

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 4x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VQFN Exposed Pad
Supplier Device Package	32-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g200f32g-e-qfn32

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

- ARM Cortex-M3 CPU platform
 - · High Performance 32-bit processor @ up to 32 MHz
 - Memory Protection Unit
 - Wake-up Interrupt Controller
 - SysTick System Timer
- Flexible Energy Management System
 - 20 nA @ 3 V Shutoff Mode
 - 0.6 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention
 - 0.9 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention
 - 45 µA/MHz @ 3 V Sleep Mode
 - 180 µA/MHz @ 3 V Run Mode, with code executed from flash
- 128/64/32 KB Flash
- 16/8 KB RAM
- · Up to 90 General Purpose I/O pins
 - · Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
 - · Configurable peripheral I/O locations
 - · 16 asynchronous external interrupts
 - · Output state retention and wake-up from Shutoff Mode
- 8 Channel DMA Controller
- · 8 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
- Hardware AES with 128/256-bit keys in 54/75 cycles
- Timers/Counters
 - 3 × 16-bit Timer/Counter
 - 3×3 Compare/Capture/PWM channels
 - Dead-Time Insertion on TIMER0
 - 16-bit Low Energy Timer
 - 1× 24-bit Real-Time Counter
 - 3× 8-bit Pulse Counter
 - Watchdog Timer with dedicated RC oscillator @ 50 nA
- Integrated LCD Controller for up to 4×40 segments
 - · Voltage boost, adjustable contrast and autonomous animation
- External Bus Interface for up to 4x64 MB of external memory mapped space
 - TFT Controller with Direct Drive
- Communication interfaces
 - Up to 3× Universal Synchronous/Asynchronous Receiver/ Transmitter
 - UART/SPI/SmartCard (ISO 7816)/IrDA/I2S
 - Triple buffered full/half-duplex operation
 - 1× Universal Asynchronous Receiver/Transmitter
 - 2× Low Energy UART
 - Autonomous operation with DMA in Deep Sleep Mode
 - I²C Interface with SMBus support
 - Address recognition in Stop Mode
- Ultra low power precision analog peripherals
 - 12-bit 1 Msamples/s Analog to Digital Converter
 - · 8 single-ended channels/4 differential channels
 - On-chip temperature sensor
 - · 12-bit 500 ksamples/s Digital to Analog Converter
 - 2 single-ended channels/1 differential channel
 - 2× Analog Comparator
 - · Capacitive sensing with up to 16 inputs

2. Ordering Information

The following table shows the available EFM32G devices.

Ordering Code	Flash (kB)	RAM (kB)	Max Speed (MHz)	Supply Volt- age (V)	Tempera- ture (ºC)	Package
EFM32G200F16G-E-QFN32	16	8	32	1.98 - 3.8	-40 - 85	QFN32
EFM32G200F32G-E-QFN32	32	8	32	1.98 - 3.8	-40 - 85	QFN32
EFM32G200F64G-E-QFN32	64	16	32	1.98 - 3.8	-40 - 85	QFN32
EFM32G210F128G-E-QFN32	128	16	32	1.98 - 3.8	-40 - 85	QFN32
EFM32G222F32G-E-QFP48	32	8	32	1.98 - 3.8	-40 - 85	TQFP48
EFM32G222F64G-E-QFP48	64	16	32	1.98 - 3.8	-40 - 85	TQFP48
EFM32G222F128G-E-QFP48	128	16	32	1.98 - 3.8	-40 - 85	TQFP48
EFM32G230F32G-E-QFN64	32	8	32	1.98 - 3.8	-40 - 85	QFN64
EFM32G230F64G-E-QFN64	64	16	32	1.98 - 3.8	-40 - 85	QFN64
EFM32G230F128G-E-QFN64	128	16	32	1.98 - 3.8	-40 - 85	QFN64
EFM32G232F32G-E-QFP64	32	8	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32G232F64G-E-QFP64	64	16	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32G232F128G-E-QFP64	128	16	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32G280F32G-E-QFP100	32	8	32	1.98 - 3.8	-40 - 85	LQFP100
EFM32G280F64G-E-QFP100	64	16	32	1.98 - 3.8	-40 - 85	LQFP100
EFM32G280F128G-E-QFP100	128	16	32	1.98 - 3.8	-40 - 85	LQFP100
EFM32G290F32G-E-BGA112	32	8	32	1.98 - 3.8	-40 - 85	BGA112
EFM32G290F64G-E-BGA112	64	16	32	1.98 - 3.8	-40 - 85	BGA112
EFM32G290F128G-E-BGA112	128	16	32	1.98 - 3.8	-40 - 85	BGA112
EFM32G840F32G-E-QFN64	32	8	32	1.98 - 3.8	-40 - 85	QFN64
EFM32G840F64G-E-QFN64	64	16	32	1.98 - 3.8	-40 - 85	QFN64
EFM32G840F128G-E-QFN64	128	16	32	1.98 - 3.8	-40 - 85	QFN64
EFM32G842F32G-E-QFP64	32	8	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32G842F64G-E-QFP64	64	16	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32G842F128G-E-QFP64	128	16	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32G880F32G-E-QFP100	32	8	32	1.98 - 3.8	-40 - 85	LQFP100
EFM32G880F64G-E-QFP100	64	16	32	1.98 - 3.8	-40 - 85	LQFP100
EFM32G880F128G-E-QFP100	128	16	32	1.98 - 3.8	-40 - 85	LQFP100
EFM32G890F32G-E-BGA112	32	8	32	1.98 - 3.8	-40 - 85	BGA112
EFM32G890F64G-E-BGA112	64	16	32	1.98 - 3.8	-40 - 85	BGA112
EFM32G890F128G-E-BGA112	128	16	32	1.98 - 3.8	-40 - 85	BGA112

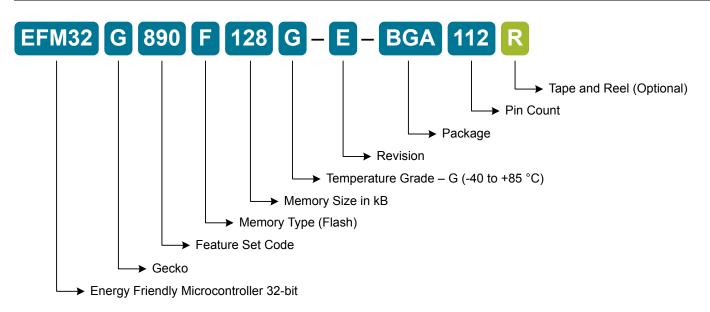


Figure 2.1. Ordering Code Decoder

Adding the suffix 'R' to the part number (e.g., EFM32G890F128G-E-BGA112R) denotes tape and reel.

Visit www.silabs.com for information on global distributors and representatives.

3.1.24 Advanced Encryption Standard Accelerator (AES)

The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported.

3.1.25 General Purpose Input/Output (GPIO)

General Purpose Input/Output (GPIO) pins are organized into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

3.1.26 Liquid Crystal Display Driver (LCD)

The LCD driver is capable of driving a segmented LCD display with up to 4x40 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

3.3 Memory Map

The EFM32G memory map is shown in the figure below. RAM and Flash sizes are for the largest memory configuration.

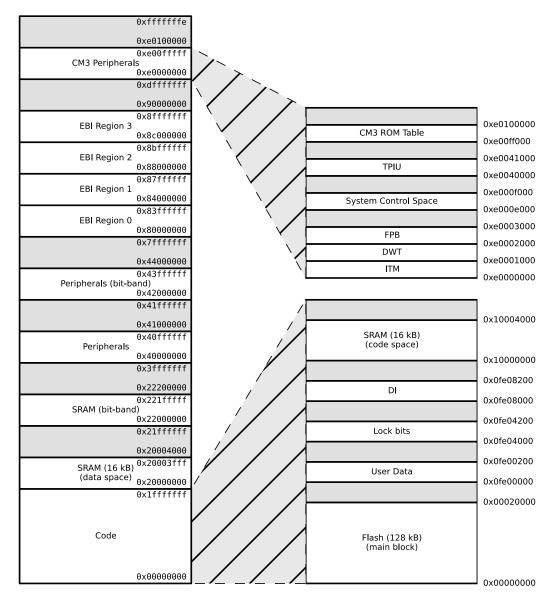


Figure 3.2. System Address Space with Core and Code Space Listing

Table 4.9. HFXO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supported nominal crystal Fre- quency	f _{HFXO}		4	—	32	MHz
Supported crystal equivalent ser-	ESR _{HFXO}	Crystal frequency 32 MHz	_	30	60	Ω
ies resistance (ESR)	LOINHEXO	Crystal frequency 4 MHz	_	400	1500	Ω
The transconductance of the HFXO input transistor at crystal startup	9 _{mHFXO}	HFXOBOOST in CMU_CTRL equals 0b11	20		_	mS
Supported crystal external load range	C _{HFXOL}		5		25	pF
Current consumption for HFXO after startup	I _{HFXO}	4 MHz: ESR=400 Ω, C_L =20 pF, HFXOBOOST in CMU_CTRL equals 0b11	_	85	_	μA
		32 MHz: ESR=30 Ω , C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11	_	165	_	μA
Startup time	t _{HFXO}	32 MHz: ESR=30 Ω, C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11		400	_	μs
Pulse width removed by glitch de- tector			1		4	ns

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Signal-to-Noise Ratio (SNR)		200 kSamples/s, 12 bit, differen- tial, V _{DD} reference,ADC_CLK = 7 MHz, BIASPROG = 0x747	63	69	_	dB
		200 kSamples/s, 12 bit, differen- tial, 2xV _{DD} reference,ADC_CLK = 7 MHz, BIASPROG = 0x747	_	70	_	dB

Alternate					LOCATION
Functionality	0	1	2	3	Description
LETIM0_OUT1	PD7		PF1		Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14			LEUART0 Receive input.
LEU0_TX	PD4	PB13			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13		PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1		Pulse Counter PCNT0 input number 1.
TIM0_CC0	PA0	PA0			Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1			Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2			Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0		PC13		PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1		PC14		PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2		PC15		PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
US0_CLK	PE12				USART0 clock input / output.
US0_CS	PE13				USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11				USART0 Synchronous mode Master Input / Slave Output (MI-SO).
	0540				USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX	PE10				USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7				USART1 clock input / output.
US1_CS	PB8				USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX	PC1				USART1 Synchronous mode Master Input / Slave Output (MI-SO).
	DC0				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX	PC0				USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.3 EFM32G230 (QFN64)

5.3.1 Pinout

The EFM32G230 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

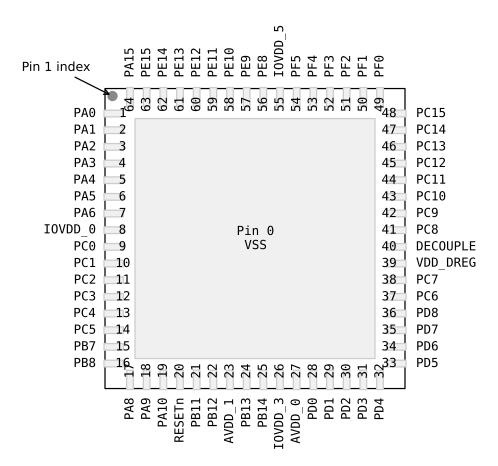


Figure 5.3. EFM32G230 Pinout (top view, not to scale)

Table 5.7. Device Pinout

QFN64 Pin# and Name			Pin Alternate		
Pin #	Pin Name	Analog	Timers	Communication	Other
0	VSS	Ground.			
1	PA0		TIM0_CC0 #0/1	I2C0_SDA #0	
2	PA1		TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0
3	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0
4	PA3		TIM0_CDTI0 #0		
5	PA4		TIM0_CDTI1 #0		

5.5 EFM32G280 (LQFP100)

5.5.1 Pinout

The EFM32G280 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

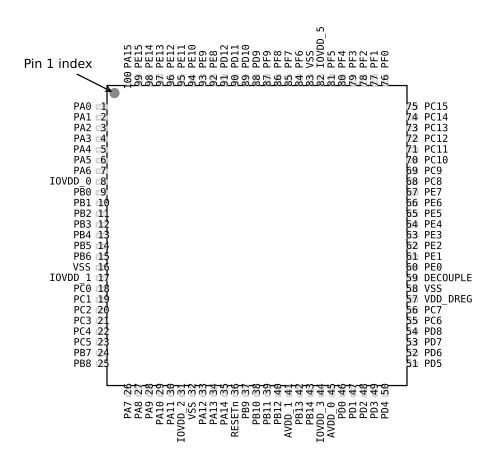


Figure 5.5. EFM32G280 Pinout (top view, not to scale)

Table 5.13. Device Pinout

	P100 Pin# d Name	Pin Alternate Functionality / Description				
Pin #	Pin Name	Analog EBI		Timers	Communication	Other
1	PA0		EBI_AD09 #0	TIM0_CC0 #0/1	I2C0_SDA #0	
2	PA1		EBI_AD10 #0	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0
3	PA2		EBI_AD11 #0	TIM0_CC2 #0/1		CMU_CLK0 #0
4	PA3		EBI_AD12 #0	TIM0_CDTI0 #0	U0_TX #2	
5	PA4		EBI_AD13 #0	TIM0_CDTI1 #0	U0_RX #2	

	12 Pin# and Name		F	Pin Alternate Functionality	/ / Description	
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
A6	PF7			TIM0_CC1 #2	U0_RX #0	
A7	PF5		EBI_REn #0	TIM0_CDTI2 #2		
A8	PF4		EBI_WEn #0	TIM0_CDTI1 #2		
A9	PE4				US0_CS #1	
A10	PC14	ACMP1_C H6		TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0	U0_TX #3	
A11	PC15	ACMP1_C H7		TIM0_CDTI2 #1/3 TIM1_CC2 #0	U0_RX #3	DBG_SWO #1
B1	PA15		EBI_AD08 #0			
B2	PE13		EBI_AD05 #0		US0_CS #0	ACMP0_O #0
B3	PE11		EBI_AD03 #0	TIM1_CC1 #1	US0_RX #0	BOOT_RX
B4	PE8		EBI_AD00 #0	PCNT2_S0IN #1		
B5	PD11		EBI_CS2 #0			
B6	PF8			TIM0_CC2 #2		
B7	PF6			TIM0_CC0 #2	U0_TX #0	
B8	PF3		EBI_ALE #0	TIM0_CDTI0 #2		
B9	PE5				US0_CLK #1	
B10	PC12	ACMP1_C H4				CMU_CLK0 #1
B11	PC13	ACMP1_C H5		TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0		
C1	PA1		EBI_AD10 #0	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0
C2	PA0		EBI_AD09 #0	TIM0_CC0 #0/1	I2C0_SDA #0	
C3	PE10		EBI_AD02 #0	TIM1_CC0 #1	US0_TX #0	BOOT_TX
C4	PD13					
C5	PD12		EBI_CS3 #0			
C6	PF9					
C7	VSS	Ground.				
C8	PF2		EBI_ARDY #0			ACMP1_O #0 DBG_SWO #0
C9	PE6				US0_RX #1	
C10	PC10	ACMP1_C H2		TIM2_CC2 #2	US0_RX #2	
C11	PC11	ACMP1_C H3			US0_TX #2	
D1	PA3		EBI_AD12 #0	TIM0_CDTI0 #0	U0_TX #2	
D2	PA2		EBI_AD11 #0	TIM0_CC2 #0/1		CMU_CLK0 #0

5.7 EFM32G840 (QFN64)

5.7.1 Pinout

The EFM32G840 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

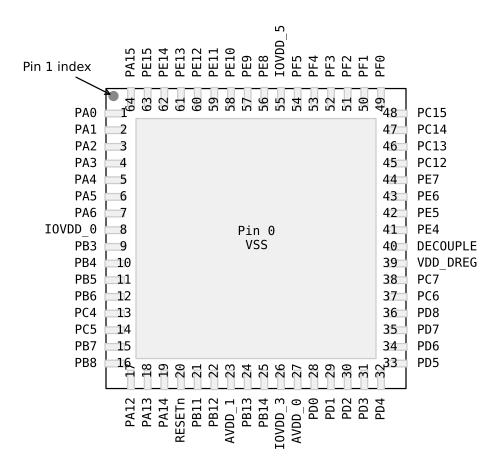


Figure 5.7. EFM32G840 Pinout (top view, not to scale)

Table 5.19. Device Pinout

QFN64 P	in# and Name		Pin Alternate Functionality / Description				
Pin #	Pin Name	Analog Timers		Communication	Other		
0	VSS	Ground.					
1	PA0	LCD_SEG13	TIM0_CC0 #0/1	I2C0_SDA #0			
2	PA1	LCD_SEG14	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0		
3	PA2	LCD_SEG15	TIM0_CC2 #0/1		CMU_CLK0 #0		
4	PA3	LCD_SEG16	TIM0_CDTI0 #0				
5	PA4	LCD_SEG17	TIM0_CDTI1 #0				

Alternate	LOCATION						
Functionality	0	1	2	3	Description		
US2_TX		PB3			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI).		

5.7.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G840 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Table 5.21.	GPIO Pinout	

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	PA14	PA13	PA12	—	_	—	_	—	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	_	PB14	PB13	PB12	PB11	_		PB8	PB7	PB6	PB5	PB4	PB3	_	_	_
Port C	PC15	PC14	PC13	PC12	_	—	_	_	PC7	PC6	PC5	PC4	_	_	_	_
Port D	_		_	_	_	_		PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4		_	_	_
Port F	_	_	_	_	_	_	_	_	_	_	PF5	PF4	PF3	PF2	PF1	PF0

5.8.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DBG_SWCLK	PF0	PF0			Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down.
DBG_SWDIO	PF1	PF1			Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up.

Table 5.23. Alternate functionality overview

LQFP100 Pin# and Name		Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other		
28	PA9	LCD_SEG 37		TIM2_CC1 #0				
29	PA10	LCD_SEG 38		TIM2_CC2 #0				
30	PA11	LCD_SEG 39						
31	IOVDD_2	Digital IO po	ower supply 2.		-			
32	VSS	Ground.						
33	PA12	LCD_BCA P_P		TIM2_CC0 #1				
34	PA13	LCD_BCA P_N		TIM2_CC1 #1				
35	PA14	LCD_BEX T		TIM2_CC2 #1				
36	RESETn		active low.To apply an el et the internal pull-up ensu	xternal reset source to this ure that reset is released.	s pin, it is required to only	drive this pin low during		
37	PB9							
38	PB10							
39	PB11	DAC0_OU T0		LETIM0_OUT0 #1				
40	PB12	DAC0_OU T1		LETIM0_OUT1 #1				
41	AVDD_1	Analog power supply 1.						
42	PB13	HFXTAL_ P			LEU0_TX #1			
43	PB14	HFXTAL_ N			LEU0_RX #1			
44	IOVDD_3	Digital IO po	ower supply 3.					
45	AVDD_0	Analog pow	er supply 0.					
46	PD0	ADC0_CH 0		PCNT2_S0IN #0	US1_TX #1			
47	PD1	ADC0_CH 1		TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1			
48	PD2	ADC0_CH 2		TIM0_CC1 #3	US1_CLK #1			
49	PD3	ADC0_CH 3		TIM0_CC2 #3	US1_CS #1			
50	PD4	ADC0_CH 4			LEU0_TX #0			
51	PD5	ADC0_CH 5			LEU0_RX #0			
52	PD6	ADC0_CH 6		LETIM0_OUT0 #0	I2C0_SDA #1			

BGA112 Pin# and Name			Pi	n Alternate Functionalit	y / Description			
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other		
E9	PE0			PCNT0_S0IN #1	U0_TX #1			
E10	PE1			PCNT0_S1IN #1	U0_RX #1			
E11	PE3					ACMP1_O #1		
F1	PB1	LCD_SEG 33		TIM1_CC1 #2				
F2	PB2	LCD_SEG 34		TIM1_CC2 #2				
F3	PB3	LCD_SEG 20		PCNT1_S0IN #1	US2_TX #1			
F4	PB4	LCD_SEG 21		PCNT1_S1IN #1	US2_RX #1			
F8	VDD_DRE G	Power supp	ly for on-chip voltage reg	ulator.				
F9	VSS_DRE G	Ground for o	on-chip voltage regulator.					
F10	PE2					ACMP0_O #1		
F11	DECOU- PLE	Decouple output for on-chip voltage regulator. An external capacitance of size C _{DECOUPLE} is required at this pin.						
G1	PB5	LCD_SEG 22			US2_CLK #1			
G2	PB6	LCD_SEG 23			US2_CS #1			
G3	VSS	Ground.						
G4	IOVDD_0	Digital IO po	Digital IO power supply 0.					
G8	IOVDD_4	Digital IO power supply 4.						
G9	VSS	Ground.						
G10	PC6	ACMP0_C H6			LEU1_TX #0 I2C0_SDA #2			
G11	PC7	ACMP0_C H7			LEU1_RX #0 I2C0_SCL #2			
H1	PC0	ACMP0_C H0		PCNT0_S0IN #2	US1_TX #0			
H2	PC2	ACMP0_C H2			US2_TX #0			
H3	PD14				I2C0_SDA #3			
H4	PA7	LCD_SEG 35						
H5	PA8	LCD_SEG 36		TIM2_CC0 #0				
H6	VSS	Ground.	Ground.					
H7	IOVDD_3	Digital IO power supply 3.						
H8	PD8					CMU_CLK1 #1		

		SYMBOL	MIN	NOM	МАХ		
	x	D		16 BSC			
	у	E		16 BSC			
body size	x	D1					
body size	у	E1		14 BSC			
lead pitcl	ו	e	0.5 BSC				
		L	0.45	0.6	0.75		
footprint		L1	1 REF				
		θ	0°	3.5°	7°		
		θ1	0°	—	—		
		θ2	11º	12º	13°		
		θ3	11°	12°	13°		
		R1	0.08	_	—		
		R1	0.08	_	0.2		
		S	0.2	—	—		
package edge to	olerance	aaa	0.2				
lead edge tolerance		bbb	0.2				
coplanarity		ссс	0.08				
lead offset		ddd	0.08				
mold flatness		eee	0.05				

The LQFP100 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx

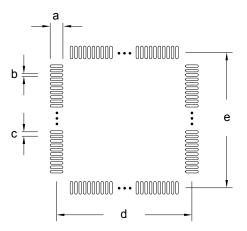


Figure 7.4. LQFP100 PCB Stencil Design

Table 7.4. LQFP100 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.35
b	0.20
с	0.50
d	15.40
e	15.40

Note:

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see Pin Definitions.

7.3 LQFP100 Package Marking

In the illustration below package fields and position are shown.

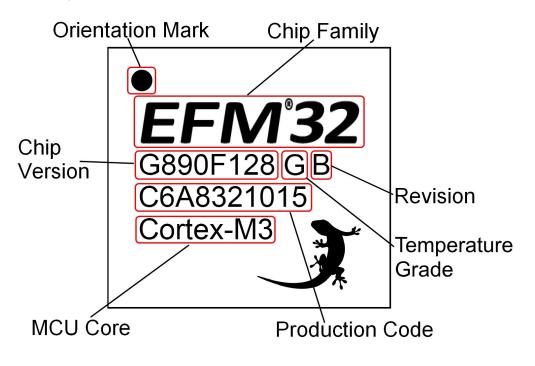


Figure 7.5. Example Chip Marking (Top View)

12. Chip Revision, Solder Information, Errata

12.1 Chip Revision

The revision of a chip can be determined from the "Revision" field in the package marking.

12.2 Soldering Information

The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.

12.3 Errata

Please see the errata document for description and resolution of device errata. This document is available in Simplicity Studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit