

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	LVD, PWM, WDT
Number of I/O	71
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b; D/A 2x6b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mke06z64vlk4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Parameter classification

Field	Description	Values
		 QH = 64 QFP (14 mm x 14 mm) LH = 64 LQFP (10 mm x 10 mm) LK = 80 LQFP (14 mm x 14 mm)
CC	Maximum CPU frequency (MHz)	• 4 = 48 MHz
N	Packaging type	 R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

MKE06Z128VLK4

3 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

- 2. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0 (64-pin and 80-pin packages only), and PTH1 (64-pin and 80-pin packages only) support high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}. PTA2 and PTA3 are true open drain I/O pins that are internally clamped to V_{SS}.
- 5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).

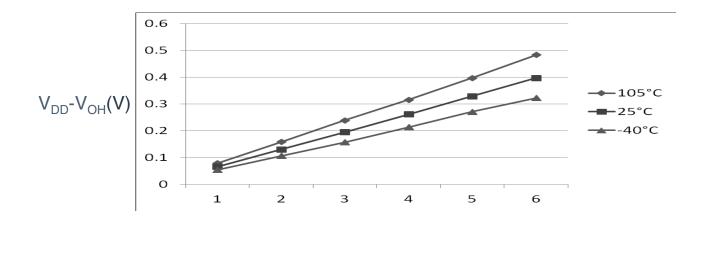

Symbol	С	Desc	ription	Min	Тур	Max	Unit
V _{POR}	D	POR re-ar	rm voltage ¹	1.5	1.75	2.0	V
V _{LVDH}	С	threshold-hig	voltage detect jh range (LVDV 1) ²	4.2	4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold— high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С		Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		High range low-voltage detect/warning hysteresis		100	_	mV
V _{LVDL}	С	threshold-lov	voltage detect w range (LVDV 0)	2.56	2.61	2.66	V
V _{LVW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVW2L}	С	warning threshold—	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVW3L}	С	— low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С		/-voltage detect eresis	—	40		mV
V _{HYSWL}	С		low-voltage hysteresis	_	80	—	mV
V _{BG}	Р	Buffered ban	idgap output 3	1.14	1.16	1.18	V

Table 4. LVD and POR specification

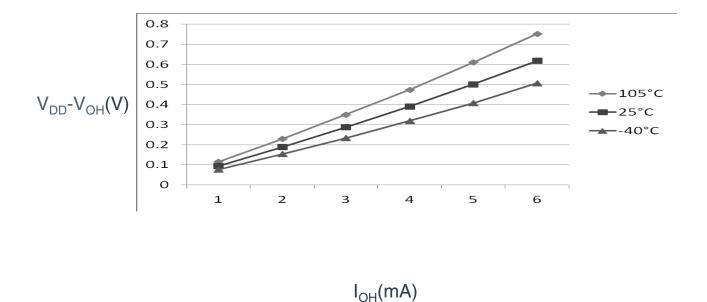
1. Maximum is highest voltage that POR is guaranteed.

2. Rising thresholds are falling threshold + hysteresis.

3. voltage Factory trimmed at V_{DD} = 5.0 V, Temp = 25 °C

I_{OH}(mA)

Figure 1. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 5 V)



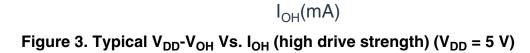
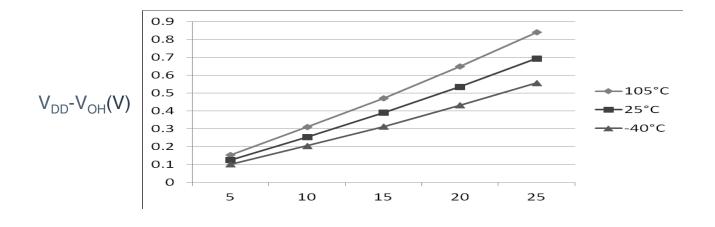
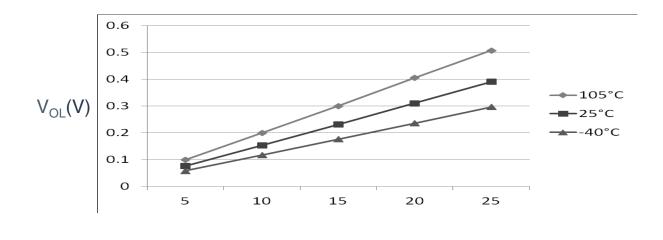



