

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	LVD, PWM, WDT
Number of I/O	58
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b; D/A 2x6b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mke06z128vqh4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Ord	ering par	ts	4						
	1.1	Determ	ining valid orderable parts	4						
2	Part	identific	eation4	4						
	2.1	Descrip	otion4	4						
	2.2	Format		4						
	2.3	Fields	ields4							
	2.4	Examp	le	5						
3	Para	meter cl	assification	5						
4	Rati	ngs		6						
	4.1	Therma	al handling ratings	6						
	4.2	Moistu	re handling ratings	6						
	4.3	ESD ha	andling ratings	5						
	4.4	Voltage	e and current operating ratings	7						
5	Gen	eral		7						
	5.1	Nonsw	itching electrical specifications	7						
		5.1.1	DC characteristics	7						
		5.1.2	Supply current characteristics	14						
		5.1.3	EMC performance	15						
	5.2	Switch	ing specifications	16						
		5.2.1	Control timing	16						
		522	ETM modulo timino	1.						

	5.3	Therma	al specifications	18
		5.3.1	Thermal operating requirements	18
		5.3.2	Thermal characteristics	19
6	Peri	pheral o _l	perating requirements and behaviors	20
	6.1	Core m	odules	20
		6.1.1	SWD electricals	20
	6.2	Externa	al oscillator (OSC) and ICS characteristics	21
	6.3	NVM s	pecifications	23
	6.4	Analog		24
		6.4.1	ADC characteristics	24
		6.4.2	Analog comparator (ACMP) electricals	27
	6.5	Commu	unication interfaces	27
		6.5.1	SPI switching specifications	27
		6.5.2	MSCAN	30
7	Dim	ensions.		31
	7.1	Obtaini	ng package dimensions	31
8	Pino	ut		31
	8.1	Signal 1	multiplexing and pin assignments	31
	8.2	Device	pin assignment	34
g	Revi	ision his	tory	37

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **nxp.com** and perform a part number search for the following device numbers: KE06Z.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q KE## A FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KE##	Kinetis family	• KE06
А	Key attribute	• Z = M0+ core
FFF	Program flash memory size	• 128 = 128 KB
R	Silicon revision	(Blank) = MainA = Revision after main
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	• LD = 44 LQFP (10 mm x 10 mm)

Table continues on the next page...

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	1	3		1

Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 125°C	-100	+100	mA	3

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test.
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass ±100 mA I-test with I_{DD} current limit at 400 mA.
 - I/O pins pass +50/-100 mA I-test with I_{DD} current limit at 1000 mA.
 - Supply groups pass 1.5 V_{ccmax}.
 - RESET pin was only tested with negative I-test due to product conditioning requirement.

Nonswitching electrical specifications

- 2. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0 (64-pin and 80-pin packages only), and PTH1 (64-pin and 80-pin packages only) support high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} . PTA2 and PTA3 are true open drain I/O pins that are internally clamped to V_{SS} .
- 5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 4. LVD and POR specification

Symbol	С	Desc	ription	Min	Тур	Max	Unit
V _{POR}	D	POR re-ai	m voltage ¹	1.5	1.75	2.0	V
V _{LVDH}	С	threshold—hig	Falling low-voltage detect threshold—high range (LVDV = 1) ²		4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold— high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С	riigir rarige	Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		High range low-voltage detect/warning hysteresis		100	_	mV
V _{LVDL}	С	threshold—lov	Falling low-voltage detect threshold—low range (LVDV = 0)		2.61	2.66	V
V _{LVW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVW2L}	С	warning threshold— low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVW3L}	С	low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С		v-voltage detect eresis	_	40	_	mV
V _{HYSWL}	С		low-voltage hysteresis	_	80	_	mV
V_{BG}	Р	Buffered ban	dgap output 3	1.14	1.16	1.18	V

- 1. Maximum is highest voltage that POR is guaranteed.
- 2. Rising thresholds are falling threshold + hysteresis.
- 3. voltage Factory trimmed at $V_{DD} = 5.0 \text{ V}$, Temp = 25 °C

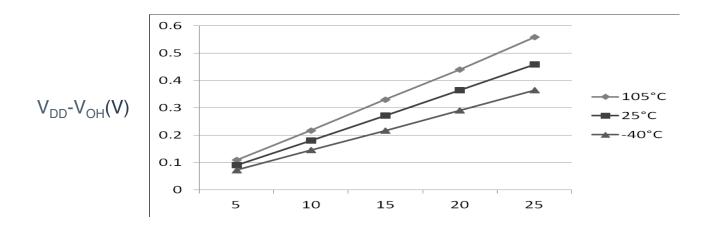


Figure 3. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 5 V)

 $I_{OH}(mA)$

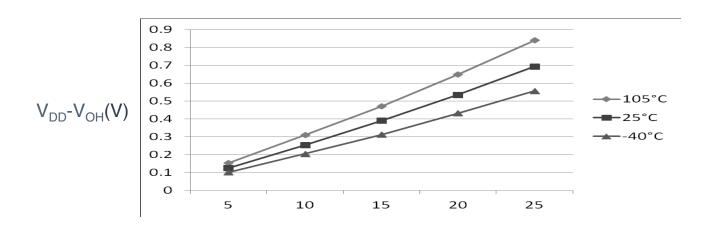
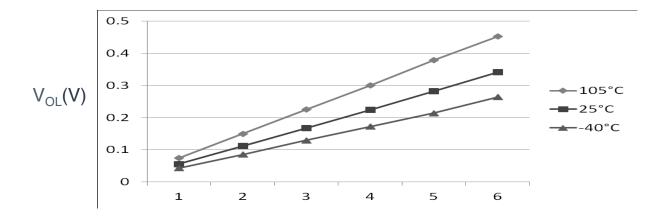
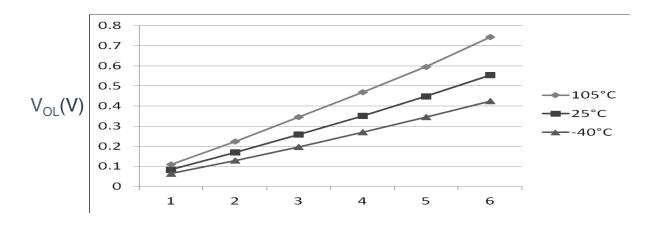



Figure 4. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 3 V)


 $I_{OH}(mA)$

KE06 Sub-Family Data Sheet, Rev. 4, 07/2016 11 **NXP Semiconductors**

 $I_{OL}(mA)$

Figure 5. Typical V_{OL} Vs. I_{OL} (standard drive strength) ($V_{DD} = 5 \text{ V}$)

 $I_{OL}(mA)$

Figure 6. Typical V_{OL} Vs. I_{OL} (standard drive strength) (V_{DD} = 3 V)

KE06 Sub-Family Data Sheet, Rev. 4, 07/2016

12

Table 5.	Supply current	t characteristics	(continued)
----------	----------------	-------------------	-------------

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
С	Wait mode current FEI	WI _{DD}	48/24 MHz	5	8.4	_	mA	-40 to 105 °C
Р	mode, all modules clocks enabled		24/24 MHz		6.5	7.2		
С	enabled		12/12 MHz		4.3	_		
С			1/1 MHz		2.4	_		
С			48/24 MHz	3	8.3	_		
Р			24/24 MHz		6.4	7		
С			12/12 MHz		4.2	_		
С			1/1 MHz		2.3	_		
Р	Stop mode supply current	SI _{DD}	_	5	2	105	μA	-40 to 105 °C
Р	no clocks active (except 1 kHz LPO clock) ³		_	3	1.9	95		-40 to 105 °C
С	ADC adder to Stop	_	_	5	86	_	μA	-40 to 105 °C
С	ADLPC = 1			3	82	_		
	ADLSMP = 1							
	ADCO = 1							
	MODE = 10B							
	ADICLK = 11B							
С	ACMP adder to Stop	_	_	5	12	_	μΑ	-40 to 105 °C
С				3	12	_		
С	LVD adder to Stop ⁴	_	_	5	130	_	μA	-40 to 105 °C
С				3	125	_		

