

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.85V ~ 3.8V
Data Converters	A/D 4x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VQFN Exposed Pad
Supplier Device Package	32-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g200f64-qfn32t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

- ARM Cortex-M3 CPU platform
 - · High Performance 32-bit processor @ up to 32 MHz
 - Memory Protection Unit
 - Wake-up Interrupt Controller
 - SysTick System Timer
- Flexible Energy Management System
 - 20 nA @ 3 V Shutoff Mode
 - 0.6 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention
 - 0.9 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention
 - 45 µA/MHz @ 3 V Sleep Mode
 - 180 µA/MHz @ 3 V Run Mode, with code executed from flash
- 128/64/32 KB Flash
- 16/8 KB RAM
- · Up to 90 General Purpose I/O pins
 - · Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
 - · Configurable peripheral I/O locations
 - · 16 asynchronous external interrupts
 - · Output state retention and wake-up from Shutoff Mode
- 8 Channel DMA Controller
- · 8 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
- Hardware AES with 128/256-bit keys in 54/75 cycles
- Timers/Counters
 - 3 × 16-bit Timer/Counter
 - 3×3 Compare/Capture/PWM channels
 - Dead-Time Insertion on TIMER0
 - 16-bit Low Energy Timer
 - 1× 24-bit Real-Time Counter
 - 3× 8-bit Pulse Counter
 - Watchdog Timer with dedicated RC oscillator @ 50 nA
- Integrated LCD Controller for up to 4×40 segments
 - · Voltage boost, adjustable contrast and autonomous animation
- External Bus Interface for up to 4x64 MB of external memory mapped space
 - TFT Controller with Direct Drive
- Communication interfaces
 - Up to 3× Universal Synchronous/Asynchronous Receiver/ Transmitter
 - UART/SPI/SmartCard (ISO 7816)/IrDA/I2S
 - Triple buffered full/half-duplex operation
 - 1× Universal Asynchronous Receiver/Transmitter
 - 2× Low Energy UART
 - Autonomous operation with DMA in Deep Sleep Mode
 - I²C Interface with SMBus support
 - Address recognition in Stop Mode
- Ultra low power precision analog peripherals
 - 12-bit 1 Msamples/s Analog to Digital Converter
 - · 8 single-ended channels/4 differential channels
 - On-chip temperature sensor
 - · 12-bit 500 ksamples/s Digital to Analog Converter
 - 2 single-ended channels/1 differential channel
 - 2× Analog Comparator
 - · Capacitive sensing with up to 16 inputs

3.1.24 Advanced Encryption Standard Accelerator (AES)

The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported.

3.1.25 General Purpose Input/Output (GPIO)

General Purpose Input/Output (GPIO) pins are organized into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

3.1.26 Liquid Crystal Display Driver (LCD)

The LCD driver is capable of driving a segmented LCD display with up to 4x40 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

Module	Configuration	Pin Connections
LCD	Full configuration	LCD_SEG[39:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT

Figure 4.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 21 MHz

Figure 4.3. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 14 MHz

|--|

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Flash erase cycles before failure	EC _{FLASH}		20000	_	_	cycles
		T _{AMB} <150 ℃	10000	_	_	h
Flash data retention	RET _{FLASH}	T _{AMB} <85 °C	10	_	_	years
		T _{AMB} <70 °C	20	_	_	years
Word (32-bit) programming time	t _{W_PROG}		20	_	_	μs
Page erase time ²	t _{P_ERASE}		20.7	22.0	24.8	ms
Device erase time ³	t _{D_ERASE}		41.8	45.0	49.2	ms
Erase current	I _{ERASE}		_	_	7 ¹	mA
Write current	I _{WRITE}		_	_	7 ¹	mA
Supply voltage during flash erase and write	V _{FLASH}		1.98	_	3.8	V

Note:

1. Measured at 25 °C.

2. From setting ERASEPAGE bit in MSC_WRITECMD to 1 to reading 1 in ERASE bit in MSC_IF. Internal setup and hold times for flash control signals are included.

3. From setting DEVICEERASE bit in AAP_CMD to 1 to reading 0 in ERASEBUSY bit in AAP_STATUS. Internal setup and hold times for flash control signals are included.

Figure 4.18. Typical Low-Level Output Current, 3.8V Supply Voltage

4.9 Oscillators

4.9.1 LFXO

Table 4.8. LFXO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supported nominal crystal fre- quency	f _{LFXO}		—	32.768	—	kHz
Supported crystal equivalent ser- ies resistance (ESR)	ESR _{LFXO}		_	30	120	kOhm
Supported crystal external load range	C _{LFXOL}		X ¹	_	25	pF
Current consumption for core and buffer after startup	I _{LFXO}	ESR=30 kΩ, C _L =10 pF, LFXO- BOOST in CMU_CTRL is 1	_	190	—	nA
Start-up time	t _{LFXO}	ESR=30 k Ω , C _L =10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1		400		ms

Note:

1. See Minimum Load Capacitance (C_{LFXOL}) Requirement For Safe Crystal Startup in Configurator in Simplicity Studio.

For safe startup of a given crystal, the Configurator tool in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration".

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit				
Signal-to-Noise Ratio (SNR)	SNR _{ADC}	1 MSamples/s, 12 bit, single- ended, internal 1.25 V refer- ence, ADC_CLK = 13 MHz, BIASPROG = 0xF4B		59		dB				
		1 MSamples/s, 12 bit, single- ended, internal 2.5 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	63	_	dB				
		1 MSamples/s, 12 bit, single- ended, V _{DD} reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B		67		dB				
		1 MSamples/s, 12 bit, differen- tial, internal 1.25 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B		63		dB				
		1 MSamples/s, 12 bit, differen- tial, internal 2.5 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	66	_	dB				
		1 MSamples/s, 12 bit, differen- tial, 5 V reference, ADC_CLK =13 MHz, BIASPROG = 0xF4B	_	66	_	dB				
		1 MSamples/s, 12 bit, differen- tial, V _{DD} reference, ADC_CLK= 13 MHz, BIASPROG =0xF4B	63	69	—	dB				
		1 MSamples/s, 12 bit, differen- tial, 2xV _{DD} reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	70	_	dB				
		200 kSamples/s, 12 bit, single- ended, internal 1.25 V refer- ence, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	62	_	dB				
		200 kSamples/s, 12 bit, single- ended, internal 2.5 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747		63		dB				
						200 kSamples/s, 12 bit, single- ended, V _{DD} reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747		67		dB
		200 kSamples/s, 12 bit, differen- tial, internal 1.25 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	63	_	dB				
		200 kSamples/s, 12 bit, differen- tial, internal 2.5 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	66	_	dB				
		200 kSamples/s, 12 bit, differen- tial, 5 V reference, ADC_CLK = 7 MHz, BIASPROG = 0x747	—	66	—	dB				

TQFP	48 Pin# and Name		Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	Timers	Communication	Other				
38	PF1		LETIM0_OUT1 #2		DBG_SWDIO #0/1				
39	PF2				ACMP1_O #0 DBG_SWO #0				
40	PF3		TIM0_CDTI0 #2						
41	PF4		TIM0_CDTI1 #2						
42	PF5		TIM0_CDTI2 #2						
43	IOVDD_5	Digital IO powe	er supply 5.						
44	VSS	Ground.							
45	PE10		TIM1_CC0 #1	US0_TX #0	BOOT_TX				
46	PE11		TIM1_CC1 #1	US0_RX #0	BOOT_RX				
47	PE12		TIM1_CC2 #1	US0_CLK #0					
48	PE13			US0_CS #0	ACMP0_O #0				

TQFP	64 Pin# and Name		Pin Alternate Functionality / Description					
Pin #	Pin Name	Analog	Timers	Communication	Other			
6	PA5		TIM0_CDTI2 #0	LEU1_TX #1				
7	IOVDD_0	Digital IO powe	er supply 0.					
8	VSS	Ground.						
9	PC0	ACMP0_CH0	PCNT0_S0IN #1	US1_TX #1				
10	PC1	ACMP0_CH1	PCNT0_S1IN #1	US1_RX #1				
11	PC2	ACMP0_CH2		US1_CLK #1				
12	PC3	ACMP0_CH3		US1_CS #1				
13	PC4	ACMP0_CH4	LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0				
14	PC5	ACMP0_CH5	LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0				
15	PB7	LFXTAL_P		US1_CLK #0				
16	PB8	LFXTAL_N		US1_CS #0				
17	PA8		TIM2_CC0 #0					
18	PA9		TIM2_CC1 #0					
19	PA10		TIM2_CC2 #0					
20	RESETn	Reset input, ac during reset, a	eset input, active low. To apply an external reset source to this pin, it is required to only drive to uring reset, and let the internal pull-up ensure that reset is released.					
21	PB11	DAC0_OUT0	LETIM0_OUT0 #1					
22	VSS	Ground.	-					
23	AVDD_1	Analog power	supply 1.					
24	PB13	HFXTAL_P		LEU0_TX #1				
25	PB14	HFXTAL_N		LEU0_RX #1				
26	IOVDD_3	Digital IO powe	er supply 3.					
27	AVDD_0	Analog power	supply 0.					
28	PD0	ADC0_CH0	PCNT2_S0IN #0	US1_TX #1				
29	PD1	ADC0_CH1	TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1				
30	PD2	ADC0_CH2	TIM0_CC1 #3	US1_CLK #1				
31	PD3	ADC0_CH3	TIM0_CC2 #3	US1_CS #1				
32	PD4	ADC0_CH4		LEU0_TX #0				
33	PD5	ADC0_CH5		LEU0_RX #0				
34	PD6	ADC0_CH6	LETIM0_OUT0 #0	I2C0_SDA #1				
35	PD7	ADC0_CH7	LETIM0_OUT1 #0	I2C0_SCL #1				
36	PD8				CMU_CLK1 #1			
37	PC6	ACMP0_CH6		LEU1_TX #0 I2C0_SDA #2				
38	PC7	ACMP0_CH7		LEU1_RX #0 I2C0_SCL #2				

LQFF and	P100 Pin# d Name	Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	Other					
63	PE3					ACMP1_O #1		
64	PE4				US0_CS #1			
65	PE5				US0_CLK #1			
66	PE6				US0_RX #1			
67	PE7				US0_TX #1			
68	PC8	ACMP1_C H0		TIM2_CC0 #2	US0_CS #2			
69	PC9	ACMP1_C H1		TIM2_CC1 #2	US0_CLK #2			
70	PC10	ACMP1_C H2		TIM2_CC2 #2	US0_RX #2			
71	PC11	ACMP1_C H3			US0_TX #2			
72	PC12	ACMP1_C H4				CMU_CLK0 #1		
73	PC13	ACMP1_C H5		TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0				
74	PC14	ACMP1_C H6		TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0	U0_TX #3			
75	PC15	ACMP1_C H7		TIM0_CDTI2 #1/3 TIM1_CC2 #0	U0_RX #3	DBG_SWO #1		
76	PF0			LETIM0_OUT0 #2		DBG_SWCLK #0/1		
77	PF1			LETIM0_OUT1 #2		DBG_SWDIO #0/1		
78	PF2		EBI_ARDY #0			ACMP1_O #0 DBG_SWO #0		
79	PF3		EBI_ALE #0	TIM0_CDTI0 #2				
80	PF4		EBI_WEn #0	TIM0_CDTI1 #2				
81	PF5		EBI_REn #0	TIM0_CDTI2 #2				
82	IOVDD_5	Digital IO po	wer supply 5.					
83	VSS	Ground.			1			
84	PF6			TIM0_CC0 #2	U0_TX #0			
85	PF7			TIM0_CC1 #2	U0_RX #0			
86	PF8			TIM0_CC2 #2				
87	PF9							
88	PD9		EBI_CS0 #0					
89	PD10		EBI_CS1 #0					
90	PD11		EBI_CS2 #0					
91	PD12		EBI_CS3 #0					

Alternate					LOCATION
Functionality	0	1	2	3	Description
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.
					Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.
					Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.
					Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15			Note that this function is not enabled after reset, and must be enabled by software to be used.
EBI_AD00	PE8				External Bus Interface (EBI) address and data input / output pin 00.
EBI_AD01	PE9				External Bus Interface (EBI) address and data input / output pin 01.
EBI_AD02	PE10				External Bus Interface (EBI) address and data input / output pin 02.
EBI_AD03	PE11				External Bus Interface (EBI) address and data input / output pin 03.
EBI_AD04	PE12				External Bus Interface (EBI) address and data input / output pin 04.
EBI_AD05	PE13				External Bus Interface (EBI) address and data input / output pin 05.
EBI_AD06	PE14				External Bus Interface (EBI) address and data input / output pin 06.
EBI_AD07	PE15				External Bus Interface (EBI) address and data input / output pin 07.
EBI_AD08	PA15				External Bus Interface (EBI) address and data input / output pin 08.
EBI_AD09	PA0				External Bus Interface (EBI) address and data input / output pin 09.
EBI_AD10	PA1				External Bus Interface (EBI) address and data input / output pin 10.
EBI_AD11	PA2				External Bus Interface (EBI) address and data input / output pin 11.
EBI_AD12	PA3				External Bus Interface (EBI) address and data input / output pin 12.
EBI_AD13	PA4				External Bus Interface (EBI) address and data input / output pin 13.
EBI_AD14	PA5				External Bus Interface (EBI) address and data input / output pin 14.
EBI_AD15	PA6				External Bus Interface (EBI) address and data input / output pin 15.
EBI_ALE	PF3				External Bus Interface (EBI) Address Latch Enable output.

5.6.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G290 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	PB15	PB14	PB13	PB12	PB11	PB10	PB9	PB8	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	PD15	PD14	PD13	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Port F	_		_				PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0

Table 5.18. GPIO Pinout

5.7 EFM32G840 (QFN64)

5.7.1 Pinout

The EFM32G840 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.7. EFM32G840 Pinout (top view, not to scale)

Table 5.19. Device Pinout

QFN64 P	Pin# and Name				
Pin #	Pin Name	Analog	Timers	Communication	Other
0	VSS	Ground.			
1	PA0	LCD_SEG13	TIM0_CC0 #0/1	I2C0_SDA #0	
2	PA1	LCD_SEG14	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0
3	PA2	LCD_SEG15	TIM0_CC2 #0/1		CMU_CLK0 #0
4	PA3	LCD_SEG16	TIM0_CDTI0 #0		
5	PA4	LCD_SEG17	TIM0_CDTI1 #0		

Alternate	LOCATION				
Functionality	0	1	2	3	Description
TIM0_CC0	PA0	PA0		PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1		PD2	Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2		PD3	Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
TIM2_CC0		PA12			Timer 2 Capture Compare input / output channel 0.
TIM2_CC1		PA13			Timer 2 Capture Compare input / output channel 1.
TIM2_CC2		PA14			Timer 2 Capture Compare input / output channel 2.
US0_CLK	PE12	PE5			USART0 clock input / output.
US0_CS	PE13	PE4			USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11	PE6			USART0 Synchronous mode Master Input / Slave Output (MI-SO).
	DE40	DEZ			USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
050_1X	PEIU	PE7			USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX		PD1			USART1 Synchronous mode Master Input / Slave Output (MI-SO).
		000			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
051_1X		PD0			USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
					USART2 Asynchronous Receive.
US2_RX		PB4			USART2 Synchronous mode Master Input / Slave Output (MI-SO).
		DD2			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication.
US2_IX		PB3			USART2 Synchronous mode Master Output / Slave Input (MOSI).

5.9.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G880 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	_	PB14	PB13	PB12	PB11	PB10	PB9	PB8	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	—	_	_	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Port F	_			_	_	_	PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0

Table 5.27. GPIO Pinout

Figure 7.4. LQFP100 PCB Stencil Design

Table 7.4. LQFP100 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.35
b	0.20
C	0.50
d	15.40
e	15.40

Note:

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see Pin Definitions.

10.3 QFN64 Package Marking

In the illustration below package fields and position are shown.

Figure 10.5. Example Chip Marking (Top View)

11.2 QFN32 PCB Layout

Figure 11.2. QFN32 PCB Land Pattern

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	0.80	P1	1	P6	24
b	0.35	P2	8	P7	25
С	0.65	P3	9	P8	32
d	6.00	P4	16	P9	33
e	6.00	P5	17		
f	4.40				
g	4.40				

Figure 11.3. QFN32 PCB Solder Mask

Table 11.3. QFN32 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	0.92
b	0.47
C	0.65

13.19 Revision 0.82

December 9th, 2009

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

For LQFP100 devices, incorrect pin 0 removed from pinout table.

Updated contact information.

ADC current consumption numbers updated in ADC Electrical Characteristics.

For devices with LCD, updated LCD supply voltage range in LCD Electrical Characteristics.

13.20 Revision 0.81

November 20th, 2009

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

For devices without a differential DAC, System Summary updated.

Electrical Characteristics updated.

Storage temperature in Electrical Characteristics updated.

Temperature coefficient of band-gap reference in Electrical Characteristics added.

Erase times in Flash Electrical Characteristics updated.

Definitions of DNL and INL added in ADC section.

For devices with and LCD, LCD Electrical Characteristics added.

Current consumption of digital peripherals added in Electrical Characteristics.

For LQFP100 devices, package information in Pinout and Package corrected.

For BGA112 devices, pinout information in Pinout table corrected.

Updated errata section.