3	KBI1_P19						
72	56	_	PTG2	DISABLED	PTG2	KBI1_P18						
73	57	_	PTG1	DISABLED	PTG1	KBI1_P17						
74	58	-	PTG0	DISABLED	PTG0	KBI1_P16						
75	59	39	PTE1	DISABLED	PTE1	KBI1_P1	SPI0_MOSI		I2C1_SCL			
76	60	40	PTE0	DISABLED	PTE0	KBI1_P0	SPI0_SCK	TCLK1	I2C1_SDA			
77	61	41	PTC5	DISABLED	PTC5	KBI0_P21		FTM1_CH1		RTC_ CLKOUT		

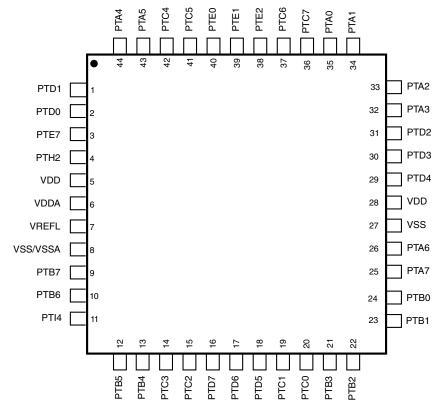


Figure 23. 44-pin LQFP package

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes				
1	12/2013	Initial NDA release.				
2	3/2014	Initial public release.				
3	5/2014	 Updated the Max. of SI_{DD}. Updated footnote to the V_{OH}. Corrected Unit in the FTM input timing table. 				
4	07/2016	 Added a new section of Thermal operating requirements. Corrected pinout diagram for 44-pin LQFP in the Device pin assignment. 				

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2013-2016 NXP B.V.

Document Number MKE06P80M48SF0 Revision 4, 07/2016