Figure 2. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 3 V)



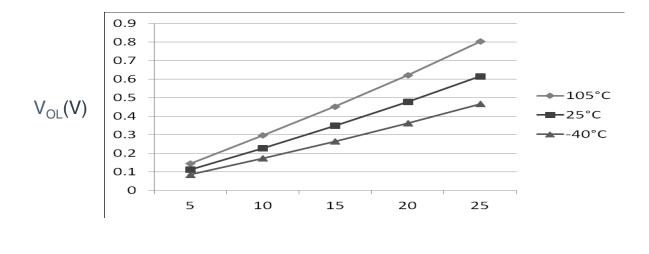

I_{OH}(mA)

Figure 4. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 3 V)

I_{OL}(mA)

Figure 7. Typical V_{OL} Vs. I_{OL} (high drive strength) (V_{DD} = 5 V)

 $I_{OL}(mA) \label{eq:IOL}$ Figure 8. Typical V_{OL} Vs. I_{OL} (high drive strength) (V_{DD} = 3 V)

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
С	Wait mode current FEI	WI _{DD}	48/24 MHz	5	8.4	_	mA	-40 to 105 °C
Р	mode, all modules clocks enabled		24/24 MHz		6.5	7.2		
С	enabled		12/12 MHz		4.3	_		
С			1/1 MHz		2.4			
С			48/24 MHz	3	8.3	_		
Р			24/24 MHz		6.4	7		
С			12/12 MHz		4.2	_		
С			1/1 MHz		2.3	_		
Р	Stop mode supply current	SI _{DD}		5	2	105	μA	-40 to 105 °C
Р	no clocks active (except 1 kHz LPO clock) ³			3	1.9	95		-40 to 105 °C
С	ADC adder to Stop	—	—	5	86	_	μA	-40 to 105 °C
С	ADLPC = 1			3	82	_		
	ADLSMP = 1							
	ADCO = 1							
	MODE = 10B							
	ADICLK = 11B							
С	ACMP adder to Stop	—	_	5	12	_	μA	-40 to 105 °C
С				3	12		1	
С	LVD adder to Stop ⁴		—	5	130	_	μA	-40 to 105 °C
С				3	125	_]	

Table 5. Supply current characteristics (continued)

1. Data in Typical column was characterized at 5.0 V, 25 $^{\circ}\text{C}$ or is typical recommended value.

2. The Max current is observed at high temperature of 105 °C.

3. RTC adder cause <1 µA I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.

4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following applications notes, available on **nxp.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers

Thermal specifications

С	Function	Symbol	Min	Max	Unit
D	External clock period	t _{TCLK}	4	_	t _{Timer} , ¹
D	External clock high time	t _{clkh}	1.5	_	t _{Timer} 1
D	External clock low time	t _{clkl}	1.5	_	t _{Timer} 1
D	Input capture pulse width	t _{ICPW}	1.5		t _{Timer} 1

 Table 8. FTM input timing (continued)

1. $t_{Timer} = 1/f_{Timer}$

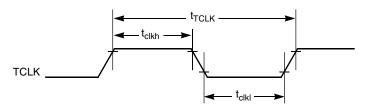


Figure 11. Timer external clock

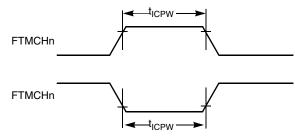


Figure 12. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal operating requirements

l able 9.	Inermai	operatin	g require	ments	

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J . The simplest method to determine T_J is: $T_J = T_A + \theta_{JA} x$ chip power dissipation

5.3.2 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Board type	Symbol	Description	64 LQFP	64 QFP	44 LQFP	80 LQFP	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	71	61	75	57	°C/W	1, 2
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	53	47	53	44	°C/W	1, 3
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	59	50	62	47	°C/W	1, 3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	46	41	47	38	°C/W	1, 3
_	R _{θJB}	Thermal resistance, junction to board	35	32	34	28	°C/W	4
_	R _{θJC}	Thermal resistance, junction to case	20	23	20	15	°C/W	5
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	5	8	5	3	°C/W	6

Table 10. Thermal attributes

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

The average chip-junction temperature (T_J) in $^{\circ}C$ can be obtained from:

 $T_J = T_A + (P_D \times \theta_{JA})$

Where:

 T_A = Ambient temperature, °C

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

 $P_{\rm D} = K \div (T_{\rm J} + 273 \ ^{\circ}{\rm C})$

Solving the equations above for K gives:

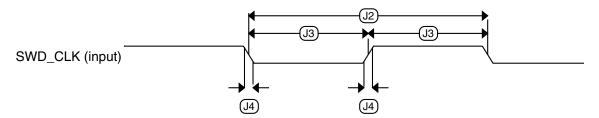
 $\mathbf{K} = \mathbf{P}_{\mathrm{D}} \times (\mathbf{T}_{\mathrm{A}} + 273 \ ^{\circ}\mathrm{C}) + \mathbf{\theta}_{\mathrm{JA}} \times (\mathbf{P}_{\mathrm{D}})^{2}$

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for an known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving the above equations iteratively for any value of T_A .

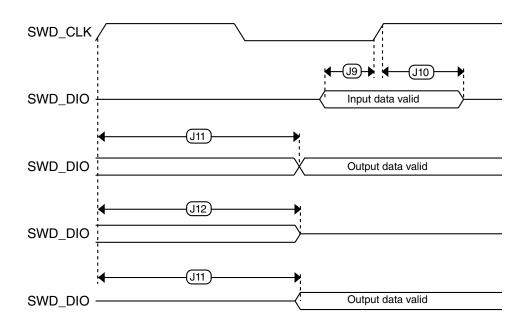
6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 SWD electricals


Table 11. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	5.5	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	24	MHz
J2	SWD_CLK cycle period	1/J1		ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	3		ns


Table continues on the next page...

Symbol	Description	Min.	Max.	Unit
J11	SWD_CLK high to SWD_DIO data valid	_	35	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

Table 11. SWD full voltage range electricals (continued)

6.2 External oscillator (OSC) and ICS characteristics

Table 12.	OSC and ICS specifications	(temperature range = -40 to 105 °C ambient)
-----------	----------------------------	---

Num	С	C	Symbol	Min	Typical ¹	Мах	Unit	
1	С	Crystal or	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	С	resonator frequency	High range (RANGE = 1)	f _{hi}	4		24	MHz

Table continues on the next page...

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient)(continued)

Num	С	C	haracteristic	Symbol	Min	Typical ¹	Мах	Unit
2	D	Lo	bad capacitors	C1, C2		See Note ²		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F	—	_	_	MΩ
			Low Frequency, High-Gain Mode		—	10	_	MΩ
			High Frequency, Low- Power Mode		—	1	_	MΩ
			High Frequency, High-Gain Mode	-	_	1	_	MΩ
4	D	Series resistor -	Low-Power Mode ³	R _S	—	0	_	kΩ
		Low Frequency	High-Gain Mode	Ī	_	200	_	kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ³	R _S		0	—	kΩ
	D Series resistor - D High Frequency,		4 MHz	Ī	_	0	_	kΩ
			8 MHz	Ī	_	0	_	kΩ
	D	High-Gain Mode	16 MHz	Ī	—	0	_	kΩ
6	С	Crystal start-up Low range, low power		t _{CSTL}	_	1000		ms
	C C C C C C C C C C C C C C		Low range, high gain		_	800		ms
			High range, low power	t _{CSTH}	_	3	_	ms
	С	range = 20 MHz crystal ^{4,5}	High range, high gain	-	_	1.5		ms
7	Т	Internal re	eference start-up time	t _{IRST}	—	20	50	μs
8	Р	Internal reference	e clock (IRC) frequency trim range	f _{int_t}	31.25	_	39.0625	kHz
9	Ρ	Internal reference clock frequency, factory trimmed [,]	T = 25 °C, V _{DD} = 5 V	f _{int_ft}	_	37.5	_	kHz
10	Р	DCO output frequency range	FLL reference = fint_t, flo, or fhi/RDIV	f _{dco}	40	_	50	MHz
11	Р	Factory trimmed internal oscillator accuracy	T = 25 °C, V _{DD} = 5 V	∆f _{int_ft}	-0.5	_	0.5	%
12	С	Deviation of IRC over	Over temperature range from -40 °C to 105°C	Δf_{int_t}	-1	_	0.5	%
		temperature when trimmed at T = 25 °C, $V_{DD} = 5 V$	Over temperature range from 0 °C to 105°C	Δf_{int_t}	-0.5	_	0.5	
13	С	Frequency accuracy of	Over temperature range from -40 °C to 105°C	$\Delta f_{dco_{ft}}$	-1.5	-	1	%
		DCO output using factory trim value	Over temperature range from 0 °C to 105°C	$\Delta f_{dco_{ft}}$	-1	_	1	

Table continues on the next page...

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient)(continued)

Num	С	Characteristic	Symbol	Min	Typical ¹	Мах	Unit
14	С	FLL acquisition time ^{4,6}	t _{Acquire}	_	_	2	ms
15	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁷	C _{Jitter}		0.02	0.2	%f _{dco}

1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

- 2. See crystal or resonator manufacturer's recommendation.
- 3. Load capacitors (C_1 , C_2), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 4. This parameter is characterized and not tested on each device.
- 5. Proper PC board layout procedures must be followed to achieve specifications.
- This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

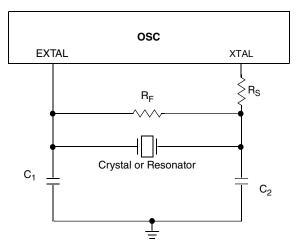


Figure 15. Typical crystal or resonator circuit

6.3 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash memories.

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase –40 °C to 105 °C	V _{prog/erase}	2.7	_	5.5	V
D	Supply voltage for read operation	V _{Read}	2.7		5.5	V

 Table 13.
 Flash characteristics

Table continues on the next page...

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	NVM Bus frequency	f _{NVMBUS}	1	—	24	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	—	—	2605	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	_	—	2579	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	—	—	485	t _{cyc}
D	Read Once	t _{RDONCE}	—	—	464	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.13	0.31	ms
D	Program Flash (4 word)	t _{PGM4}	0.21	0.21	0.49	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
D	Erase All Blocks	t _{ERSALL}	95.42	100.18	100.30	ms
D	Erase Flash Block	t _{ERSBLK}	95.42	100.18	100.30	ms
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.09	ms
D	Unsecure Flash	t _{UNSECU}	95.42	100.19	100.31	ms
D	Verify Backdoor Access Key	t _{VFYKEY}	_	_	482	t _{cyc}
D	Set User Margin Level	t _{MLOADU}	_	—	415	t _{cyc}
С	FLASH Program/erase endurance T_L to T_H = -40 °C to 105 °C	n _{FLPE}	10 k	100 k	—	Cycles
С	Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

Table 13. Flash characteristics (continued)

1. Minimum times are based on maximum f_{NVMOP} and maximum f_{NVMBUS}

2. Typical times are based on typical f_{NVMOP} and maximum f_{NVMBUS}

3. Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging

4. $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual.

6.4 Analog

6.4.1 ADC characteristics

 Table 14. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symbol	Min	Typ ¹	Мах	Unit	Comment
Reference potential	• Low • High	V _{REFL} V _{REFH}	V _{SSA} V _{DDA} /2	_	V _{DDA} /2 V _{DDA}	V	—

Table continues on the next page...

Table 15. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	С	Symbol	Min	Typ ¹	Max	Unit
Supply current		Т	I _{DDA}	_	133	_	μA
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}		218	_	μA
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}		327	_	μA
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	582	990	μA
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	_	0.011	1	μΑ
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}		20		ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	—	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	—	3.5	—	ADCK cycles
	Long sample (ADLSMP = 1)				23.5	—	
Total unadjusted	12-bit mode	С	E _{TUE}	—	±5.0	—	LSB ³
Error ²	10-bit mode	С		—	±1.5	—	
	8-bit mode	С			±0.8		
Differential Non-	12-bit mode	С	DNL	—	±1.5	—	LSB ³
Liniarity	10-bit mode	С			±0.4		
	8-bit mode	С			±0.15		
Integral Non-Linearity	12-bit mode	С	INL	—	±1.5	—	LSB ³
	10-bit mode	С			±0.4		
	8-bit mode	С			±0.15		
Zero-scale error ⁴	12-bit mode	С	E _{ZS}		±1.0		LSB ³
	10-bit mode	С			±0.2		

Table continues on the next page...

Characteristic	Conditions	С	Symbol	Min	Typ ¹	Max	Unit
	8-bit mode	С		_	±0.35		
Full-scale error ⁵	12-bit mode	С	E _{FS}	_	±2.5		LSB ³
	10-bit mode	С		-	±0.3		
	8-bit mode	С		_	±0.25		
Quantization error	≤12 bit modes	D	Eq	_	_	±0.5	LSB ³
Input leakage error ⁶	all modes	D	EIL		I _{In} * R _{AS}		mV
Temp sensor slope	-40 °C–25 °C	D	m	_	3.266	_	mV/°C
	25 °C–125 °C			-	3.638		
Temp sensor voltage	25 °C	D	V _{TEMP25}	_	1.396	—	V

Table 15. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. Includes quantization
- 3. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 4. $V_{ADIN} = V_{SSA}$
- 5. $V_{ADIN} = V_{DDA}$
- 6. I_{In} = leakage current (refer to DC characteristics)

6.4.2 Analog comparator (ACMP) electricals

Table 16. Comparator electrical specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V _{DDA}	2.7	—	5.5	V
Т	Supply current (Operation mode)	I _{DDA}		10	20	μA
D	Analog input voltage	V _{AIN}	V _{SS} - 0.3	—	V _{DDA}	V
Р	Analog input offset voltage	V _{AIO}	_	—	40	mV
С	Analog comparator hysteresis (HYST=0)	V _H		15	20	mV
С	Analog comparator hysteresis (HYST=1)	V _H	_	20	30	mV
Т	Supply current (Off mode)	IDDAOFF	_	60	—	nA
С	Propagation Delay	t _D		0.4	1	μs

6.5 Communication interfaces

6.5.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI master mode timing (CPHA=1)

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in Control timing.
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	—	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	—	t _{Bus}	—
4	t _{Lag}	Enable lag time	1	—	t _{Bus}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	15	—	ns	—
7	t _{HI}	Data hold time (inputs)	25	—	ns	_
8	t _a	Slave access time	_	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	_	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)	—	25	ns	_
11	t _{HO}	Data hold time (outputs)	0	—	ns	—
12	t _{RI}	Rise time input	—	t _{Bus} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output				

Table 18. SPI slave mode timing

Pinout

80 LQFP	64 LQFP /QFP	44 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	1	1	PTD1	DISABLED	PTD1	KBI0_P25	FTM2_CH3	SPI1_MOSI				
2	2	2	PTD0	DISABLED	PTD0	KBI0_P24	FTM2_CH2	SPI1_SCK				
3	3	_	PTH7	DISABLED	PTH7	KBI1_P31	PWT_IN1					
4	4	_	PTH6	DISABLED	PTH6	KBI1_P30	_					
5	_	_	PTH5	DISABLED	PTH5	KBI1_P29						
6	5	3	PTE7	DISABLED	PTE7	KBI1_P7	TCLK2		FTM1_CH1	CAN0_TX		
7	6	4	PTH2	DISABLED	PTH2	KBI1_P26	BUSOUT		FTM1_CH0	CAN0_RX		
8	7	5	VDD	VDD							VDD	
9	8	6	VDDA	VDDA						VREFH	VDDA	
10	_	_	VREFH	VREFH							VREFH	
11	9	7	VREFL	VREFL							VREFL	
12	10	8	VSS/ VSSA	VSS/ VSSA						VSSA	VSS	
13	11	9	PTB7	EXTAL	PTB7	KBI0_P15	I2C0_SCL				EXTAL	
14	12	10	PTB6	XTAL	PTB6	KBI0_P14	I2C0_SDA				XTAL	
15	13	11	PTI4	DISABLED	PTI4	_	IRQ					
16	_	_	PTI1	DISABLED	PTI1		IRQ	UART2_TX				
17	_	_	PTI0	DISABLED	PTIO		IRQ	UART2_RX				
18	14	_	PTH1	DISABLED	PTH1	KBI1_P25	FTM2_CH1					
19	15	_	PTH0	DISABLED	PTH0	KBI1_P24	FTM2_CH0					
20	16	_	PTE6	DISABLED	PTE6	KBI1_P6	_					
21	17	_	PTE5	DISABLED	PTE5	KBI1_P5						
22	18	12	PTB5	DISABLED	PTB5	KBI0_P13	FTM2_CH5	SPI0_PCS	ACMP1_OUT			
23	19	13	PTB4	NMI_b	PTB4	KBI0_P12	FTM2_CH4	SPI0_MISO	ACMP1_IN2	NMI_b		
24	20	14	PTC3	ADC0_SE11	PTC3	KBI0_P19	FTM2_CH3		ADC0_SE11			
25	21	15	PTC2	ADC0_SE10	PTC2	KBI0_P18	FTM2_CH2		ADC0_SE10			
26	22	16	PTD7	DISABLED	PTD7	KBI0_P31	UART2_TX					
27	23	17	PTD6	DISABLED	PTD6	KBI0_P30	UART2_RX					
28	24	18	PTD5	DISABLED	PTD5	KBI0_P29	PWT_IN0					
29	_	_	PTI6	DISABLED	PTI6	IRQ						
30	_	_	PTI5	DISABLED	PTI5	IRQ						
31	25	19	PTC1	ADC0_SE9	PTC1	KBI0_P17	FTM2_CH1		ADC0_SE9			
32	26	20	PTC0	ADC0_SE8	PTC0	KBI0_P16	FTM2_CH0		ADC0_SE8			
33	_	_	PTH4	DISABLED	PTH4	KBI1_P28	I2C1_SCL					
34	_	_	PTH3	DISABLED	PTH3	KBI1_P27	I2C1_SDA					
35	27	_	PTF7	ADC0_SE15	PTF7	KBI1_P15	1	1	ADC0_SE15			
36	28	_	PTF6	ADC0_SE14	PTF6	KBI1_P14			ADC0_SE14			
37	29	_	PTF5	ADC0_SE13	PTF5	KBI1_P13			ADC0_SE13			
38	30	_	PTF4	ADC0_SE12	PTF4	KBI1_P12			ADC0_SE12			
39	31	21	PTB3	ADC0_SE7	PTB3	KBI0_P11	SPI0_MOSI	FTM0_CH1	ADC0_SE7			
40	32	22	PTB2	ADC0_SE6	PTB2	KBI0_P10	SPI0_SCK	FTM0_CH0	ADC0_SE6			

