



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

## Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

| Product Status             | Discontinued at Digi-Key                                               |
|----------------------------|------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M3                                                        |
| Core Size                  | 32-Bit Single-Core                                                     |
| Speed                      | 32MHz                                                                  |
| Connectivity               | I <sup>2</sup> C, IrDA, SmartCard, SPI, UART/USART                     |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                             |
| Number of I/O              | 24                                                                     |
| Program Memory Size        | 128KB (128K x 8)                                                       |
| Program Memory Type        | FLASH                                                                  |
| EEPROM Size                | -                                                                      |
| RAM Size                   | 16K x 8                                                                |
| Voltage - Supply (Vcc/Vdd) | 1.98V ~ 3.8V                                                           |
| Data Converters            | A/D 4x12b; D/A 1x12b                                                   |
| Oscillator Type            | Internal                                                               |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                      |
| Mounting Type              | Surface Mount                                                          |
| Package / Case             | 32-VQFN Exposed Pad                                                    |
| Supplier Device Package    | 32-QFN (6x6)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/efm32g210f128-qfn32t |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Figure 4.4. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 11 MHz



Figure 4.5. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 7 MHz

## Table 4.10. LFRCO

| Parameter                                                | Symbol              | Test Condition | Min   | Тур    | Max   | Unit |
|----------------------------------------------------------|---------------------|----------------|-------|--------|-------|------|
| Oscillation frequency, $V_{DD}$ = 3.0 V, $T_{AMB}$ =25°C | flfrco              |                | 31.29 | 32.768 | 34.24 | kHz  |
| Startup time not including soft-<br>ware calibration     | t <sub>LFRCO</sub>  |                | —     | 150    | —     | μs   |
| Current consumption                                      | I <sub>LFRCO</sub>  |                | _     | 190    | _     | nA   |
| Temperature coefficient                                  | TC <sub>LFRCO</sub> |                | —     | ±0.02  | —     | %/°C |
| Supply voltage coefficient                               | VC <sub>LFRCO</sub> |                | _     | ±15    | _     | %/V  |
| Frequency step for LSB change in TUNING value            | TUNESTEPLFRCO       |                | —     | 1.5    | —     | %    |



Figure 4.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage



Figure 4.21. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature



Figure 4.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature

|       | 48 Pin# and<br>Name | Pin Alternate Functionality / Description |                                                                                                                                                                                             |                                 |                                           |  |  |  |  |  |
|-------|---------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|--|--|--|--|--|
| Pin # | Pin Name            | Analog                                    | Timers                                                                                                                                                                                      | Communication                   | Other                                     |  |  |  |  |  |
| 6     | PC0                 | ACMP0_CH0                                 | PCNT0_S0IN #2                                                                                                                                                                               | US1_TX #0                       |                                           |  |  |  |  |  |
| 7     | PC1                 | ACMP0_CH1                                 | PCNT0_S1IN #2                                                                                                                                                                               | US1_RX #0                       |                                           |  |  |  |  |  |
| 8     | PC2                 | ACMP0_CH2                                 |                                                                                                                                                                                             |                                 |                                           |  |  |  |  |  |
| 9     | PC3                 | ACMP0_CH3                                 |                                                                                                                                                                                             |                                 |                                           |  |  |  |  |  |
| 10    | PC4                 | ACMP0_CH4                                 | LETIM0_OUT0 #3<br>PCNT1_S0IN #0                                                                                                                                                             |                                 |                                           |  |  |  |  |  |
| 11    | PB7                 | LFXTAL_P                                  |                                                                                                                                                                                             | US1_CLK #0                      |                                           |  |  |  |  |  |
| 12    | PB8                 | LFXTAL_N                                  |                                                                                                                                                                                             | US1_CS #0                       |                                           |  |  |  |  |  |
| 13    | PA8                 |                                           | TIM2_CC0 #0                                                                                                                                                                                 |                                 |                                           |  |  |  |  |  |
| 14    | PA9                 |                                           | TIM2_CC1 #0                                                                                                                                                                                 |                                 |                                           |  |  |  |  |  |
| 15    | PA10                |                                           | TIM2_CC2 #0                                                                                                                                                                                 |                                 |                                           |  |  |  |  |  |
| 16    | RESETn              | Reset input, ac<br>during reset, a        | eset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low<br>uring reset, and let the internal pull-up ensure that reset is released. |                                 |                                           |  |  |  |  |  |
| 17    | PB11                | DAC0_OUT0                                 | LETIM0_OUT0 #1                                                                                                                                                                              |                                 |                                           |  |  |  |  |  |
| 18    | VSS                 | Ground.                                   | d.                                                                                                                                                                                          |                                 |                                           |  |  |  |  |  |
| 19    | AVDD_1              | Analog power                              | power supply 1.                                                                                                                                                                             |                                 |                                           |  |  |  |  |  |
| 20    | PB13                | HFXTAL_P                                  |                                                                                                                                                                                             | LEU0_TX #1                      |                                           |  |  |  |  |  |
| 21    | PB14                | HFXTAL_N                                  |                                                                                                                                                                                             | LEU0_RX #1                      |                                           |  |  |  |  |  |
| 22    | IOVDD_3             | Digital IO powe                           | er supply 3.                                                                                                                                                                                |                                 |                                           |  |  |  |  |  |
| 23    | AVDD_0              | Analog power                              | supply 0.                                                                                                                                                                                   |                                 |                                           |  |  |  |  |  |
| 24    | PD4                 | ADC0_CH4                                  |                                                                                                                                                                                             | LEU0_TX #0                      |                                           |  |  |  |  |  |
| 25    | PD5                 | ADC0_CH5                                  |                                                                                                                                                                                             | LEU0_RX #0                      |                                           |  |  |  |  |  |
| 26    | PD6                 | ADC0_CH6                                  | LETIM0_OUT0 #0                                                                                                                                                                              | I2C0_SDA #1                     |                                           |  |  |  |  |  |
| 27    | PD7                 | ADC0_CH7                                  | LETIM0_OUT1 #0                                                                                                                                                                              | I2C0_SCL #1                     |                                           |  |  |  |  |  |
| 28    | VDD_DREG            | Power supply f                            | or on-chip voltage regulator.                                                                                                                                                               |                                 |                                           |  |  |  |  |  |
| 29    | DECOUPLE            | Decouple outp pin.                        | ut for on-chip voltage regulator.                                                                                                                                                           | An external capacitance of size | C <sub>DECOUPLE</sub> is required at this |  |  |  |  |  |
| 30    | PC8                 | ACMP1_CH0                                 | TIM2_CC0 #2                                                                                                                                                                                 | US0_CS #2                       |                                           |  |  |  |  |  |
| 31    | PC9                 | ACMP1_CH1                                 | TIM2_CC1 #2                                                                                                                                                                                 | US0_CLK #2                      |                                           |  |  |  |  |  |
| 32    | PC10                | ACMP1_CH2                                 | TIM2_CC2 #2                                                                                                                                                                                 | US0_RX #2                       |                                           |  |  |  |  |  |
| 33    | PC11                | ACMP1_CH3                                 |                                                                                                                                                                                             | US0_TX #2                       |                                           |  |  |  |  |  |
| 34    | PC13                | ACMP1_CH5                                 | TIM0_CDTI0 #1/3 TIM1_CC0<br>#0 PCNT0_S0IN #0                                                                                                                                                |                                 |                                           |  |  |  |  |  |
| 35    | PC14                | ACMP1_CH6                                 | TIM0_CDTI1 #1/3 TIM1_CC1<br>#0 PCNT0_S1IN #0                                                                                                                                                |                                 |                                           |  |  |  |  |  |
| 36    | PC15                | ACMP1_CH7                                 | TIM0_CDTI2 #1/3 TIM1_CC2<br>#0                                                                                                                                                              |                                 | DBG_SWO #1                                |  |  |  |  |  |
| 37    | PF0                 |                                           | LETIM0_OUT0 #2                                                                                                                                                                              |                                 | DBG_SWCLK #0/1                            |  |  |  |  |  |

| Alternate     |      |      |      |   | LOCATION                                                                               |
|---------------|------|------|------|---|----------------------------------------------------------------------------------------|
| Functionality | 0    | 1    | 2    | 3 | Description                                                                            |
| TIM1_CC0      | PC13 | PE10 |      |   | Timer 1 Capture Compare input / output channel 0.                                      |
| TIM1_CC1      | PC14 | PE11 |      |   | Timer 1 Capture Compare input / output channel 1.                                      |
| TIM1_CC2      | PC15 | PE12 |      |   | Timer 1 Capture Compare input / output channel 2.                                      |
| TIM2_CC0      | PA8  |      | PC8  |   | Timer 2 Capture Compare input / output channel 0.                                      |
| TIM2_CC1      | PA9  |      | PC9  |   | Timer 2 Capture Compare input / output channel 1.                                      |
| TIM2_CC2      | PA10 |      | PC10 |   | Timer 2 Capture Compare input / output channel 2.                                      |
| US0_CLK       | PE12 |      | PC9  |   | USART0 clock input / output.                                                           |
| US0_CS        | PE13 |      | PC8  |   | USART0 chip select input / output.                                                     |
| US0_RX        | PE11 |      |      |   | USART0 Asynchronous Receive.                                                           |
|               |      |      | PC10 |   | USART0 Synchronous mode Master Input / Slave Output (MI-SO).                           |
| US0_TX        | PE10 | PE10 | DC11 |   | USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.  |
|               |      |      | PCTI |   | USART0 Synchronous mode Master Output / Slave Input (MOSI).                            |
| US1_CLK       | PB7  | PD2  |      |   | USART1 clock input / output.                                                           |
| US1_CS        | PB8  | PD3  |      |   | USART1 chip select input / output.                                                     |
|               |      | PD1  |      |   | USART1 Asynchronous Receive.                                                           |
| US1_RX        | PC1  |      |      |   | USART1 Synchronous mode Master Input / Slave Output (MI-SO).                           |
|               | DOO  | 000  |      |   | USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.  |
|               | PCU  | PD0  |      |   | USART1 Synchronous mode Master Output / Slave Input (MOSI).                            |
| US2_CLK       | PC4  |      |      |   | USART2 clock input / output.                                                           |
| US2_CS        | PC5  |      |      |   | USART2 chip select input / output.                                                     |
|               |      |      |      |   | USART2 Asynchronous Receive.                                                           |
| US2_RX        | PC3  |      |      |   | USART2 Synchronous mode Master Input / Slave Output (MI-SO).                           |
| 1182 TY       | PC2  |      |      |   | USART2 Asynchronous Transmit. Also used as receive input in half duplex communication. |
|               | PC2  |      |      |   | USART2 Synchronous mode Master Output / Slave Input (MOSI).                            |

## 5.3.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G230 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

| Port   | Pin<br>15 | Pin<br>14 | Pin<br>13 | Pin<br>12 | Pin<br>11 | Pin<br>10 | Pin 9 | Pin 8    | Pin 7 | Pin 6 | Pin 5 | Pin 4 | Pin 3 | Pin 2 | Pin 1 | Pin 0 |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|
| Port A | PA15      | _         | _         | _         | _         | PA10      | PA8   | PA8<br>— | _     | PA6   | PA5   | PA4   | PA3   | PA2   | PA1   | PA0   |
| Port B | _         | PB14      | PB13      | PB12      | PB11      | _         | _     | PB8      | PB7   | _     | _     | _     | _     | _     | —     | _     |
| Port C | PC15      | PC14      | PC13      | PC12      | PC11      | PC10      | PC9   | PC8      | PC7   | PC6   | PC5   | PC4   | PC3   | PC2   | PC1   | PC0   |
| Port D | _         | _         | _         |           |           | _         | _     | PD8      | PD7   | PD6   | PD5   | PD4   | PD3   | PD2   | PD1   | PD0   |
| Port E | PE15      | PE14      | PE13      | PE12      | PE11      | PE10      | PE9   | PE8      | _     | _     | _     | _     | _     | _     | —     | —     |
| Port F | _         | _         | _         | _         | _         | _         | _     | _        | _     | _     | PF5   | PF4   | PF3   | PF2   | PF1   | PF0   |

## Table 5.9. GPIO Pinout

### 5.4 EFM32G232 (TQFP64)

### 5.4.1 Pinout

The EFM32G232 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the \*\_ROUTE register in the module in question.



Figure 5.4. EFM32G232 Pinout (top view, not to scale)

#### Table 5.10. Device Pinout

| TQFP  | 64 Pin# and<br>Name | Pin Alternate Functionality / Description |               |               |             |  |  |  |
|-------|---------------------|-------------------------------------------|---------------|---------------|-------------|--|--|--|
| Pin # | Pin Name            | Analog                                    | Timers        | Communication | Other       |  |  |  |
| 1     | PA0                 |                                           | TIM0_CC0 #0/1 | I2C0_SDA #0   |             |  |  |  |
| 2     | PA1                 |                                           | TIM0_CC1 #0/1 | I2C0_SCL #0   | CMU_CLK1 #0 |  |  |  |
| 3     | PA2                 |                                           | TIM0_CC2 #0/1 |               | CMU_CLK0 #0 |  |  |  |
| 4     | PA3                 |                                           | TIM0_CDTI0 #0 |               |             |  |  |  |
| 5     | PA4                 |                                           | TIM0_CDTI1 #0 |               |             |  |  |  |

| LQFF<br>and | P100 Pin#<br>d Name | Pin Alternate Functionality / Description |               |                                                 |               |                          |  |  |
|-------------|---------------------|-------------------------------------------|---------------|-------------------------------------------------|---------------|--------------------------|--|--|
| Pin #       | Pin Name            | Analog                                    | EBI           | Timers                                          | Communication | Other                    |  |  |
| 63          | PE3                 |                                           |               |                                                 |               | ACMP1_O #1               |  |  |
| 64          | PE4                 |                                           |               |                                                 | US0_CS #1     |                          |  |  |
| 65          | PE5                 |                                           |               |                                                 | US0_CLK #1    |                          |  |  |
| 66          | PE6                 |                                           |               |                                                 | US0_RX #1     |                          |  |  |
| 67          | PE7                 |                                           |               |                                                 | US0_TX #1     |                          |  |  |
| 68          | PC8                 | ACMP1_C<br>H0                             |               | TIM2_CC0 #2                                     | US0_CS #2     |                          |  |  |
| 69          | PC9                 | ACMP1_C<br>H1                             |               | TIM2_CC1 #2                                     | US0_CLK #2    |                          |  |  |
| 70          | PC10                | ACMP1_C<br>H2                             |               | TIM2_CC2 #2                                     | US0_RX #2     |                          |  |  |
| 71          | PC11                | ACMP1_C<br>H3                             |               |                                                 | US0_TX #2     |                          |  |  |
| 72          | PC12                | ACMP1_C<br>H4                             |               |                                                 |               | CMU_CLK0 #1              |  |  |
| 73          | PC13                | ACMP1_C<br>H5                             |               | TIM0_CDTI0 #1/3<br>TIM1_CC0 #0<br>PCNT0_S0IN #0 |               |                          |  |  |
| 74          | PC14                | ACMP1_C<br>H6                             |               | TIM0_CDTI1 #1/3<br>TIM1_CC1 #0<br>PCNT0_S1IN #0 | U0_TX #3      |                          |  |  |
| 75          | PC15                | ACMP1_C<br>H7                             |               | TIM0_CDTI2 #1/3<br>TIM1_CC2 #0                  | U0_RX #3      | DBG_SWO #1               |  |  |
| 76          | PF0                 |                                           |               | LETIM0_OUT0 #2                                  |               | DBG_SWCLK #0/1           |  |  |
| 77          | PF1                 |                                           |               | LETIM0_OUT1 #2                                  |               | DBG_SWDIO #0/1           |  |  |
| 78          | PF2                 |                                           | EBI_ARDY #0   |                                                 |               | ACMP1_O #0<br>DBG_SWO #0 |  |  |
| 79          | PF3                 |                                           | EBI_ALE #0    | TIM0_CDTI0 #2                                   |               |                          |  |  |
| 80          | PF4                 |                                           | EBI_WEn #0    | TIM0_CDTI1 #2                                   |               |                          |  |  |
| 81          | PF5                 |                                           | EBI_REn #0    | TIM0_CDTI2 #2                                   |               |                          |  |  |
| 82          | IOVDD_5             | Digital IO po                             | wer supply 5. |                                                 |               |                          |  |  |
| 83          | VSS                 | Ground.                                   |               |                                                 | 1             |                          |  |  |
| 84          | PF6                 |                                           |               | TIM0_CC0 #2                                     | U0_TX #0      |                          |  |  |
| 85          | PF7                 |                                           |               | TIM0_CC1 #2                                     | U0_RX #0      |                          |  |  |
| 86          | PF8                 |                                           |               | TIM0_CC2 #2                                     |               |                          |  |  |
| 87          | PF9                 |                                           |               |                                                 |               |                          |  |  |
| 88          | PD9                 |                                           | EBI_CS0 #0    |                                                 |               |                          |  |  |
| 89          | PD10                |                                           | EBI_CS1 #0    |                                                 |               |                          |  |  |
| 90          | PD11                |                                           | EBI_CS2 #0    |                                                 |               |                          |  |  |
| 91          | PD12                |                                           | EBI_CS3 #0    |                                                 |               |                          |  |  |

## 5.6 EFM32G290 (BGA112)

#### 5.6.1 Pinout

The EFM32G290 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the \*\_ROUTE register in the module in question.



Figure 5.6. EFM32G280 Pinout (top view, not to scale)

#### Table 5.16. Device Pinout

| BGA112 Pin# and<br>Name |          | nd Pin Alternate Functionality / Description |             |               |               |       |  |  |
|-------------------------|----------|----------------------------------------------|-------------|---------------|---------------|-------|--|--|
| Pin #                   | Pin Name | Analog                                       | EBI         | Timers        | Communication | Other |  |  |
| A1                      | PE15     |                                              | EBI_AD07 #0 |               | LEU0_RX #2    |       |  |  |
| A2                      | PE14     |                                              | EBI_AD06 #0 |               | LEU0_TX #2    |       |  |  |
| A3                      | PE12     |                                              | EBI_AD04 #0 | TIM1_CC2 #1   | US0_CLK #0    |       |  |  |
| A4                      | PE9      |                                              | EBI_AD01 #0 | PCNT2_S1IN #1 |               |       |  |  |
| A5                      | PD10     |                                              | EBI_CS1 #0  |               |               |       |  |  |

| Alternate     | LOCATION |      |     |   |                                                                                                                                                                     |  |  |
|---------------|----------|------|-----|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Functionality | 0        | 1    | 2   | 3 | Description                                                                                                                                                         |  |  |
|               |          |      |     |   | Debug-interface Serial Wire viewer Output.                                                                                                                          |  |  |
| DBG_SWO       | PF2      | PC15 |     |   | Note that this function is not enabled after reset, and must be enabled by software to be used.                                                                     |  |  |
| HFXTAL_N      | PB14     |      |     |   | High Frequency Crystal negative pin. Also used as external optional clock input pin.                                                                                |  |  |
| HFXTAL_P      | PB13     |      |     |   | High Frequency Crystal positive pin.                                                                                                                                |  |  |
| I2C0_SCL      | PA1      | PD7  | PC7 |   | I2C0 Serial Clock Line input / output.                                                                                                                              |  |  |
| I2C0_SDA      | PA0      | PD6  | PC6 |   | I2C0 Serial Data input / output.                                                                                                                                    |  |  |
| LCD_BCAP_N    | PA13     |      |     |   | LCD voltage booster (optional), boost capacitor, negative pin.<br>If using the LCD voltage booster, connect a 22 nF capacitor<br>between LCD_BCAP_N and LCD_BCAP_P. |  |  |
| LCD_BCAP_P    | PA12     |      |     |   | LCD voltage booster (optional), boost capacitor, positive pin.<br>If using the LCD voltage booster, connect a 22 nF capacitor<br>between LCD_BCAP_N and LCD_BCAP_P. |  |  |
|               |          |      |     |   | LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS.                                  |  |  |
| LCD_BEXT      | PA14     |      |     |   | An external LCD voltage may also be applied to this pin if the booster is not enabled.                                                                              |  |  |
|               |          |      |     |   | If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO.                                                             |  |  |
| LCD_COM0      | PE4      |      |     |   | LCD driver common line number 0.                                                                                                                                    |  |  |
| LCD_COM1      | PE5      |      |     |   | LCD driver common line number 1.                                                                                                                                    |  |  |
| LCD_COM2      | PE6      |      |     |   | LCD driver common line number 2.                                                                                                                                    |  |  |
| LCD_COM3      | PE7      |      |     |   | LCD driver common line number 3.                                                                                                                                    |  |  |
| LCD_SEG0      | PF2      |      |     |   | LCD segment line 0. Segments 0, 1, 2 and 3 are controlled by SEGEN0.                                                                                                |  |  |
| LCD_SEG1      | PF3      |      |     |   | LCD segment line 1. Segments 0, 1, 2 and 3 are controlled by SEGEN0.                                                                                                |  |  |
| LCD_SEG2      | PF4      |      |     |   | LCD segment line 2. Segments 0, 1, 2 and 3 are controlled by SEGEN0.                                                                                                |  |  |
| LCD_SEG3      | PF5      |      |     |   | LCD segment line 3. Segments 0, 1, 2 and 3 are controlled by SEGEN0.                                                                                                |  |  |
| LCD_SEG4      | PE8      |      |     |   | LCD segment line 4. Segments 4, 5, 6 and 7 are controlled by SEGEN1.                                                                                                |  |  |
| LCD_SEG5      | PE9      |      |     |   | LCD segment line 5. Segments 4, 5, 6 and 7 are controlled by SEGEN1.                                                                                                |  |  |
| LCD_SEG6      | PE10     |      |     |   | LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1.                                                                                                |  |  |
| LCD_SEG7      | PE11     |      |     |   | LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.                                                                                                |  |  |
| LCD_SEG8      | PE12     |      |     |   | LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.                                                                                              |  |  |

| LQFF<br>and | P100 Pin#<br>d Name | Pin Alternate Functionality / Description |                |                                 |               |       |  |
|-------------|---------------------|-------------------------------------------|----------------|---------------------------------|---------------|-------|--|
| Pin #       | Pin Name            | Analog                                    | EBI            | Timers                          | Communication | Other |  |
| 4           | PA3                 | LCD_SEG<br>16                             | EBI_AD12 #0    | TIM0_CDTI0 #0                   | U0_TX #2      |       |  |
| 5           | PA4                 | LCD_SEG<br>17                             | EBI_AD13 #0    | TIM0_CDTI1 #0                   | U0_RX #2      |       |  |
| 6           | PA5                 | LCD_SEG<br>18                             | EBI_AD14 #0    | TIM0_CDTI2 #0                   | LEU1_TX #1    |       |  |
| 7           | PA6                 | LCD_SEG<br>19                             | EBI_AD15 #0    |                                 | LEU1_RX #1    |       |  |
| 8           | IOVDD_0             | Digital IO po                             | ower supply 0. |                                 |               |       |  |
| 9           | PB0                 | LCD_SEG<br>32                             |                | TIM1_CC0 #2                     |               |       |  |
| 10          | PB1                 | LCD_SEG<br>33                             |                | TIM1_CC1 #2                     |               |       |  |
| 11          | PB2                 | LCD_SEG<br>34                             |                | TIM1_CC2 #2                     |               |       |  |
| 12          | PB3                 | LCD_SEG<br>20                             |                | PCNT1_S0IN #1                   | US2_TX #1     |       |  |
| 13          | PB4                 | LCD_SEG<br>21                             |                | PCNT1_S1IN #1                   | US2_RX #1     |       |  |
| 14          | PB5                 | LCD_SEG<br>22                             |                |                                 | US2_CLK #1    |       |  |
| 15          | PB6                 | LCD_SEG<br>23                             |                |                                 | US2_CS #1     |       |  |
| 16          | VSS                 | Ground.                                   |                |                                 |               |       |  |
| 17          | IOVDD_1             | Digital IO po                             | ower supply 1. |                                 |               |       |  |
| 18          | PC0                 | ACMP0_C<br>H0                             |                | PCNT0_S0IN #2                   | US1_TX #0     |       |  |
| 19          | PC1                 | ACMP0_C<br>H1                             |                | PCNT0_S1IN #2                   | US1_RX #0     |       |  |
| 20          | PC2                 | ACMP0_C<br>H2                             |                |                                 | US2_TX #0     |       |  |
| 21          | PC3                 | ACMP0_C<br>H3                             |                |                                 | US2_RX #0     |       |  |
| 22          | PC4                 | ACMP0_C<br>H4                             |                | LETIM0_OUT0 #3<br>PCNT1_S0IN #0 | US2_CLK #0    |       |  |
| 23          | PC5                 | ACMP0_C<br>H5                             |                | LETIM0_OUT1 #3<br>PCNT1_S1IN #0 | US2_CS #0     |       |  |
| 24          | PB7                 | LFXTAL_P                                  |                |                                 | US1_CLK #0    |       |  |
| 25          | PB8                 | LFXTAL_N                                  |                |                                 | US1_CS #0     |       |  |
| 26          | PA7                 | LCD_SEG<br>35                             |                |                                 |               |       |  |
| 27          | PA8                 | LCD_SEG<br>36                             |                | TIM2_CC0 #0                     |               |       |  |

| Alternate     |      |   |   |   | LOCATION                                                                       |
|---------------|------|---|---|---|--------------------------------------------------------------------------------|
| Functionality | 0    | 1 | 2 | 3 | Description                                                                    |
| LCD_SEG7      | PE11 |   |   |   | LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.           |
| LCD_SEG8      | PE12 |   |   |   | LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.         |
| LCD_SEG9      | PE13 |   |   |   | LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.         |
| LCD_SEG10     | PE14 |   |   |   | LCD segment line 10. Segments 8, 9, 10 and 11 are controlled by SEGEN2.        |
| LCD_SEG11     | PE15 |   |   |   | LCD segment line 11. Segments 8, 9, 10 and 11 are controlled by SEGEN2.        |
| LCD_SEG12     | PA15 |   |   |   | LCD segment line 12. Segments 12, 13, 14 and 15 are con-<br>trolled by SEGEN3. |
| LCD_SEG13     | PA0  |   |   |   | LCD segment line 13. Segments 12, 13, 14 and 15 are con-<br>trolled by SEGEN3. |
| LCD_SEG14     | PA1  |   |   |   | LCD segment line 14. Segments 12, 13, 14 and 15 are controlled by SEGEN3.      |
| LCD_SEG15     | PA2  |   |   |   | LCD segment line 15. Segments 12, 13, 14 and 15 are con-<br>trolled by SEGEN3. |
| LCD_SEG16     | PA3  |   |   |   | LCD segment line 16. Segments 16, 17, 18 and 19 are con-<br>trolled by SEGEN4. |
| LCD_SEG17     | PA4  |   |   |   | LCD segment line 17. Segments 16, 17, 18 and 19 are con-<br>trolled by SEGEN4. |
| LCD_SEG18     | PA5  |   |   |   | LCD segment line 18. Segments 16, 17, 18 and 19 are con-<br>trolled by SEGEN4. |
| LCD_SEG19     | PA6  |   |   |   | LCD segment line 19. Segments 16, 17, 18 and 19 are con-<br>trolled by SEGEN4. |
| LCD_SEG20     | PB3  |   |   |   | LCD segment line 20. Segments 20, 21, 22 and 23 are con-<br>trolled by SEGEN5. |
| LCD_SEG21     | PB4  |   |   |   | LCD segment line 21. Segments 20, 21, 22 and 23 are con-<br>trolled by SEGEN5. |
| LCD_SEG22     | PB5  |   |   |   | LCD segment line 22. Segments 20, 21, 22 and 23 are con-<br>trolled by SEGEN5. |
| LCD_SEG23     | PB6  |   |   |   | LCD segment line 23. Segments 20, 21, 22 and 23 are con-<br>trolled by SEGEN5. |
| LCD_SEG24     | PF6  |   |   |   | LCD segment line 24. Segments 24, 25, 26 and 27 are con-<br>trolled by SEGEN6. |
| LCD_SEG25     | PF7  |   |   |   | LCD segment line 25. Segments 24, 25, 26 and 27 are con-<br>trolled by SEGEN6. |
| LCD_SEG26     | PF8  |   |   |   | LCD segment line 26. Segments 24, 25, 26 and 27 are con-<br>trolled by SEGEN6. |
| LCD_SEG27     | PF9  |   |   |   | LCD segment line 27. Segments 24, 25, 26 and 27 are con-<br>trolled by SEGEN6. |
| LCD_SEG28     | PD9  |   |   |   | LCD segment line 28. Segments 28, 29, 30 and 31 are controlled by SEGEN7.      |
| LCD_SEG29     | PD10 |   |   |   | LCD segment line 29. Segments 28, 29, 30 and 31 are con-<br>trolled by SEGEN7. |

| Alternate     |      |      |      |      | LOCATION                                                                                                      |
|---------------|------|------|------|------|---------------------------------------------------------------------------------------------------------------|
| Functionality | 0    | 1    | 2    | 3    | Description                                                                                                   |
| LCD_SEG30     | PD11 |      |      |      | LCD segment line 30. Segments 28, 29, 30 and 31 are controlled by SEGEN7.                                     |
| LCD_SEG31     | PD12 |      |      |      | LCD segment line 31. Segments 28, 29, 30 and 31 are con-<br>trolled by SEGEN7.                                |
| LCD_SEG32     | PB0  |      |      |      | LCD segment line 32. Segments 32, 33, 34 and 35 are con-<br>trolled by SEGEN8.                                |
| LCD_SEG33     | PB1  |      |      |      | LCD segment line 33. Segments 32, 33, 34 and 35 are controlled by SEGEN8.                                     |
| LCD_SEG34     | PB2  |      |      |      | LCD segment line 34. Segments 32, 33, 34 and 35 are controlled by SEGEN8.                                     |
| LCD_SEG35     | PA7  |      |      |      | LCD segment line 35. Segments 32, 33, 34 and 35 are con-<br>trolled by SEGEN8.                                |
| LCD_SEG36     | PA8  |      |      |      | LCD segment line 36. Segments 36, 37, 38 and 39 are con-<br>trolled by SEGEN9.                                |
| LCD_SEG37     | PA9  |      |      |      | LCD segment line 37. Segments 36, 37, 38 and 39 are controlled by SEGEN9.                                     |
| LCD_SEG38     | PA10 |      |      |      | LCD segment line 38. Segments 36, 37, 38 and 39 are controlled by SEGEN9.                                     |
| LCD_SEG39     | PA11 |      |      |      | LCD segment line 39. Segments 36, 37, 38 and 39 are con-<br>trolled by SEGEN9.                                |
| LETIM0_OUT0   | PD6  | PB11 | PF0  | PC4  | Low Energy Timer LETIM0, output channel 0.                                                                    |
| LETIM0_OUT1   | PD7  | PB12 | PF1  | PC5  | Low Energy Timer LETIM0, output channel 1.                                                                    |
| LEU0_RX       | PD5  | PB14 | PE15 |      | LEUART0 Receive input.                                                                                        |
| LEU0_TX       | PD4  | PB13 | PE14 |      | LEUART0 Transmit output. Also used as receive input in half duplex communication.                             |
| LEU1_RX       | PC7  | PA6  |      |      | LEUART1 Receive input.                                                                                        |
| LEU1_TX       | PC6  | PA5  |      |      | LEUART1 Transmit output. Also used as receive input in half duplex communication.                             |
| LFXTAL_N      | PB8  |      |      |      | Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. |
| LFXTAL_P      | PB7  |      |      |      | Low Frequency Crystal (typically 32.768 kHz) positive pin.                                                    |
| PCNT0_S0IN    | PC13 | PE0  | PC0  |      | Pulse Counter PCNT0 input number 0.                                                                           |
| PCNT0_S1IN    | PC14 | PE1  | PC1  |      | Pulse Counter PCNT0 input number 1.                                                                           |
| PCNT1_S0IN    | PC4  | PB3  |      |      | Pulse Counter PCNT1 input number 0.                                                                           |
| PCNT1_S1IN    | PC5  | PB4  |      |      | Pulse Counter PCNT1 input number 1.                                                                           |
| PCNT2_S0IN    | PD0  | PE8  |      |      | Pulse Counter PCNT2 input number 0.                                                                           |
| PCNT2_S1IN    | PD1  | PE9  |      |      | Pulse Counter PCNT2 input number 1.                                                                           |
| TIM0_CC0      | PA0  | PA0  | PF6  | PD1  | Timer 0 Capture Compare input / output channel 0.                                                             |
| TIM0_CC1      | PA1  | PA1  | PF7  | PD2  | Timer 0 Capture Compare input / output channel 1.                                                             |
| TIM0_CC2      | PA2  | PA2  | PF8  | PD3  | Timer 0 Capture Compare input / output channel 2.                                                             |
| TIM0_CDTI0    | PA3  | PC13 | PF3  | PC13 | Timer 0 Complimentary Deat Time Insertion channel 0.                                                          |

| Alternate     |      |      |      |      | LOCATION                                                                                                                                                   |
|---------------|------|------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Functionality | 0    | 1    | 2    | 3    | Description                                                                                                                                                |
| TIM0_CDTI1    | PA4  | PC14 | PF4  | PC14 | Timer 0 Complimentary Deat Time Insertion channel 1.                                                                                                       |
| TIM0_CDTI2    | PA5  | PC15 | PF5  | PC15 | Timer 0 Complimentary Deat Time Insertion channel 2.                                                                                                       |
| TIM1_CC0      | PC13 | PE10 | PB0  |      | Timer 1 Capture Compare input / output channel 0.                                                                                                          |
| TIM1_CC1      | PC14 | PE11 | PB1  |      | Timer 1 Capture Compare input / output channel 1.                                                                                                          |
| TIM1_CC2      | PC15 | PE12 | PB2  |      | Timer 1 Capture Compare input / output channel 2.                                                                                                          |
| TIM2_CC0      | PA8  | PA12 | PC8  |      | Timer 2 Capture Compare input / output channel 0.                                                                                                          |
| TIM2_CC1      | PA9  | PA13 | PC9  |      | Timer 2 Capture Compare input / output channel 1.                                                                                                          |
| TIM2_CC2      | PA10 | PA14 | PC10 |      | Timer 2 Capture Compare input / output channel 2.                                                                                                          |
| U0_RX         | PF7  | PE1  | PA4  | PC15 | UART0 Receive input.                                                                                                                                       |
| U0_TX         | PF6  | PE0  | PA3  | PC14 | UART0 Transmit output. Also used as receive input in half duplex communication.                                                                            |
| US0_CLK       | PE12 | PE5  | PC9  |      | USART0 clock input / output.                                                                                                                               |
| US0_CS        | PE13 | PE4  | PC8  |      | USART0 chip select input / output.                                                                                                                         |
| US0_RX        | PE11 | PE6  | PC10 |      | USART0 Asynchronous Receive.                                                                                                                               |
|               |      |      |      |      | USART0 Synchronous mode Master Input / Slave Output (MI-SO).                                                                                               |
| US0_TX        | PE10 | PE7  | PC11 |      | USART0 Asynchronous Transmit.Also used as receive input<br>in half duplex communication.<br>USART0 Synchronous mode Master Output / Slave Input<br>(MOSI). |
| US1_CLK       | PB7  | PD2  |      |      | USART1 clock input / output.                                                                                                                               |
| US1_CS        | PB8  | PD3  |      |      | USART1 chip select input / output.                                                                                                                         |
| US1_RX        | PC1  | PD1  |      |      | USART1 Asynchronous Receive.<br>USART1 Synchronous mode Master Input / Slave Output (MI-<br>SO).                                                           |
| US1_TX        | PC0  | PD0  |      |      | USART1 Asynchronous Transmit.Also used as receive input<br>in half duplex communication.<br>USART1 Synchronous mode Master Output / Slave Input<br>(MOSI). |
| US2_CLK       | PC4  | PB5  |      |      | USART2 clock input / output.                                                                                                                               |
| US2_CS        | PC5  | PB6  |      |      | USART2 chip select input / output.                                                                                                                         |
|               |      |      |      |      | USART2 Asynchronous Receive.                                                                                                                               |
| US2_RX        | PC3  | PB4  |      |      | USART2 Synchronous mode Master Input / Slave Output (MI-SO).                                                                                               |
| US2_TX        | PC2  | PB3  |      |      | USART2 Asynchronous Transmit.Also used as receive input<br>in half duplex communication.<br>USART2 Synchronous mode Master Output / Slave Input<br>(MOSI). |



Figure 6.4. BGA112 PCB Stencil Design

## Table 6.3. BGA112 PCB Stencil Design Dimensions (Dimensions in mm)

| Symbol | Dim. (mm) |
|--------|-----------|
| а      | 0.33      |
| b      | 0.80      |
| d      | 8.00      |
| e      | 8.00      |

## Note:

1. The drawings are not to scale.

2. All dimensions are in millimeters.

3. All drawings are subject to change without notice.

4. The PCB Land Pattern drawing is in compliance with IPC-7351B.

5. Stencil thickness 0.125 mm.

6. For detailed pin-positioning, see Pin Definitions.

|                        |   | SYMBOL | MIN     | NOM    | MAX  |  |
|------------------------|---|--------|---------|--------|------|--|
| x                      |   | D      | 16 BSC  |        |      |  |
|                        | у | E      |         | 16 BSC |      |  |
| body size              | х | D1     | 14 BSC  |        |      |  |
|                        | у | E1     | 14 BSC  |        |      |  |
| lead pitch             |   | e      | 0.5 BSC |        |      |  |
|                        |   | L      | 0.45    | 0.6    | 0.75 |  |
| footprint              |   | L1     | 1 REF   |        |      |  |
|                        |   | θ      | 0°      | 3.5°   | 7°   |  |
|                        |   | θ1     | 0°      |        |      |  |
|                        |   | θ2     | 11º     | 12°    | 13º  |  |
|                        |   | θ3     | 11°     | 12°    | 13º  |  |
|                        |   | R1     | 0.08    | _      | _    |  |
|                        |   | R1     | 0.08    | _      | 0.2  |  |
|                        |   | S      | 0.2     |        |      |  |
| package edge tolerance |   | aaa    | 0.2     |        |      |  |
| lead edge tolerance    |   | bbb    | 0.2     |        |      |  |
| coplanarity            |   | ссс    | 0.08    |        |      |  |
| lead offset            |   | ddd    | 0.08    |        |      |  |
| mold flatness          |   | eee    | 0.05    |        |      |  |

The LQFP100 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx

# 10. QFN64 Package Specifications

## 10.1 QFN64 Package Dimensions



Figure 10.1. QFN64

#### Note:

- 1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.
- 3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm isacceptable.
- 4. Coplanarity applies to the exposed heat slug as well as the terminal.
- 5. Radius on terminal is optional.

| Table 10.1. | QFN64 | (Dimensions | in mm) |
|-------------|-------|-------------|--------|
|-------------|-------|-------------|--------|

| Symbol | Min       | Nom  | Мах  |
|--------|-----------|------|------|
| A      | 0.80      | 0.85 | 0.90 |
| A1     | 0.00      | _    | 0.05 |
| A3     | 0.203 REF |      |      |
| b      | 0.25      | 0.30 | 0.35 |
| D      | 9.00 BSC  |      |      |
| E      | 9.00 BSC  |      |      |
| D2     | 7.10      | 7.20 | 7.30 |
| E2     | 7.10      | 7.20 | 7.30 |

## 13.11 Revision 1.20

December 17th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Increased max storage temperature.

Added data for <150°C and <70°C on Flash data retention.

Changed latch-up sensitivity test description.

Added IO leakage current.

For LQFP100 devices, updated ESD CDM value.

Added Flash current consumption.

Updated HFRCO data.

Updated LFRCO data.

Added graph for ADC Absolute Offset over temperature.

Added graph for ADC Temperature sensor readout.

### 13.12 Revision 1.11

November 17th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Corrected maximum DAC clock speed for continuous mode.

Added DAC sample-hold mode voltage drift rate.

Added pulse widths detected by the HFXO glitch detector.

Added power sequencing information to Power Management section.

## 13.15 Revision 0.90

This revision applies the following devices:

• EFM32G222

Initial preliminary revision, April 14th, 2011

This revision applies the following devices:

- EFM32G232
- EFM32G842

Initial preliminary revision, June 30th, 2011

## 13.16 Revision 0.85

February 19th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Renamed DBG\_SWV pin to DBG\_SWO.

## 13.17 Revision 0.84

February 11th, 2010

This revision applies the following devices:

- EFM32G230
- EFM32G840

Corrected pinout tables.

## 13.18 Revision 0.83

January 25th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Updated errata section.

Specified flash word width in Flash Electrical Characteristics.

Added Capacitive Sense Internal Resistor values in ACMP Electrical Characteristics.

## 13.21 Revision 0.80

October 19th, 2009

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Initial preliminary revision