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. The Max current is observed at high temperature of 105 °C.
- 3. RTC adder cause <1 µA I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.
- 4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following applications notes, available on nxp.com for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers

KE06 Sub-Family Data Sheet, Rev. 4, 07/2016

Switching specifications

- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based **Applications**
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-**Based Systems**

5.1.3.1 **EMC** radiated emissions operating behaviors Table 6. EMC radiated emissions operating behaviors for 80-pin LQFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	6	dΒμV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	6	dΒμV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	11	dΒμV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	5	dΒμV	
V _{RE_IEC}	IEC level	0.15-1000	N ³	_	2, 4

- 1. Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2. $V_{DD} = 5.0 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$, $f_{OSC} = 8 \text{ MHz}$ (crystal), $f_{SYS} = 40 \,^{\circ}\text{MHz}$, $f_{BUS} = 20 \,^{\circ}\text{MHz}$
- 3. IEC/SAE Level Maximums: N≤12 dBµV, M≤18 dBµV, K≤30 dBµV, I ≤36 dBµV, H≤42 dBµV.
- 4. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2 Switching specifications

5.2.1 Control timing

Table 7. Control timing

Num	С	Rating		Symbol	Min	Typical ¹	Max	Unit
1	D	System and core clock		f _{Sys}	DC	_	48	MHz
2	Р	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	DC	_	24	MHz	
3	Р	Internal low power oscillato	f_{LPO}	0.67	1.0	1.25	KHz	
4	D	External reset pulse width ²	t _{extrst}	1.5 ×	_	_	ns	
				t _{cyc}				
5	D	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
6	D	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path ³	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns

Table continues on the next page...

KE06 Sub-Family Data Sheet, Rev. 4, 07/2016 16 NXP Semiconductors

Table 8. FTM input timing (continued)

С	Function	Symbol	Min	Max	Unit
D	External clock period	t _{TCLK}	4	_	t _{Timer} , 1
D	External clock high time	t _{clkh}	1.5	_	t _{Timer} 1
D	External clock low time	t _{clkl}	1.5	_	t _{Timer} 1
D	Input capture pulse width	t _{ICPW}	1.5	_	t _{Timer} 1

1. $t_{Timer} = 1/f_{Timer}$

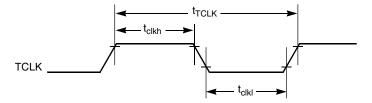


Figure 11. Timer external clock

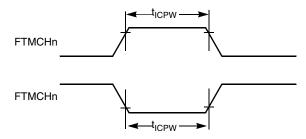


Figure 12. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal operating requirements

Table 9. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _J	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J . The simplest method to determine T_J is: $T_J = T_A + \theta_{JA} x$ chip power dissipation

5.3.2 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Board type	Symbol	Description	64 LQFP	64 QFP	44 LQFP	80 LQFP	Unit	Notes
Single-layer (1S)	$R_{ heta JA}$	Thermal resistance, junction to ambient (natural convection)	71	61	75	57	°C/W	1, 2
Four-layer (2s2p)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	53	47	53	44	°C/W	1, 3
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)		50	62	47	°C/W	1, 3
Four-layer (2s2p)	Thermal resistance, junction to ambient (200 ft./min. air speed)		46	41	47	38	°C/W	1, 3
_	— R _{θJB} Thermal resistance, junction to board		35	32	34	28	°C/W	4
— R _{θJC} Thermal resistance, junction to case		20	23	20	15	°C/W	5	
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	5	8	5	3	°C/W	6

Table 10. Thermal attributes

- Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_J = T_A + (P_D \times \theta_{JA})$$

KE06 Sub-Family Data Sheet, Rev. 4, 07/2016

Table 11. SWD full voltage range electricals (continued)

Symbol	Symbol Description		Max.	Unit
J11	SWD_CLK high to SWD_DIO data valid	_	35	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

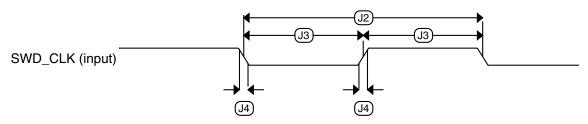


Figure 13. Serial wire clock input timing

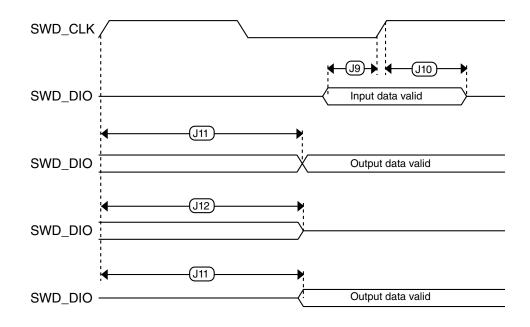


Figure 14. Serial wire data timing

External oscillator (OSC) and ICS characteristics 6.2

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient)

Num	С	C	Characteristic		Min	Typical ¹	Max	Unit
1	С	Crystal or	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	С	resonator frequency	High range (RANGE = 1)	f _{hi}	4		24	MHz

Table continues on the next page...

KE06 Sub-Family Data Sheet, Rev. 4, 07/2016 21 **NXP Semiconductors**

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued)

Num	С	C	haracteristic	Symbol	Min	Typical ¹	Max	Unit
2	D	Lo	oad capacitors	C1, C2		See Note ²		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F	_	_	_	ΜΩ
			Low Frequency, High-Gain Mode		_	10	_	ΜΩ
			High Frequency, Low- Power Mode		_	1	_	ΜΩ
			High Frequency, High-Gain Mode		_	1	_	ΜΩ
4	D	Series resistor -	Low-Power Mode ³	R _S	_	0	_	kΩ
		Low Frequency	High-Gain Mode		_	200	_	kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ³	R _S	_	0	_	kΩ
	D Series resistor -		4 MHz		_	0	_	kΩ
	D	High Frequency,	8 MHz		_	0	_	kΩ
	D High-Gain Mode		16 MHz		_	0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	c time low range = 32.768 kHz crystal; High		Low range, high gain		_	800	_	ms
			High range, low power	t _{CSTH}	_	3	_	ms
	С	range = 20 MHz crystal ^{4,5}	High range, high gain		_	1.5	_	ms
7	Т	Internal re	eference start-up time	t _{IRST}	_	20	50	μs
8	Р	Internal reference	e clock (IRC) frequency trim range	f _{int_t}	31.25	_	39.0625	kHz
9	Р	Internal reference clock frequency, factory trimmed	T = 25 °C, V _{DD} = 5 V	f _{int_ft}	_	37.5	_	kHz
10	Р	DCO output frequency range	FLL reference = fint_t, flo, or fhi/RDIV	f _{dco}	40	_	50	MHz
11	Р	Factory trimmed internal oscillator accuracy	T = 25 °C, V _{DD} = 5 V	Δf _{int_ft}	-0.5	_	0.5	%
12	С	Deviation of IRC over	Over temperature range from -40 °C to 105°C	Δf_{int_t}	-1	_	0.5	%
		temperature when trimmed at T = 25 °C, V _{DD} = 5 V	Over temperature range from 0 °C to 105°C	Δf _{int_t}	-0.5	_	0.5	
13	С	Frequency accuracy of	Over temperature range from -40 °C to 105°C	Δf_{dco_ft}	-1.5	_	1	%
		DCO output using factory trim value	Over temperature range from 0 °C to 105°C	Δf_{dco_ft}	-1	_	1	

Table continues on the next page...

23

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued)

Num	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
14	С	FLL acquisition time ^{4,6}	t _{Acquire}	_		2	ms
15	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁷	C _{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. See crystal or resonator manufacturer's recommendation.
- 3. Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO =
- 4. This parameter is characterized and not tested on each device.
- 5. Proper PC board layout procedures must be followed to achieve specifications.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

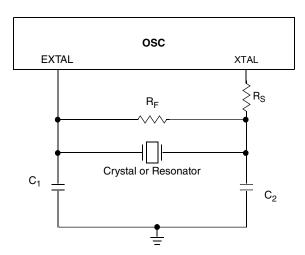


Figure 15. Typical crystal or resonator circuit

6.3 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash memories.

Table 13. Flash characteristics

C	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase –40 °C to 105 °C	V _{prog/erase}	2.7	_	5.5	V
D	Supply voltage for read operation	V _{Read}	2.7	_	5.5	V

Table continues on the next page...

Table 15. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

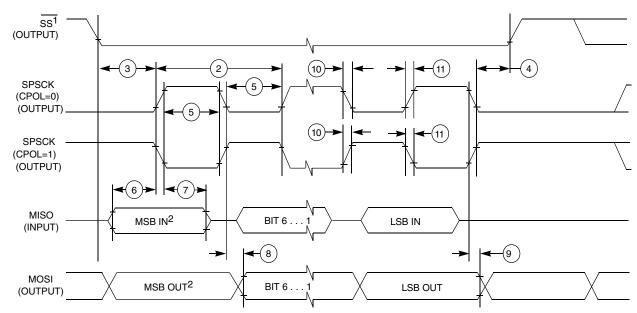

Characteristic	Conditions	С	Symbol	Min	Typ ¹	Max	Unit
Supply current		Т	I _{DDA}	_	133	_	μΑ
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	218	_	μA
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	_	327	_	μA
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		T	I _{DDA}	_	582	990	μA
ADLPC = 0							F
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module	Т	I _{DDA}	_	0.011	1	μΑ
ADC asynchronous	High speed (ADLPC	P	f _{ADACK}	2	3.3	5	MHz
clock source	= 0)	•	ADAOR	_			
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted	12-bit mode	С	E _{TUE}	_	±5.0	_	LSB ³
Error ²	10-bit mode	С		_	±1.5	_	
	8-bit mode	С		_	±0.8	_	
Differential Non-	12-bit mode	С	DNL	_	±1.5	_	LSB ³
Liniarity	10-bit mode	С		_	±0.4	_	
	8-bit mode	С		_	±0.15	_	
Integral Non-Linearity	12-bit mode	С	INL	_	±1.5	_	LSB ³
	10-bit mode	С		_	±0.4	_	
	8-bit mode	С		_	±0.15	_	
Zero-scale error ⁴	12-bit mode	С	E _{ZS}	_	±1.0	_	LSB ³
	10-bit mode	С		_	±0.2		

Table continues on the next page...

chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 80% V_{DD} , unless noted, and 25 pF load on all SPI pins. All timing assumes slew rate control is disabled and high-drive strength is enabled for SPI output pins.

Table 17. SPI master mode timing
Table 17 Sel masier mode minio

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} – 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	8	_	ns	_
7	t _{HI}	Data hold time (inputs)	8	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	20	_	ns	_
10	t _{RI}	Rise time input	_	t _{Bus} – 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

^{1.} If configured as an output.

Figure 17. SPI master mode timing (CPHA=0)

^{2.} LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

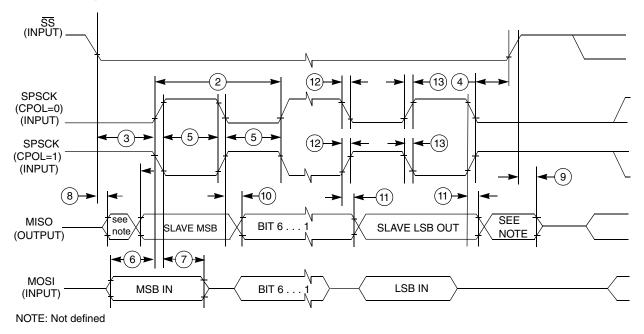


Figure 19. SPI slave mode timing (CPHA = 0)

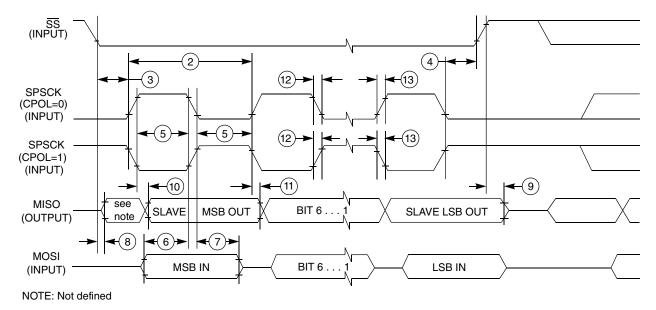


Figure 20. SPI slave mode timing (CPHA=1)

6.5.2 MSCAN

Table 19. MSCAN wake-up pulse characteristics

Parameter	Symbol	Min	Тур	Max	Unit
MSCAN wakeup dominant pulse filtered	t _{WUP}	-	-	1.5	μs
MSCAN wakeup dominant pulse pass	t _{WUP}	5	-	-	μs

Pinout

80 LQFP	64 LQFP /QFP	44 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
78	62	42	PTC4	SWD_CLK	PTC4	KBI0_P20	RTC_ CLKOUT	FTM1_CH0	ACMP0_IN2	SWD_CLK		
79	63	43	PTA5	RESET_b	PTA5	KBI0_P5	IRQ	TCLK0	RESET_b			
80	64	44	PTA4	SWD_DIO	PTA4	KBI0_P4		ACMP0_OUT	SWD_DIO			

8.2 Device pin assignment

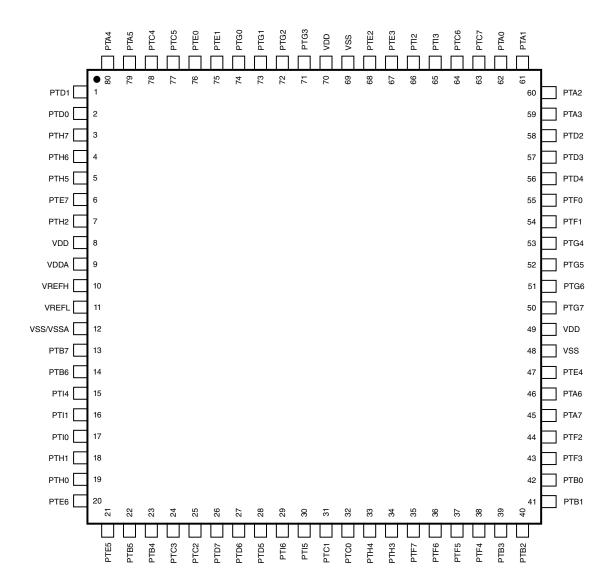


Figure 21. 80-pin LQFP package

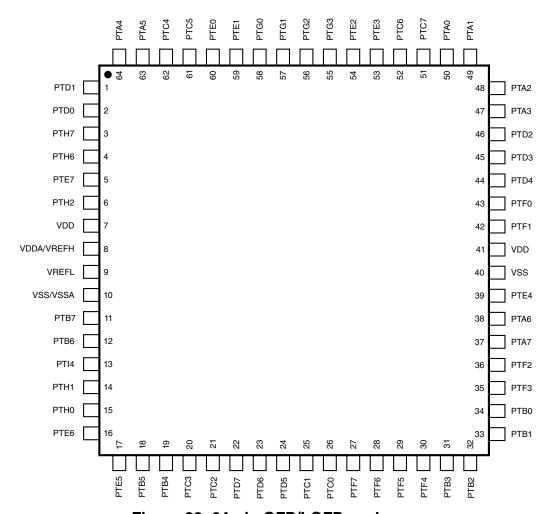


Figure 22. 64-pin QFP/LQFP packages

How to Reach Us:

Home Page:

nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2013-2016 NXP B.V.

Document Number MKE06P80M48SF0 Revision 4, 07/2016

