

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 4x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VQFN Exposed Pad
Supplier Device Package	32-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g200f32g-e-qfn32r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM.

3.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32G.

3.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32G microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

3.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32G. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

3.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

3.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

3.1.10 External Bus Interface (EBI)

The External Bus Interface provides access to external parallel interface devices such as SRAM, FLASH, ADCs and LCDs. The interface is memory mapped into the address bus of the Cortex-M3. This enables seamless access from software without manually manipulating the IO settings each time a read or write is performed. The data and address lines are multiplexed in order to reduce the number of pins required to interface the external devices. The timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices.

3.1.11 Inter-Integrated Circuit Interface (I2C)

The I²C module provides an interface between the MCU and a serial I²C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I²C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes.

3.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 Smart-Cards, and IrDA devices.

3.1.13 Pre-Programmed USB/UART Bootloader

The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note.

3.2.9 EFM32G842

The features of the EFM32G842 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	Full configuration	US2_TX, US2_RX, US2_CLK, US2_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
LEUART1	Full configuration	LEU1_TX, LEU1_RX
TIMER0	Full configuration with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
PCNT2	Full configuration, 8-bit count register	PCNT2_S[1:0]
ACMP0	Full configuration	ACMP0_CH[3:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:4], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[0]
AES	Full configuration	NA
GPIO	53 pins	Available pins are shown in Table 4.3 (p. 57)

Table 3.9. EFM32G842 Configuration Summary

4.4.5 EM4 Current Consumption

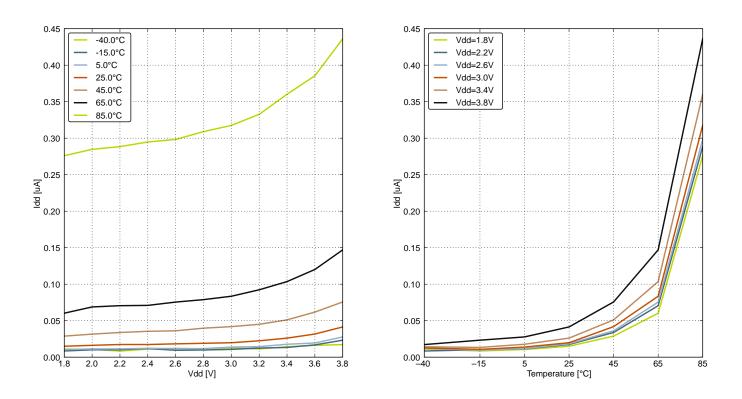


Figure 4.13. EM4 Current Consumption

4.5 Transition between Energy Modes

The transition times are measured from the trigger to the first clock edge in the CPU.

Table 4.4. Energy Modes Transitions

Parameter	Symbol	Min	Тур	Max	Unit
Transition time from EM1 to EM0	t _{EM10}	_	0	—	HFCORECLK cycles
Transition time from EM2 to EM0	t _{EM20}	_	2	—	μs
Transition time from EM3 to EM0	t _{EM30}	_	2	_	μs
Transition time from EM4 to EM0	t _{EM40}	_	163	_	μs

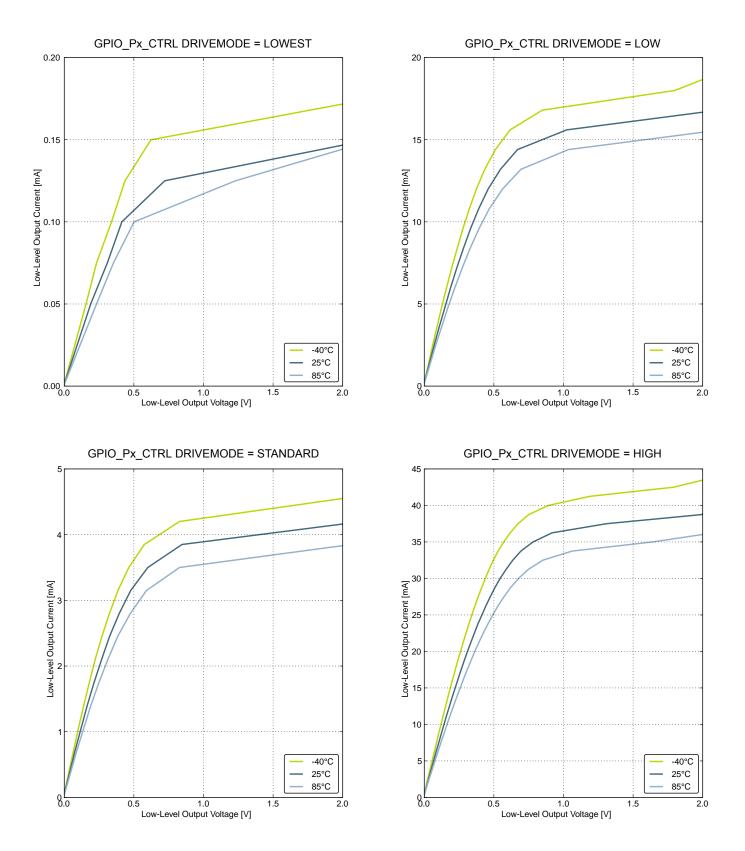


Figure 4.14. Typical Low-Level Output Current, 2V Supply Voltage

Table 4.9. HFXO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supported nominal crystal Fre- quency	f _{HFXO}		4	—	32	MHz
Supported crystal equivalent ser-	ESR _{HFXO}	Crystal frequency 32 MHz	_	30	60	Ω
ies resistance (ESR)	LOINHEXO	Crystal frequency 4 MHz	_	400	1500	Ω
The transconductance of the HFXO input transistor at crystal startup	9 _{mHFXO}	HFXOBOOST in CMU_CTRL equals 0b11	20		_	mS
Supported crystal external load range	C _{HFXOL}		5		25	pF
Current consumption for HFXO	1	4 MHz: ESR=400 Ω, C_L =20 pF, HFXOBOOST in CMU_CTRL equals 0b11	_	85	_	μA
after startup	IHFXO	32 MHz: ESR=30 Ω , C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11	_	165	_	μA
Startup time	t _{HFXO}	32 MHz: ESR=30 Ω, C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11		400	_	μs
Pulse width removed by glitch de- tector			1		4	ns

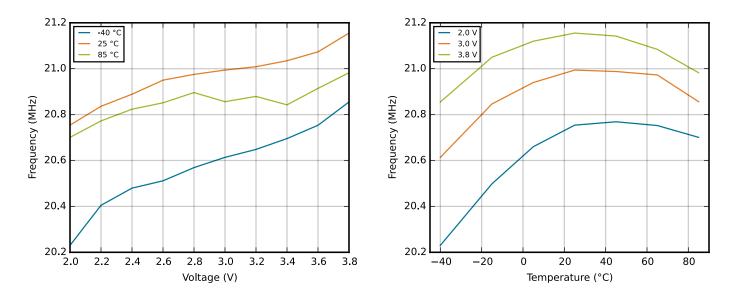


Figure 4.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature

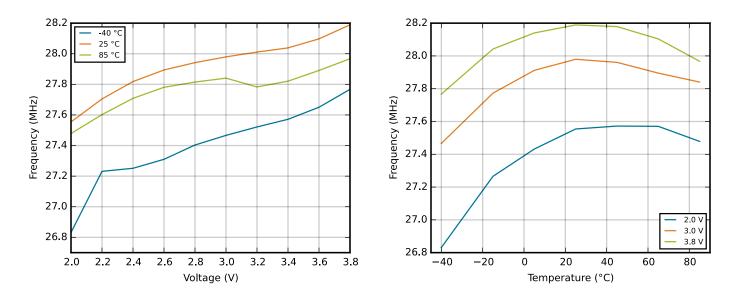


Figure 4.26. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input offset current	I _{ADCOFFSETIN}	VSS < VIN < VDD	-40	—	40	nA
ADC Clock Frequency	f _{ADCCLK}	BIASPROG=0x747	_	—	7	MHz
		BIASPROG=0xF4B	_	_	13	MHz
		6 bit	7		_	ADCCLK Cycles
Conversion time	t _{adcconv}	8 bit	11	_	-	ADCCLK Cycles
		12 bit	13		_	ADCCLK Cycles
Acquisition time	tADCACQ	Programmable	1		256	ADCCLK Cycles
Required acquisition time for VDD/3 reference	t _{ADCACQVDD3}		2		_	μs
Startup time of reference gener-	t _{ADCSTART}	NORMAL mode	_	5	_	μs
ator and ADC core		KEEPADCWARM mode	_	1	_	μs

	48 Pin# and Name		Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	Timers Communication		Other				
38	PF1		LETIM0_OUT1 #2		DBG_SWDIO #0/1				
39	PF2				ACMP1_O #0 DBG_SWO #0				
40	PF3		TIM0_CDTI0 #2						
41	PF4		TIM0_CDTI1 #2						
42	PF5		TIM0_CDTI2 #2						
43	IOVDD_5	Digital IO powe	er supply 5.						
44	VSS	Ground.							
45	PE10		TIM1_CC0 #1	US0_TX #0	BOOT_TX				
46	PE11		TIM1_CC1 #1	US0_RX #0	BOOT_RX				
47	PE12		TIM1_CC2 #1	US0_CLK #0					
48	PE13			US0_CS #0	ACMP0_O #0				

QFN64 P	in# and Name		Pin Alternate	Functionality / Description	ı
Pin #	Pin Name	Analog	Timers	Communication	Other
40	DECOUPLE	Decouple outp pin.	ut for on-chip voltage regulator.	An external capacitance of s	ize C_{DECOUPLE} is required at this
41	PC8	ACMP1_CH0	TIM2_CC0 #2	US0_CS #2	
42	PC9	ACMP1_CH1	TIM2_CC1 #2	US0_CLK #2	
43	PC10	ACMP1_CH2	TIM2_CC2 #2	US0_RX #2	
44	PC11	ACMP1_CH3		US0_TX #2	
45	PC12	ACMP1_CH4			CMU_CLK0 #1
46	PC13	ACMP1_CH5	TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0		
47	PC14	ACMP1_CH6	TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0		
48	PC15	ACMP1_CH7	TIM0_CDTI2 #1/3 TIM1_CC2 #0		DBG_SWO #1
49	PF0		LETIM0_OUT0 #2		DBG_SWCLK #0/1
50	PF1		LETIM0_OUT1 #2		DBG_SWDIO #0/1
51	PF2				ACMP1_O #0 DBG_SWO #0
52	PF3		TIM0_CDTI0 #2		
53	PF4		TIM0_CDTI1 #2		
54	PF5		TIM0_CDTI2 #2		
55	IOVDD_5	Digital IO powe	er supply 5.		
56	PE8		PCNT2_S0IN #1		
57	PE9		PCNT2_S1IN #1		
58	PE10		TIM1_CC0 #1	US0_TX #0	BOOT_TX
59	PE11		TIM1_CC1 #1	US0_RX #0	BOOT_RX
60	PE12		TIM1_CC2 #1	US0_CLK #0	
61	PE13			US0_CS #0	ACMP0_O #0
62	PE14			LEU0_TX #2	
63	PE15			LEU0_RX #2	
64	PA15				

5.5.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G280 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	_	PB14	PB13	PB12	PB11	PB10	PB9	PB8	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	_	_	_	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Port F	_						PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0

Table 5.15. GPIO Pinout

5.7.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION		
Functionality	0	1	2	3	Description		
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.		
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.		
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.		
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.		
ACMP0_O	PE13				Analog comparator ACMP0, digital output.		
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.		
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.		
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.		
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.		
ACMP1_O	PF2				Analog comparator ACMP1, digital output.		
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.		
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.		
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.		
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.		
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.		
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.		
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.		
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.		
BOOT_RX	PE11				Bootloader RX.		
BOOT_TX	PE10				Bootloader TX.		
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.		
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.		
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.		
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.		
					Debug-interface Serial Wire clock input.		
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.		
					Debug-interface Serial Wire data input / output.		
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.		

Table 5.20. Alternate functionality overview

5.8 EFM32G842 (TQFP64)

5.8.1 Pinout

The EFM32G842 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

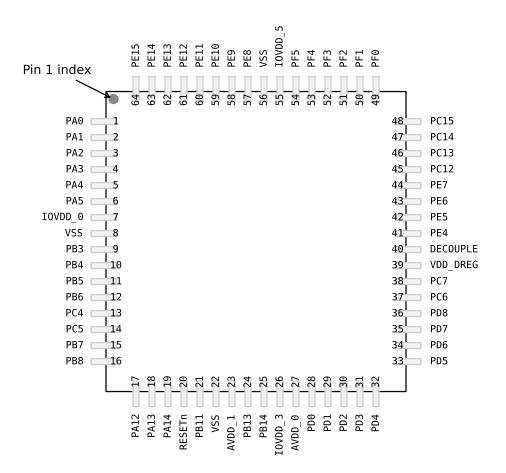


Figure 5.8. EFM32G842 Pinout (top view, not to scale)

Table 5.22. Device Pinout

	64 Pin# and Name		Pin Alternate	Functionality / Description	
Pin #	Pin Name Analog		Analog Timers Communication		Other
1	PA0	LCD_SEG13	TIM0_CC0 #0/1	I2C0_SDA #0	
2	PA1	LCD_SEG14	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0
3	PA2	LCD_SEG15	TIM0_CC2 #0/1		CMU_CLK0 #0
4	PA3	LCD_SEG16	TIM0_CDTI0 #0		
5	PA4	LCD_SEG17	TIM0_CDTI1 #0		

	I2 Pin# and Name		Pi	n Alternate Functionality	y / Description	
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
A4	PE9	LCD_SEG 5	EBI_AD01 #0	PCNT2_S1IN #1		
A5	PD10	LCD_SEG 29	EBI_CS1 #0			
A6	PF7	LCD_SEG 25		TIM0_CC1 #2	U0_RX #0	
A7	PF5	LCD_SEG 3	EBI_REn #0	TIM0_CDTI2 #2		
A8	PF4	LCD_SEG 2	EBI_WEn #0	TIM0_CDTI1 #2		
A9	PE4	LCD_COM 0			US0_CS #1	
A10	PC14	ACMP1_C H6		TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0	U0_TX #3	
A11	PC15	ACMP1_C H7		TIM0_CDTI2 #1/3 TIM1_CC2 #0	U0_RX #3	DBG_SWO #1
B1	PA15	LCD_SEG 12	EBI_AD08 #0			
B2	PE13	LCD_SEG 9	EBI_AD05 #0		US0_CS #0	ACMP0_O #0
В3	PE11	LCD_SEG 7	EBI_AD03 #0	TIM1_CC1 #1	US0_RX #0	BOOT_RX
B4	PE8	LCD_SEG 4	EBI_AD00 #0	PCNT2_S0IN #1		
B5	PD11	LCD_SEG 30	EBI_CS2 #0			
B6	PF8	LCD_SEG 26		TIM0_CC2 #2		
B7	PF6	LCD_SEG 24		TIM0_CC0 #2	U0_TX #0	
B8	PF3	LCD_SEG 1	EBI_ALE #0	TIM0_CDTI0 #2		
В9	PE5	LCD_COM 1			US0_CLK #1	
B10	PC12	ACMP1_C H4				CMU_CLK0 #1
B11	PC13	ACMP1_C H5		TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0		
C1	PA1	LCD_SEG 14	EBI_AD10 #0	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0
C2	PA0	LCD_SEG 13	EBI_AD09 #0	TIM0_CC0 #0/1	I2C0_SDA #0	

	l2 Pin# and Name		Ρ	in Alternate Functionality	/ / Description	
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
C3	PE10	LCD_SEG 6	EBI_AD02 #0	TIM1_CC0 #1	US0_TX #0	BOOT_TX
C4	PD13					
C5	PD12	LCD_SEG 31	EBI_CS3 #0			
C6	PF9	LCD_SEG 27				
C7	VSS	Ground.				,
C8	PF2	LCD_SEG 0	EBI_ARDY #0			ACMP1_O #0 DBG_SWO #0
C9	PE6	LCD_COM 2			US0_RX #1	
C10	PC10	ACMP1_C H2		TIM2_CC2 #2	US0_RX #2	
C11	PC11	ACMP1_C H3			US0_TX #2	
D1	PA3	LCD_SEG 16	EBI_AD12 #0	TIM0_CDTI0 #0	U0_TX #2	
D2	PA2	LCD_SEG 15	EBI_AD11 #0	TIM0_CC2 #0/1		CMU_CLK0 #0
D3	PB15					
D4	VSS	Ground.		1		1
D5	IOVDD_6	Digital IO po	wer supply 6.			
D6	PD9	LCD_SEG 28	EBI_CS0 #0			
D7	IOVDD_5	Digital IO po	wer supply 5.	1		1
D8	PF1			LETIM0_OUT1 #2		DBG_SWDIO #0/1
D9	PE7	LCD_COM 3			US0_TX #1	
D10	PC8	ACMP1_C H0		TIM2_CC0 #2	US0_CS #2	
D11	PC9	ACMP1_C H1		TIM2_CC1 #2	US0_CLK #2	
E1	PA6	LCD_SEG 19	EBI_AD15 #0		LEU1_RX #1	
E2	PA5	LCD_SEG 18	EBI_AD14 #0	TIM0_CDTI2 #0	LEU1_TX #1	
E3	PA4	LCD_SEG 17	EBI_AD13 #0	TIM0_CDTI1 #0	U0_RX #2	
E4	PB0	LCD_SEG 32		TIM1_CC0 #2		
E8	PF0			LETIM0_OUT0 #2		DBG_SWCLK #0/1

5.10.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION		
Functionality	0	1	2	3	Description		
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.		
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.		
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.		
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.		
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.		
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.		
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.		
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.		
ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.		
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.		
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.		
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.		
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.		
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.		
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.		
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.		
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.		
ACMP1_O	PF2	PE3			Analog comparator ACMP1, digital output.		
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.		
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.		
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.		
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.		
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.		
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.		
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.		
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.		
BOOT_RX	PE11				Bootloader RX.		
BOOT_TX	PE10				Bootloader TX.		
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.		
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.		

Table 5.29. Alternate functionality overview

Alternate LOCATION					
Functionality	0	1	2	3	Description
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.
					Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.
					Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.
					Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15			Note that this function is not enabled after reset, and must be enabled by software to be used.
EBI_AD00	PE8				External Bus Interface (EBI) address and data input / output pin 00.
EBI_AD01	PE9				External Bus Interface (EBI) address and data input / output pin 01.
EBI_AD02	PE10				External Bus Interface (EBI) address and data input / output pin 02.
EBI_AD03	PE11				External Bus Interface (EBI) address and data input / output pin 03.
EBI_AD04	PE12				External Bus Interface (EBI) address and data input / output pin 04.
EBI_AD05	PE13				External Bus Interface (EBI) address and data input / output pin 05.
EBI_AD06	PE14				External Bus Interface (EBI) address and data input / output pin 06.
EBI_AD07	PE15				External Bus Interface (EBI) address and data input / output pin 07.
EBI_AD08	PA15				External Bus Interface (EBI) address and data input / output pin 08.
EBI_AD09	PA0				External Bus Interface (EBI) address and data input / output pin 09.
EBI_AD10	PA1				External Bus Interface (EBI) address and data input / output pin 10.
EBI_AD11	PA2				External Bus Interface (EBI) address and data input / output pin 11.
EBI_AD12	PA3				External Bus Interface (EBI) address and data input / output pin 12.
EBI_AD13	PA4				External Bus Interface (EBI) address and data input / output pin 13.
EBI_AD14	PA5				External Bus Interface (EBI) address and data input / output pin 14.
EBI_AD15	PA6				External Bus Interface (EBI) address and data input / output pin 15.
EBI_ALE	PF3				External Bus Interface (EBI) Address Latch Enable output.

Alternate LOCATION						
Functionality	0	1	2	3	Description	
LCD_SEG7	PE11				LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.	
LCD_SEG8	PE12				LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.	
LCD_SEG9	PE13				LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.	
LCD_SEG10	PE14				LCD segment line 10. Segments 8, 9, 10 and 11 are controlled by SEGEN2.	
LCD_SEG11	PE15				LCD segment line 11. Segments 8, 9, 10 and 11 are controlled by SEGEN2.	
LCD_SEG12	PA15				LCD segment line 12. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.	
LCD_SEG13	PA0				LCD segment line 13. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.	
LCD_SEG14	PA1				LCD segment line 14. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.	
LCD_SEG15	PA2				LCD segment line 15. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.	
LCD_SEG16	PA3				LCD segment line 16. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.	
LCD_SEG17	PA4				LCD segment line 17. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.	
LCD_SEG18	PA5				LCD segment line 18. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.	
LCD_SEG19	PA6				LCD segment line 19. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.	
LCD_SEG20	PB3				LCD segment line 20. Segments 20, 21, 22 and 23 are controlled by SEGEN5.	
LCD_SEG21	PB4				LCD segment line 21. Segments 20, 21, 22 and 23 are controlled by SEGEN5.	
LCD_SEG22	PB5				LCD segment line 22. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.	
LCD_SEG23	PB6				LCD segment line 23. Segments 20, 21, 22 and 23 are controlled by SEGEN5.	
LCD_SEG24	PF6				LCD segment line 24. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.	
LCD_SEG25	PF7				LCD segment line 25. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.	
LCD_SEG26	PF8				LCD segment line 26. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.	
LCD_SEG27	PF9				LCD segment line 27. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.	
LCD_SEG28	PD9				LCD segment line 28. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.	
LCD_SEG29	PD10				LCD segment line 29. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.	

6.2 BGA112 PCB Layout

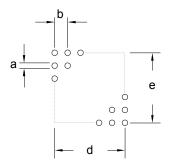


Figure 6.2. BGA112 PCB Land Pattern

Table 6.1. BGA112 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	0.35
b	0.80
d	8.00
e	8.00

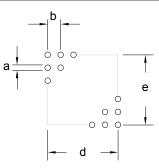


Figure 6.3. BGA112 PCB Solder Mask

Table 6.2. BGA112 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	0.48
b	0.80
d	8.00
e	8.00

		SYMBOL	MIN	NOM	МАХ		
	x	D		16 BSC			
	у	E		16 BSC			
body size	x	D1	14 BSC				
body size	у	E1	14 BSC				
lead pitcl	ו	e	0.5 BSC				
		L	0.45	0.6	0.75		
footprint		L1	1 REF				
		θ	0°	3.5°	7°		
		θ1	0°	—	—		
		θ2	11º	12º	13°		
		θ3	11°	12°	13°		
		R1	0.08	_	—		
		R1	0.08	_	0.2		
		S	0.2	—	—		
package edge to	olerance	aaa	0.2				
lead edge tolerance		bbb	0.2				
coplanarity		ссс	0.08				
lead offset		ddd	0.08				
mold flatness		eee	0.05				

The LQFP100 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx

13.11 Revision 1.20

December 17th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Increased max storage temperature.

Added data for <150°C and <70°C on Flash data retention.

Changed latch-up sensitivity test description.

Added IO leakage current.

For LQFP100 devices, updated ESD CDM value.

Added Flash current consumption.

Updated HFRCO data.

Updated LFRCO data.

Added graph for ADC Absolute Offset over temperature.

Added graph for ADC Temperature sensor readout.

13.12 Revision 1.11

November 17th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Corrected maximum DAC clock speed for continuous mode.

Added DAC sample-hold mode voltage drift rate.

Added pulse widths detected by the HFXO glitch detector.

Added power sequencing information to Power Management section.