

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

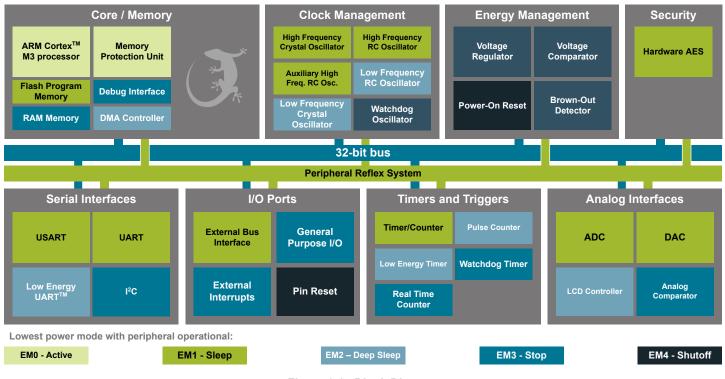
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 4x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VQFN Exposed Pad
Supplier Device Package	32-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g200f16-qfn32

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. System Overview

3.1 System Introduction

The EFM32 MCUs are the world's most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32G microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32G devices. For a complete feature set and in-depth information on the modules, the reader is referred to the EFM32G Reference Manual.

The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

3.1.1 ARM Cortex-M3 Core

The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M3 is described in detail in EFM32G Reference Manual.

3.1.2 Debug Interface (DBG)

This device includes hardware debug support through a 2-pin serial-wire debug interface . In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages.

3.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32G microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

4.4 Current Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
		32 MHz HFXO, all peripheral clocks disabled, $V_{DD}\text{=}$ 3.0 V	_	180	-	µA/MHz
		28 MHz HFRCO, all peripheral clocks disabled, $V_{DD}\text{=}$ 3.0 V	—	181	206	µA/MHz
EM0 current. No prescaling.		21 MHz HFRCO, all peripheral clocks disabled, $V_{DD}\text{=}$ 3.0 V	—	183	207	µA/MHz
Running prime number cal- culation code from Flash. (Production test condition =	I _{EMO}	14 MHz HFRCO, all peripheral clocks disabled, $V_{DD}\text{=}$ 3.0 V	_	185	211	µA/MHz
14 MHz)		11 MHz HFRCO, all peripheral clocks disabled, $V_{DD}\text{=}$ 3.0 V	—	186	215	µA/MHz
		6.6 MHz HFRCO, all peripheral clocks disabled, V_{DD}= 3.0 V	_	191	218	µA/MHz
		1.2 MHz HFRCO, all peripheral clocks disabled, V_DD= 3.0 V	_	220	-	µA/MHz
	I _{EM1}	32 MHz HFXO, all peripheral clocks disabled, $V_{DD}\text{=}$ 3.0 V	—	45	-	µA/MHz
		28 MHz HFRCO, all peripheral clocks disabled, $V_{DD}\text{=}$ 3.0 V	_	47	62	µA/MHz
		21 MHz HFRCO, all peripheral clocks disabled, $V_{DD}\text{=}$ 3.0 V		48	64	µA/MHz
EM1 current (Production test condition = 14 MHz)		14 MHz HFRCO, all peripheral clocks disabled, $V_{DD}\text{=}$ 3.0 V	—	50	69	µA/MHz
		11 MHz HFRCO, all peripheral clocks disabled, $V_{DD}\text{=}$ 3.0 V	_	51	72	µA/MHz
		6.6 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V		56	83	µA/MHz
		1.2 MHz HFRCO. all peripheral clocks disabled, V_DD= 3.0 V	—	103	-	µA/MHz
		EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, V _{DD} = 3.0 V, T _{AMB} =25 °C	_	0.9	1.5	μA
EM2 current	I _{EM2}	EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, V _{DD} = 3.0 V, T _{AMB} =85 °C	—	3.0	6.0	μA
		V _{DD} = 3.0 V, T _{AMB} =25 °C	_	0.59	1.0	μA
EM3 current	I _{EM3}	V _{DD} = 3.0 V, T _{AMB} =85 °C	_	2.75	5.8	μA
		V _{DD} = 3.0 V, T _{AMB} =25 °C	_	0.02	0.045	μA
EM4 current	I _{EM4}	V _{DD} = 3.0 V, T _{AMB} =85 °C		0.25	0.7	μA
	L			1	1	1

Table 4.3. Current Consumption

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Flash erase cycles before failure	EC _{FLASH}		20000	_	_	cycles
		T _{AMB} <150 °C	10000	_	_	h
Flash data retention	RET _{FLASH}	T _{AMB} <85 °C	10	_	_	years
		T _{AMB} <70 °C	20	_	_	years
Word (32-bit) programming time	tw_prog		20	_	—	μs
Page erase time ²	t _{P_ERASE}		20.7	22.0	24.8	ms
Device erase time ³	t _{D_ERASE}		41.8	45.0	49.2	ms
Erase current	I _{ERASE}		_		7 ¹	mA
Write current	I _{WRITE}		_	—	7 ¹	mA
Supply voltage during flash erase and write	V _{FLASH}		1.98		3.8	V

Note:

1. Measured at 25 °C.

2. From setting ERASEPAGE bit in MSC_WRITECMD to 1 to reading 1 in ERASE bit in MSC_IF. Internal setup and hold times for flash control signals are included.

3. From setting DEVICEERASE bit in AAP_CMD to 1 to reading 0 in ERASEBUSY bit in AAP_STATUS. Internal setup and hold times for flash control signals are included.

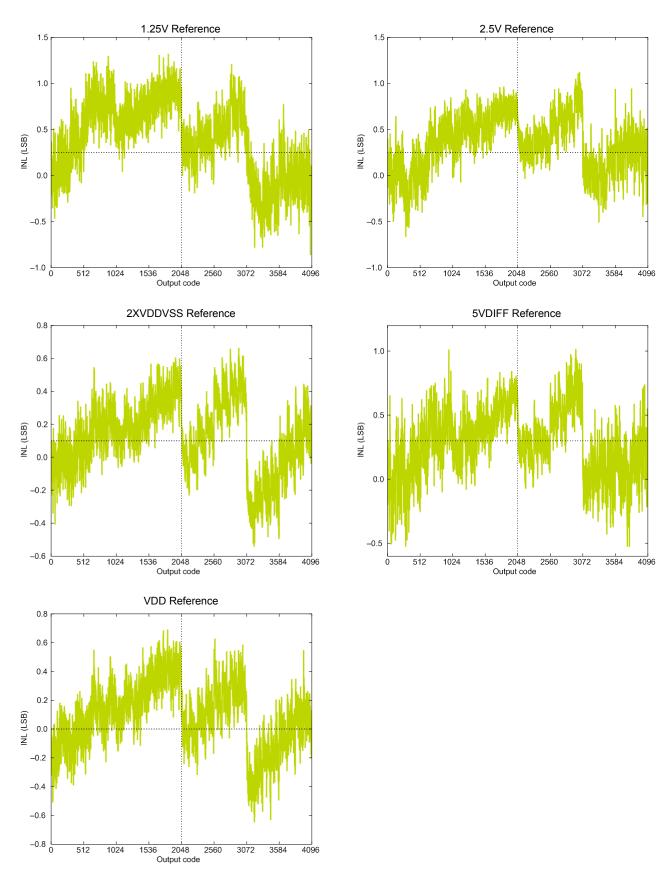


Figure 4.30. ADC Integral Linearity Error vs Code, VDD = 3V, Temp = 25°C

4.11 Digital Analog Converter (DAC)

Table 4.15. DAC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output voltage range	M	VDD voltage reference, single- ended	0	_	V _{DD}	V
Output voltage range	V _{DACOUT}	VDD voltage reference, differen- tial	-V _{DD}	_	V _{DD}	V
Output common mode voltage range	V _{DACCM}		0	—	V _{DD}	V
		500 kSamples/s, 12 bit, internal 1.25 V reference, Continuous Mode	_	400 ¹	650 ¹	μA
Average active current	I _{DAC}	100 kSamples/s, 12 bit, internal 1.25 V reference, Sample/Hold Mode	—	200 ¹	250 ¹	μΑ
		1 kSamples/s 12 bit, internal 1.25 V reference, Sample/Off Mode	—	17 ¹	25 ¹	μA
Sample rate	SR _{DAC}		—	—	500	ksamples/s
		Continuous Mode		—	1000	kHz
DAC clock frequency	f _{DAC}	Sample/Hold Mode	_	—	250	kHz
		Sample/Off Mode		—	250	kHz
Clock cycles per conversion	CYC _{DACCONV}		—	2	_	cycles
Conversion time	t _{DACCONV}		2	—	_	μs
Settling time	t _{DACSETTLE}		_	5	_	μs
		500 kSamples/s, 12 bit, single- ended, internal 1.25 V reference	_	58	_	dB
		500 kSamples/s, 12 bit, single- ended, internal 2.5 V reference	—	59	-	dB
Signal-to-Noise Ratio (SNR)	SNR _{DAC}	500 kSamples/s, 12 bit, differen- tial, internal 1.25 V reference	—	58	-	dB
		500 kSamples/s, 12 bit, differen- tial, internal 2.5 V reference	—	58	-	dB
		500 kSamples/s, 12 bit, differential, V_{DD} reference	—	59	_	dB

4.13 Voltage Comparator (VCMP)

Table 4.17. VCMP

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input voltage range	V _{VCMPIN}		_	V _{DD}	_	V
VCMP Common Mode voltage range	VVCMPCM		—	V _{DD}	_	V