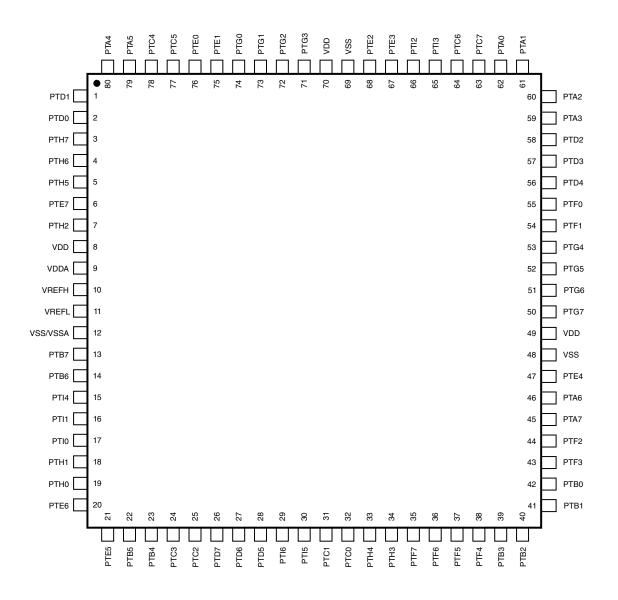


Figure 21. 80-pin LQFP package

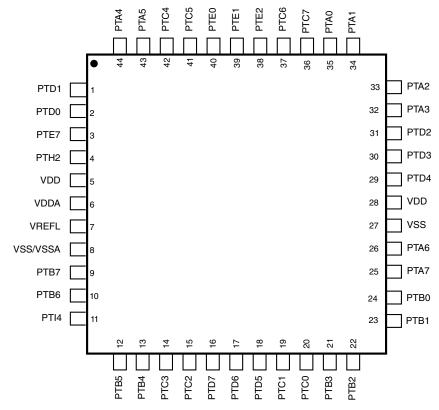


Figure 23. 44-pin LQFP package

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	12/2013	Initial NDA release.
2	3/2014	Initial public release.
3	5/2014	 Updated the Max. of SI_{DD}. Updated footnote to the V_{OH}. Corrected Unit in the FTM input timing table.
4	07/2016	 Added a new section of Thermal operating requirements. Corrected pinout diagram for 44-pin LQFP in the Device pin assignment.