Active current	I _{VCMP}	BIASPROG=0b0000 and HALF- BIAS=1 in VCMPn_CTRL regis- ter	_	0.3	1	μA
		BIASPROG=0b1111 and HALF- BIAS=0 in VCMPn_CTRL regis- ter. LPREF=0.	—	22	30	μA
Startup time reference genera- tor	t _{VCMPREF}	NORMAL	_	10		μs
Offset voltage	V _{VCMPOFFSET}	Single-ended	_	10	_	mV
		Differential	—	10	—	mV
VCMP hysteresis	V _{VCMPHYST}		—	40	_	mV
Startup time	t _{VCMPSTART}		_	_	10	μs

The V_{DD Trigger Level} can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation:

 $V_{\text{DD Trigger Level}}$ = 1.667V + 0.034 × TRIGLEVEL

Alternate					LOCATION
Functionality	0	1	2	3	Description
LETIM0_OUT1	PD7		PF1		Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14			LEUART0 Receive input.
LEU0_TX	PD4	PB13			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13		PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1		Pulse Counter PCNT0 input number 1.
TIM0_CC0	PA0	PA0			Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1			Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2			Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0		PC13		PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1		PC14		PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2		PC15		PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
US0_CLK	PE12				USART0 clock input / output.
US0_CS	PE13				USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11				USART0 Synchronous mode Master Input / Slave Output (MI-SO).
	0540				USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX	PE10				USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7				USART1 clock input / output.
US1_CS	PB8				USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX	PC1				USART1 Synchronous mode Master Input / Slave Output (MI-SO).
	DC0				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX	PC0				USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.2.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_0	PF2				Analog comparator ACMP1, digital output.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2				Clock Management Unit, clock output number 0.
CMU_CLK1	PA1				Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DBG_SWCLK	PF0	PF0			Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down.
DBG_SWDIO	PF1	PF1			Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up.

Table 5.5. Alternate functionality overview

5.5 EFM32G280 (LQFP100)

5.5.1 Pinout

The EFM32G280 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

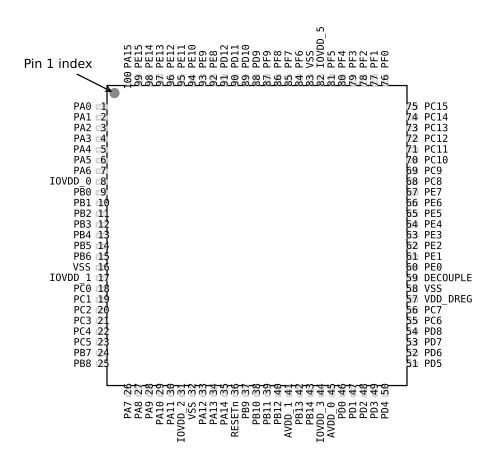


Figure 5.5. EFM32G280 Pinout (top view, not to scale)

Table 5.13. Device Pinout

LQFP100 Pin# and Name		Pin Alternate Functionality / Description							
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other			
1	PA0		EBI_AD09 #0	TIM0_CC0 #0/1	I2C0_SDA #0				
2	PA1		EBI_AD10 #0	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0			
3	PA2		EBI_AD11 #0	TIM0_CC2 #0/1		CMU_CLK0 #0			
4	PA3		EBI_AD12 #0	TIM0_CDTI0 #0	U0_TX #2				
5	PA4		EBI_AD13 #0	TIM0_CDTI1 #0	U0_RX #2				

Alternate	ternate LOCATION						
Functionality	0	1	2	3	Description		
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.		
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.		
					Debug-interface Serial Wire clock input.		
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.		
					Debug-interface Serial Wire data input / output.		
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.		
					Debug-interface Serial Wire viewer Output.		
DBG_SWO	PF2	PC15			Note that this function is not enabled after reset, and must be enabled by software to be used.		
EBI_AD00	PE8				External Bus Interface (EBI) address and data input / output pin 00.		
EBI_AD01	PE9				External Bus Interface (EBI) address and data input / output pin 01.		
EBI_AD02	PE10				External Bus Interface (EBI) address and data input / output pin 02.		
EBI_AD03	PE11				External Bus Interface (EBI) address and data input / output pin 03.		
EBI_AD04	PE12				External Bus Interface (EBI) address and data input / output pin 04.		
EBI_AD05	PE13				External Bus Interface (EBI) address and data input / output pin 05.		
EBI_AD06	PE14				External Bus Interface (EBI) address and data input / output pin 06.		
EBI_AD07	PE15				External Bus Interface (EBI) address and data input / output pin 07.		
EBI_AD08	PA15				External Bus Interface (EBI) address and data input / output pin 08.		
EBI_AD09	PA0				External Bus Interface (EBI) address and data input / output pin 09.		
EBI_AD10	PA1				External Bus Interface (EBI) address and data input / output pin 10.		
EBI_AD11	PA2				External Bus Interface (EBI) address and data input / output pin 11.		
EBI_AD12	PA3				External Bus Interface (EBI) address and data input / output pin 12.		
EBI_AD13	PA4				External Bus Interface (EBI) address and data input / output pin 13.		
EBI_AD14	PA5				External Bus Interface (EBI) address and data input / output pin 14.		
EBI_AD15	PA6				External Bus Interface (EBI) address and data input / output pin 15.		
EBI_ALE	PF3				External Bus Interface (EBI) Address Latch Enable output.		

5.7.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.
					Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.
					Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.

Table 5.20. Alternate functionality overview

	64 Pin# and Name				
Pin #	Pin Name	Analog	Timers	Communication	Other
6	PA5	LCD_SEG18	TIM0_CDTI2 #0	LEU1_TX #1	
7	IOVDD_0	Digital IO powe	er supply 0.		
8	VSS	Ground.			
9	PB3	LCD_SEG20	PCNT1_S0IN #1	US2_TX #1	
10	PB4	LCD_SEG21	PCNT1_S1IN #1	US2_RX #1	
11	PB5	LCD_SEG22		US2_CLK #1	
12	PB6	LCD_SEG23		US2_CS #1	
13	PC4	ACMP0_CH4	LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0	
14	PC5	ACMP0_CH5	LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0	
15	PB7	LFXTAL_P		US1_CLK #0	
16	PB8	LFXTAL_N		US1_CS #0	
17	PA12	LCD_BCAP_ P	TIM2_CC0 #1		
18	PA13	LCD_BCAP_ N	TIM2_CC1 #1		
19	PA14	LCD_BEXT	TIM2_CC2 #1		
20	RESETn		tive low.To apply an external re nd let the internal pull-up ensure	eset source to this pin, it is require that reset is released.	red to only drive this pin low
21	PB11	DAC0_OUT0	LETIM0_OUT0 #1		
22	VSS	Ground.			
23	AVDD_1	Analog power	supply 1.		
24	PB13	HFXTAL_P		LEU0_TX #1	
25	PB14	HFXTAL_N		LEU0_RX #1	
26	IOVDD_3	Digital IO powe	er supply 3.		
27	AVDD_0	Analog power	supply 0.		
28	PD0	ADC0_CH0	PCNT2_S0IN #0	US1_TX #1	
29	PD1	ADC0_CH1	TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1	
30	PD2	ADC0_CH2	TIM0_CC1 #3	US1_CLK #1	
31	PD3	ADC0_CH3	TIM0_CC2 #3	US1_CS #1	
32	PD4	ADC0_CH4		LEU0_TX #0	
33	PD5	ADC0_CH5		LEU0_RX #0	
34	PD6	ADC0_CH6	LETIM0_OUT0 #0	I2C0_SDA #1	
35	PD7	ADC0_CH7	LETIM0_OUT1 #0	I2C0_SCL #1	
36	PD8				CMU_CLK1 #1
37	PC6	ACMP0_CH6		LEU1_TX #0 I2C0_SDA #2	

Alternate LOCATION						
Functionality	0	1	2	3	Description	
TIM0_CC0	PA0	PA0		PD1	Timer 0 Capture Compare input / output channel 0.	
TIM0_CC1	PA1	PA1		PD2	Timer 0 Capture Compare input / output channel 1.	
TIM0_CC2	PA2	PA2		PD3	Timer 0 Capture Compare input / output channel 2.	
TIM0_CDTI0	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.	
TIM0_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.	
TIM0_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.	
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.	
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.	
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.	
TIM2_CC0		PA12			Timer 2 Capture Compare input / output channel 0.	
TIM2_CC1		PA13			Timer 2 Capture Compare input / output channel 1.	
TIM2_CC2		PA14			Timer 2 Capture Compare input / output channel 2.	
US0_CLK	PE12	PE5			USART0 clock input / output.	
US0_CS	PE13	PE4			USART0 chip select input / output.	
					USART0 Asynchronous Receive.	
US0_RX	PE11	PE6			USART0 Synchronous mode Master Input / Slave Output (MI-SO).	
US0_TX	PE10	PE7			USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.	
					USART0 Synchronous mode Master Output / Slave Input (MOSI).	
US1_CLK	PB7	PD2			USART1 clock input / output.	
US1_CS	PB8	PD3			USART1 chip select input / output.	
					USART1 Asynchronous Receive.	
US1_RX		PD1			USART1 Synchronous mode Master Input / Slave Output (MI-SO).	
US1_TX		PD0			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.	
					USART1 Synchronous mode Master Output / Slave Input (MOSI).	
US2_CLK	PC4	PB5			USART2 clock input / output.	
US2_CS	PC5	PB6			USART2 chip select input / output.	
					USART2 Asynchronous Receive.	
US2_RX		PB4			USART2 Synchronous mode Master Input / Slave Output (MI-SO).	
US2_TX		PB3			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication.	
					USART2 Synchronous mode Master Output / Slave Input (MOSI).	

5.9.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate		LOCATION						
Functionality	0	1	2	3	Description			
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.			
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.			
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.			
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.			
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.			
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.			
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.			
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.			
ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.			
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.			
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.			
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.			
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.			
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.			
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.			
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.			
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.			
ACMP1_O	PF2	PE3			Analog comparator ACMP1, digital output.			
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.			
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.			
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.			
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.			
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.			
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.			
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.			
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.			
BOOT_RX	PE11				Bootloader RX.			
BOOT_TX	PE10				Bootloader TX.			
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.			
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.			

Table 5.26. Alternate functionality overview

Alternate					LOCATION		
Functionality	0	1	2	3	Description		
LCD_SEG30	PD11				LCD segment line 30. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.		
LCD_SEG31	PD12				LCD segment line 31. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.		
LCD_SEG32	PB0				LCD segment line 32. Segments 32, 33, 34 and 35 are controlled by SEGEN8.		
LCD_SEG33	PB1				LCD segment line 33. Segments 32, 33, 34 and 35 are controlled by SEGEN8.		
LCD_SEG34	PB2				LCD segment line 34. Segments 32, 33, 34 and 35 are controlled by SEGEN8.		
LCD_SEG35	PA7				LCD segment line 35. Segments 32, 33, 34 and 35 are controlled by SEGEN8.		
LCD_SEG36	PA8				LCD segment line 36. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.		
LCD_SEG37	PA9				LCD segment line 37. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.		
LCD_SEG38	PA10				LCD segment line 38. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.		
LCD_SEG39	PA11				LCD segment line 39. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.		
LETIM0_OUT0	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.		
LETIM0_OUT1	PD7	PB12	PF1	PC5	Low Energy Timer LETIM0, output channel 1.		
LEU0_RX	PD5	PB14	PE15		LEUART0 Receive input.		
LEU0_TX	PD4	PB13	PE14		LEUART0 Transmit output. Also used as receive input in half duplex communication.		
LEU1_RX	PC7	PA6			LEUART1 Receive input.		
LEU1_TX	PC6	PA5			LEUART1 Transmit output. Also used as receive input in half duplex communication.		
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.		
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.		
PCNT0_S0IN	PC13	PE0	PC0		Pulse Counter PCNT0 input number 0.		
PCNT0_S1IN	PC14	PE1	PC1		Pulse Counter PCNT0 input number 1.		
PCNT1_S0IN	PC4	PB3			Pulse Counter PCNT1 input number 0.		
PCNT1_S1IN	PC5	PB4			Pulse Counter PCNT1 input number 1.		
PCNT2_S0IN	PD0	PE8			Pulse Counter PCNT2 input number 0.		
PCNT2_S1IN	PD1	PE9			Pulse Counter PCNT2 input number 1.		
TIM0_CC0	PA0	PA0	PF6	PD1	Timer 0 Capture Compare input / output channel 0.		
TIM0_CC1	PA1	PA1	PF7	PD2	Timer 0 Capture Compare input / output channel 1.		
TIM0_CC2	PA2	PA2	PF8	PD3	Timer 0 Capture Compare input / output channel 2.		
TIM0_CDTI0	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.		

5.10 EFM32G890 (BGA112)

5.10.1 Pinout

The EFM32G890 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

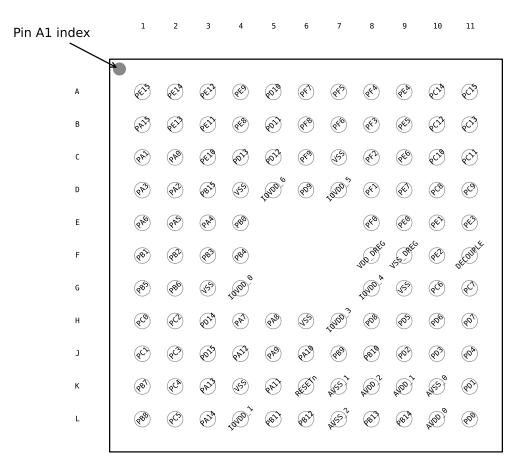


Figure 5.10. EFM32G890 Pinout (top view, not to scale)

Table	5.28.	Device	Pinout
-------	-------	--------	---------------

	12 Pin# and Name	Pin Alternate Functionality / Description							
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other			
A1	PE15	LCD_SEG 11	EBI_AD07 #0		LEU0_RX #2				
A2	PE14	LCD_SEG 10	EBI_AD06 #0		LEU0_TX #2				
A3	PE12	LCD_SEG 8	EBI_AD04 #0	TIM1_CC2 #1	US0_CLK #0				

Alternate	Alternate LOCATION						
Functionality	0	1	2	3	Description		
EBI_ARDY	PF2				External Bus Interface (EBI) Hardware Ready Control input.		
EBI_CS0	PD9				External Bus Interface (EBI) Chip Select output 0.		
EBI_CS1	PD10				External Bus Interface (EBI) Chip Select output 1.		
EBI_CS2	PD11				External Bus Interface (EBI) Chip Select output 2.		
EBI_CS3	PD12				External Bus Interface (EBI) Chip Select output 3.		
EBI_REn	PF5				External Bus Interface (EBI) Read Enable output.		
EBI_WEn	PF4				External Bus Interface (EBI) Write Enable output.		
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.		
HFXTAL_P	PB13				High Frequency Crystal positive pin.		
I2C0_SCL	PA1	PD7	PC7	PD15	I2C0 Serial Clock Line input / output.		
I2C0_SDA	PA0	PD6	PC6	PD14	I2C0 Serial Data input / output.		
LCD_BCAP_N	PA13				LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.		
LCD_BCAP_P	PA12				LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.		
LCD_BEXT	PA14				 LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS. An external LCD voltage may also be applied to this pin if the booster is not enabled. If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO. 		
LCD_COM0	PE4				LCD driver common line number 0.		
LCD_COM1	PE5				LCD driver common line number 1.		
LCD_COM2	PE6				LCD driver common line number 2.		
LCD_COM3	PE7				LCD driver common line number 3.		
LCD_SEG0	PF2				LCD segment line 0. Segments 0, 1, 2 and 3 are controlled by SEGEN0.		
LCD_SEG1	PF3				LCD segment line 1. Segments 0, 1, 2 and 3 are controlled by SEGEN0.		
LCD_SEG2	PF4				LCD segment line 2. Segments 0, 1, 2 and 3 are controlled by SEGEN0.		
LCD_SEG3	PF5				LCD segment line 3. Segments 0, 1, 2 and 3 are controlled by SEGEN0.		
LCD_SEG4	PE8				LCD segment line 4. Segments 4, 5, 6 and 7 are controlled by SEGEN1.		
LCD_SEG5	PE9				LCD segment line 5. Segments 4, 5, 6 and 7 are controlled by SEGEN1.		
LCD_SEG6	PE10				LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1.		

8. TQFP64 Package Specifications

8.1 TQFP64 Package Dimensions

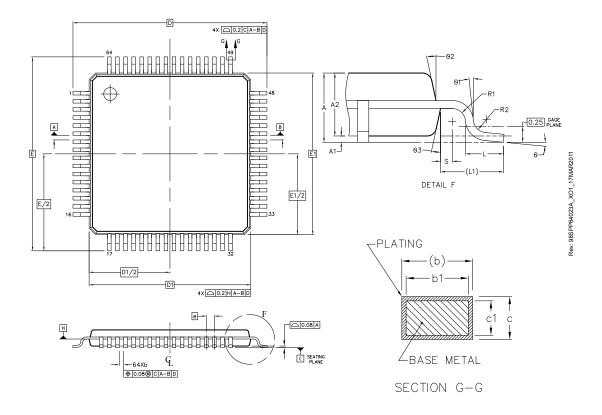
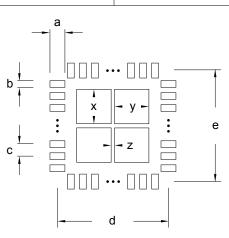
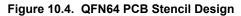


Figure 8.1. TQFP64


Note:


- 1. All dimensions & tolerancing confirm to ASME Y14.5M-1994.
- 2. The top package body size may be smaller than the bottom package body size.
- 3. Datum 'A,B', and 'B' to be determined at datum plane 'H'.
- 4. To be determined at seating place 'C'.
- 5. Dimension 'D1' and 'E1' do not include mold protrusions. Allowable protrusion is 0.25mm per side.'D1' and 'E1' are maximum plastic body size dimension including mold mismatch. Dimension 'D1' and'E1' shall be determined at datum plane 'H'.
- 6. Detail of Pin 1 indicatifier are option all but must be located within the zone indicated.
- 7. Dimension 'b' does not include dambar protrusion. Allowable dambar protrusion shall not cause thelead width to exceed the maximum 'b' dimension by more than 0.08 mm. Dambar can not be locatedon the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm.
- 8. Exact shape of each corner is optional.
- 9. These dimension apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 10. All dimensions are in millimeters.

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX
A	_	1.10	1.20	L1		—	
A1	0.05	—	0.15	R1	0.08	—	—
A2	0.95	1.00	1.05	R2	0.08	_	0.20

Table 8.1. QFP64 (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Dim. (mm)
d	8.90	_	-

Table 10.4. QFN64 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Dim. (mm)
а	0.75	e	8.90
b	0.22	х	2.70
С	0.50	у	2.70
d	8.90	Z	0.80

Note:

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see Pin Definitions.

12. Chip Revision, Solder Information, Errata

12.1 Chip Revision

The revision of a chip can be determined from the "Revision" field in the package marking.

12.2 Soldering Information

The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.

12.3 Errata

Please see the errata document for description and resolution of device errata. This document is available in Simplicity Studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit