

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

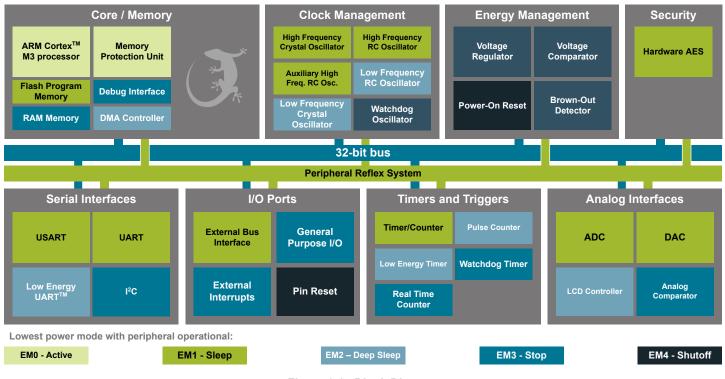
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	24
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 4x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VQFN Exposed Pad
Supplier Device Package	32-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g210f128g-e-qfn32

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. System Overview

3.1 System Introduction

The EFM32 MCUs are the world's most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32G microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32G devices. For a complete feature set and in-depth information on the modules, the reader is referred to the EFM32G Reference Manual.

The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

3.1.1 ARM Cortex-M3 Core

The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M3 is described in detail in EFM32G Reference Manual.

3.1.2 Debug Interface (DBG)

This device includes hardware debug support through a 2-pin serial-wire debug interface . In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages.

3.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32G microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

3.1.14 Universal Asynchronous Receiver/Transmitter (UART)

The Universal Asynchronous serial Receiver and Transmitter (UART) is a very flexible serial I/O module. It supports full- and half-duplex asynchronous UART communication.

3.1.15 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/ s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption.

3.1.16 Timer/Counter (TIMER)

The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications.

3.1.17 Real Time Counter (RTC)

The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down.

3.1.18 Low Energy Timer (LETIMER)

The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start counting on compare matches from the RTC.

3.1.19 Pulse Counter (PCNT)

The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3.

3.1.20 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

3.1.21 Voltage Comparator (VCMP)

The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

3.1.22 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 8 external pins and 6 internal signals.

3.1.23 Digital to Analog Converter (DAC)

The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has two single-ended output buffers which can be combined into one differential output. The DAC may be used for a number of different applications such as sensor interfaces or sound output.

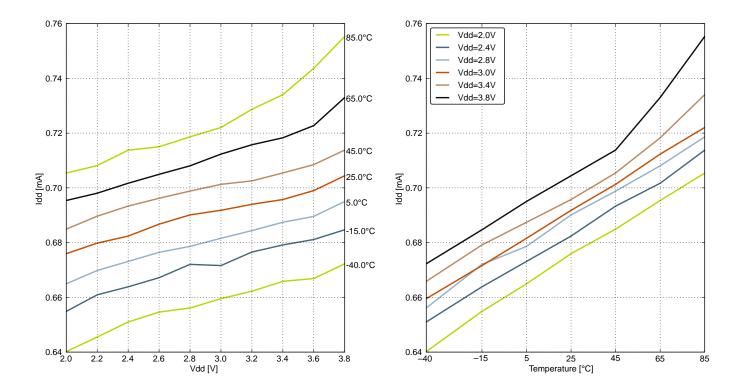


Figure 4.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz

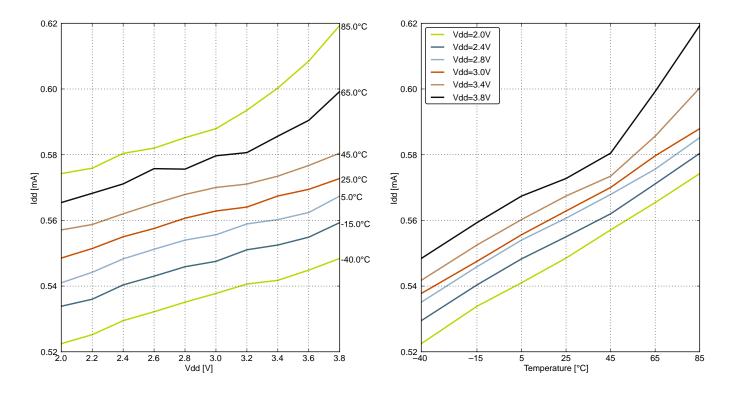


Figure 4.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz

4.6 Power Management

The EFM32G requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, "AN0002 EFM32 Hardware Design Considerations".

Table 4.5. Power Management

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
BOD threshold on falling external sup-	V _{BODextthr} -	EM0	1.74	_	1.96	V
ply voltage		EM1	1.74	_	1.96	V
		EM2	1.74	_	1.96	V
BOD threshold on rising external supply voltage	V _{BODextthr+}	EM0	—	1.85	_	V
Power-on Reset (POR) threshold on rising external supply voltage	V _{PORthr+}		—	_	1.98	V
Delay from reset is released until pro- gram execution starts	tRESETdly	Applies to Power-on Re- set, Brown-out Reset and pin reset.	_	163	_	μs
negative pulse length to ensure com- plete reset of device	t _{RESET}		50	_	_	ns
Voltage regulator decoupling capaci- tor.	C _{DECOUPLE}	X5R capacitor recom- mended. Apply between DECOUPLE pin and GROUND		1		μF

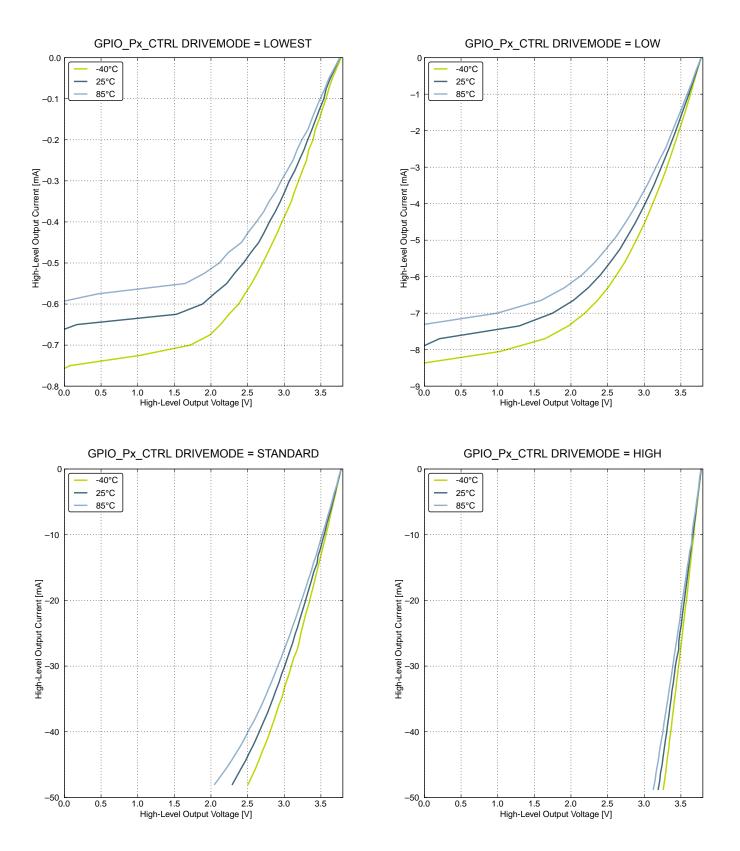
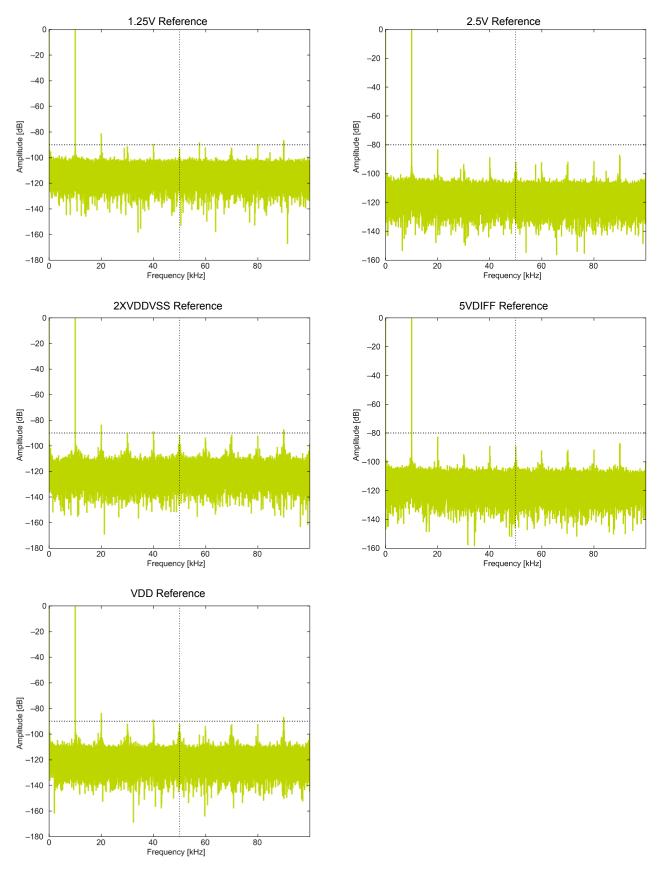


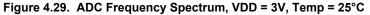
Figure 4.19. Typical High-Level Output Current, 3.8V Supply Voltage

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Signal-to-Noise Ratio (SNR)	SNR _{ADC}	1 MSamples/s, 12 bit, single- ended, internal 1.25 V refer- ence, ADC_CLK = 13 MHz, BIASPROG = 0xF4B	—	59	—	dB
		1 MSamples/s, 12 bit, single- ended, internal 2.5 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	63	_	dB
		1 MSamples/s, 12 bit, single- ended, V _{DD} reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	67	_	dB
		1 MSamples/s, 12 bit, differen- tial, internal 1.25 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	63		dB
		1 MSamples/s, 12 bit, differen- tial, internal 2.5 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	66		dB
		1 MSamples/s, 12 bit, differen- tial, 5 V reference, ADC_CLK =13 MHz, BIASPROG = 0xF4B	_	66	_	dB
		1 MSamples/s, 12 bit, differen- tial, V _{DD} reference, ADC_CLK= 13 MHz, BIASPROG =0xF4B	63	69		dB
		1 MSamples/s, 12 bit, differen- tial, 2xV _{DD} reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	70	_	dB
		200 kSamples/s, 12 bit, single- ended, internal 1.25 V refer- ence, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	62		dB
		200 kSamples/s, 12 bit, single- ended, internal 2.5 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	63		dB
		200 kSamples/s, 12 bit, single- ended, V _{DD} reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	67		dB
		200 kSamples/s, 12 bit, differen- tial, internal 1.25 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	63		dB
		200 kSamples/s, 12 bit, differen- tial, internal 2.5 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	66		dB
		200 kSamples/s, 12 bit, differen- tial, 5 V reference, ADC_CLK = 7 MHz, BIASPROG = 0x747	_	66		dB

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Spurious-Free Dynamic Range (SFDR)	SFDR _{ADC}	200 kSamples/s, 12 bit, differen- tial, V _{DD} reference, ADC_CLK = 7 MHz, BIASPROG = 0x747	68	79	_	dBc
		200 kSamples/s, 12 bit, differen- tial, 2xV _{DD} reference,ADC_CLK = 7 MHz, BIASPROG = 0x747	_	79		dBc
Offset voltage	VADCOFFSET	After calibration, single-ended	_	0.3		mV
		After calibration, differential	-4	0.3	4	mV
Thermometer output gradient	TGRAD _{ADCTH}		_	-1.92	_	mV/°C
			—	-6.3		ADC Co- des/°C
Differential non-linearity (DNL)	DNL _{ADC}	V _{DD} = 3.0 V, external 2.5 V reference	-1	±0.7	4	LSB
Integral non-linearity (INL), End point method	INL _{ADC}	V _{DD} = 3.0 V, external 2.5 V ref- erence	—	±1.2	±3	LSB
Missing codes	MC _{ADC}			_	3	LSB
Gain error drift	GAIN _{ED}	1.25 V reference	_	0.01 ²	0.033 ³	%/°C
		2.5 V reference	_	0.01 ²	0.03 ³	%/°C
Offset error drift	OFFSET _{ED}	1.25 V reference		0.00 ²	0.06 ³	LSB/°C
		2.5 V reference		0.00 ²	0.04 ³	LSB/°C
VREF voltage	V _{REF}	1.25 V reference	1.2	1.25	1.3	V
		2.5 V reference	2.4	2.5	2.6	V
VREF voltage drift	V _{REF_VDRIFT}	1.25 V reference	-12.4	2.9	18.2	mV/V
		2.5 V reference, VDD > 2.5 V	-24.6	5.7	35.2	mV/V
VREF temperature drift	VREF_TDRIFT	1.25 V reference	-132	272	677	µV/°C
		2.5 V reference	-231	545	1271	µV/°C
VREF current consumption	I _{VREF}	1.25 V reference	_	67	114	μA
		2.5 V reference		55	82	μA
ADC and DAC VREF matching	V _{REF_MATCH}	1.25 V reference	_	99.85	_	%
		2.5 V reference	_	100.01		%

Note:


1. Includes required contribution from the voltage reference.


2. Typical numbers given by abs(Mean) / (85 - 25).

3. Max number given by (abs(Mean) + 3x stddev) / (85 - 25).

The integral non-linearity (INL) and differential non-linearity parameters are explained in the following figures.

4.10.1 Typical Performance

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
		500 kSamples/s, 12 bit, single- ended, internal 1.25 V reference	_	57	_	dB
		500 kSamples/s, 12 bit, single- ended, internal 2.5 V reference		54		dB
Signal-to-Noise plus Distortion Ratio (SNDR)	SNDR _{DAC}	500 kSamples/s, 12 bit, differen- tial, internal 1.25 V reference	_	56	_	dB
		500 kSamples/s, 12 bit, differen- tial, internal 2.5 V reference	_	53	_	dB
		500 kSamples/s, 12 bit, differential, V_{DD} reference	_	55	_	dB
		500 kSamples/s, 12 bit, single- ended, internal 1.25V reference	_	62		dBc
		500 kSamples/s, 12 bit, single- ended, internal 2.5 V reference	_	56	_	dBc
Spurious-Free Dynamic Range (SFDR)	SFDR _{DAC}	500 kSamples/s, 12 bit, differen- tial, internal 1.25 V reference	_	61	_	dBc
		500 kSamples/s, 12 bit, differen- tial, internal 2.5 V reference	_	55		dBc
		500 kSamples/s, 12 bit, differential, V_{DD} reference	_	60		dBc
		After calibration, single-ended		2		mV
Offset voltage	V _{DACOFFSET}	After calibration, differential		2		mV
Sample-hold mode voltage drift	VDACSHMDRIFT			540	_	μV/ms
Differential non-linearity	DNL _{DAC}			±1	_	LSB
Integral non-linearity	INL _{DAC}			±5		LSB
No missing codes	MC _{DAC}		_	12	_	bits
Load current	ILOAD_DC		_	_	11	mA
VREF voltage	V _{REF}	1.25 V reference	1.2	1.25	1.3	V
		2.5 V reference	2.4	2.5	2.6	V
VREF voltage drift	V _{REF_VDRIFT}	1.25 V reference	-12.4	2.9	18.2	mV/V
		2.5 V reference, VDD > 2.5 V	-24.6	5.7	35.2	mV/V
VREF temperature drift	V _{REF_TDRIFT}	1.25 V reference	-132	272	677	µV/°C
		2.5 V reference	-231	545	1271	µV/°C
VREF current consumption	I _{VREF}	1.25 V reference	_	67	114	μA
		2.5 V reference	_	55	82	μA
ADC and DAC VREF matching	V _{REF_MATCH}	1.25 V reference	_	99.85		%
		2.5 V reference		100.01	_	%

Note:

1. Measured with a static input code and no loading on the output. Includes required contribution from the voltage reference.

4.12 Analog Comparator (ACMP)

Table 4.16. ACMP

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input voltage range	V _{ACMPIN}		0	_	V _{DD}	V
ACMP Common Mode voltage range	VACMPCM		0	_	V _{DD}	V
		BIASPROG=0b0000, FULL- BIAS=0 and HALFBIAS=1 in ACMPn_CTRL register	-	55	600	μA
Active current	I _{ACMP}	BIASPROG=0b1111, FULL- BIAS=0 and HALFBIAS=0 in ACMPn_CTRL register	-	2.82	12	μA
		BIASPROG=0b1111, FULL- BIAS=1 and HALFBIAS=0 in ACMPn_CTRL register	_	250	520	μA
		Internal voltage reference off. Using external voltage refer- ence	_	0	0.5	μA
Current consumption of internal voltage reference	IACMPREF	Internal voltage reference, LPREF=1	_	0.050	3	μA
		Internal voltage reference, LPREF=0	_	6	_	μA
Offset voltage	VACMPOFFSET	BIASPROG= 0b1010, FULL- BIAS=0 and HALFBIAS=0 in ACMPn_CTRL register	-12	0	12	mV
ACMP hysteresis	V _{ACMPHYST}	Programmable	_	17	_	mV
		CSRESSEL=0b00 in ACMPn_INPUTSEL	_	39		kΩ
Capacitive Sense Internal Re-	P	CSRESSEL=0b01 in ACMPn_INPUTSEL	_	71		kΩ
sistance	R _{CSRES}	CSRESSEL=0b10 in ACMPn_INPUTSEL	_	104	_	kΩ
		CSRESSEL=0b11 in ACMPn_INPUTSEL	_	136	_	kΩ
Startup time	t _{ACMPSTART}		-	_	10	μs

The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in the following equation. I_{ACMPREF} is zero if an external voltage reference is used.

 $I_{\text{ACMPTOTAL}} = I_{\text{ACMP}} + I_{\text{ACMPREF}}$

5.6.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G290 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	PB15	PB14	PB13	PB12	PB11	PB10	PB9	PB8	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	PD15	PD14	PD13	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Port F	_			_			PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0

Table 5.18. GPIO Pinout

	64 Pin# and Name	Pin Alternate Functionality / Description							
Pin #	Pin Name	Analog	Timers	Communication	Other				
38	PC7	ACMP0_CH7		LEU1_RX #0 I2C0_SCL #2					
39	VDD_DREG	Power supply f	or on-chip voltage regulator.						
40	DECOUPLE	Decouple outp pin.	Decouple output for on-chip voltage regulator. An external capacitance of size C _{DECOUPLE} is required bin.						
41	PE4	LCD_COM0		US0_CS #1					
42	PE5	LCD_COM1		US0_CLK #1					
43	PE6	LCD_COM2		US0_RX #1					
44	PE7	LCD_COM3		US0_TX #1					
45	PC12	ACMP1_CH4			CMU_CLK0 #1				
46	PC13	ACMP1_CH5	TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0						
47	PC14	ACMP1_CH6	TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0						
48	PC15	ACMP1_CH7	TIM0_CDTI2 #1/3 TIM1_CC2 #0		DBG_SWO #1				
49	PF0		LETIM0_OUT0 #2		DBG_SWCLK #0/1				
50	PF1		LETIM0_OUT1 #2		DBG_SWDIO #0/1				
51	PF2	LCD_SEG0			ACMP1_O #0 DBG_SWO #0				
52	PF3	LCD_SEG1	TIM0_CDTI0 #2						
53	PF4	LCD_SEG2	TIM0_CDTI1 #2						
54	PF5	LCD_SEG3	TIM0_CDTI2 #2						
55	IOVDD_5	Digital IO powe	er supply 5.						
56	VSS	Ground.							
57	PE8	LCD_SEG4	PCNT2_S0IN #1						
58	PE9	LCD_SEG5	PCNT2_S1IN #1						
59	PE10	LCD_SEG6	TIM1_CC0 #1	US0_TX #0	BOOT_TX				
60	PE11	LCD_SEG7	TIM1_CC1 #1	US0_RX #0	BOOT_RX				
61	PE12	LCD_SEG8	TIM1_CC2 #1	US0_CLK #0					
62	PE13	LCD_SEG9		US0_CS #0	ACMP0_O #0				
63	PE14	LCD_SEG10		LEU0_TX #2					
64	PE15	LCD_SEG11		LEU0_RX #2					

Alternate					LOCATION
Functionality	0	1	2	3	Description
TIM0_CC0	PA0	PA0		PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1		PD2	Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2		PD3	Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
TIM2_CC0		PA12			Timer 2 Capture Compare input / output channel 0.
TIM2_CC1		PA13			Timer 2 Capture Compare input / output channel 1.
TIM2_CC2		PA14			Timer 2 Capture Compare input / output channel 2.
US0_CLK	PE12	PE5			USART0 clock input / output.
US0_CS	PE13	PE4			USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11	PE6			USART0 Synchronous mode Master Input / Slave Output (MI-SO).
US0_TX	PE10	PE7			USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
					USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX		PD1			USART1 Synchronous mode Master Input / Slave Output (MI-SO).
US1_TX		PD0			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input
					(MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
					USART2 Asynchronous Receive.
US2_RX		PB4			USART2 Synchronous mode Master Input / Slave Output (MI-SO).
US2_TX		PB3			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication.
					USART2 Synchronous mode Master Output / Slave Input (MOSI).

	P100 Pin# d Name		Pi	n Alternate Functionalit	y / Description	
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
53	PD7	ADC0_CH 7		LETIM0_OUT1 #0	I2C0_SCL #1	
54	PD8					CMU_CLK1 #1
55	PC6	ACMP0_C H6			LEU1_TX #0 I2C0_SDA #2	
56	PC7	ACMP0_C H7			LEU1_RX #0 I2C0_SCL #2	
57	VDD_DRE G	Power supp	ly for on-chip voltage reg	ulator.		
58	VSS	Ground.				
59	DECOU- PLE	Decouple or	utput for on-chip voltage r	egulator. An external capa	acitance of size C _{DECOUP}	LE is required at this pin.
60	PE0			PCNT0_S0IN #1	U0_TX #1	
61	PE1			PCNT0_S1IN #1	U0_RX #1	
62	PE2					ACMP0_O #1
63	PE3					ACMP1_O #1
64	PE4	LCD_COM 0			US0_CS #1	
65	PE5	LCD_COM 1			US0_CLK #1	
66	PE6	LCD_COM 2			US0_RX #1	
67	PE7	LCD_COM 3			US0_TX #1	
68	PC8	ACMP1_C H0		TIM2_CC0 #2	US0_CS #2	
69	PC9	ACMP1_C H1		TIM2_CC1 #2	US0_CLK #2	
70	PC10	ACMP1_C H2		TIM2_CC2 #2	US0_RX #2	
71	PC11	ACMP1_C H3			US0_TX #2	
72	PC12	ACMP1_C H4				CMU_CLK0 #1
73	PC13	ACMP1_C H5		TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0		
74	PC14	ACMP1_C H6		TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0	U0_TX #3	
75	PC15	ACMP1_C H7		TIM0_CDTI2 #1/3 TIM1_CC2 #0	U0_RX #3	DBG_SWO #1
76	PF0			LETIM0_OUT0 #2		DBG_SWCLK #0/1

		SYMBOL	MIN	NOM	МАХ	
	x	D		16 BSC		
	у	E		16 BSC		
body size	x	D1		14 BSC		
body size	у	E1		14 BSC		
lead pitcl	ו	e		0.5 BSC		
		L	0.45	0.6	0.75	
footprint		L1		1 REF		
		θ	0°	3.5°	7°	
		θ1	0°	—	—	
		θ2	11º	12º	13°	
		θ3	11°	12°	13°	
		R1	0.08	—	—	
		R1	0.08	_	0.2	
		S	0.2	—	—	
package edge to	olerance	aaa		0.2		
lead edge tole	rance	bbb		0.2		
coplanari	y	ссс		0.08		
lead offse	et	ddd	0.08			
mold flatne	SS	eee		0.05		

The LQFP100 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx

10. QFN64 Package Specifications

10.1 QFN64 Package Dimensions

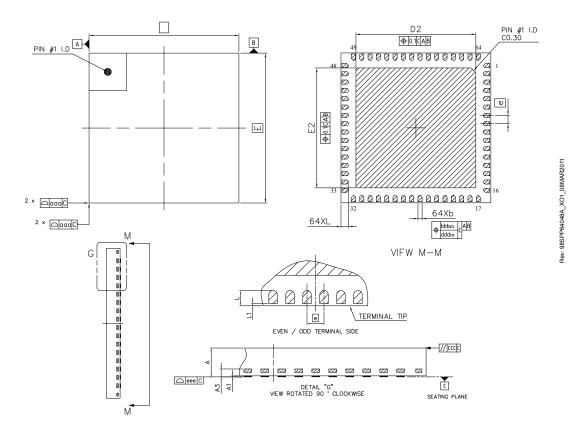


Figure 10.1. QFN64

Note:

- 1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.
- 3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm isacceptable.
- 4. Coplanarity applies to the exposed heat slug as well as the terminal.
- 5. Radius on terminal is optional.

Table 10.1.	QFN64	(Dimensions in mm)
-------------	-------	--------------------

Symbol	Min	Nom	Мах
A	0.80	0.85	0.90
A1	0.00	_	0.05
A3	0.203 REF		
b	0.25	0.30	0.35
D	9.00 BSC		
E	9.00 BSC		
D2	7.10	7.20	7.30
E2	7.10	7.20	7.30

10.2 QFN64 PCB Layout

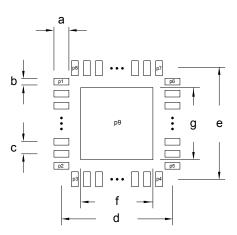


Figure 10.2. QFN64 PCB Land Pattern

Table 10.2. QFN64 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	0.85	P1	1	P8	64
b	0.30	P2	16	P9	65
с	0.50	P3	17		
d	8.90	P4	32		
e	8.90	P5	33		
f	7.20	P6	48		
g	7.20	P7	49		

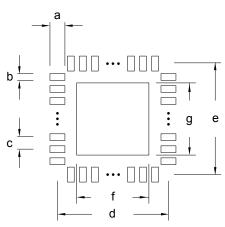


Figure 10.3. QFN64 PCB Solder Mask

Table 10.3. QFN64 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Dim. (mm)
а	0.97	e	8.90
b	0.42	f	7.32
с	0.50	g	7.32

Symbol	Dim. (mm)
d	6.00
e	6.00
f	4.52
g	4.52

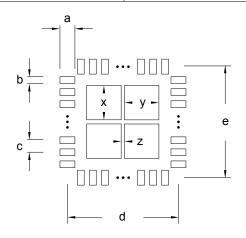


Figure 11.4. QFN32 PCB Stencil Design

Table 11.4. QFN32 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	0.70
b	0.25
с	0.65
d	6.00
e	6.00
x	1.30
у	1.30
Z	0.50

Note:

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see 5. Pin Definitions.

13.2 Revision 2.00

May 10th, 2017

Consolidated all EFM32G data sheets:

- EFM32G200
- EFM32G210
- EFM32G222
- EFM32G230
- EFM32G232
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G842
- EFM32G880
- EFM32G890

New formatting throughout.

Added 1. Feature List.

Updated ordering codes in 2. Ordering Information for Revision E and tape and reel.

Added Figure 2.1 Ordering Code Decoder on page 5.

Separated Memory Map figure into Figure 3.2 System Address Space with Core and Code Space Listing on page 27 and Figure 3.3 System Address Space with Peripheral Listing on page 28 for readability.

Removed footnote for storage temperature range in 4.2 Absolute Maximum Ratings.

In 4.6 Power Management:

- Updated EM0 condition for V_{BODextthr-} specification.
- Added V_{BODextthr-} in EM1 and EM2 specifications.
- Updated EM0 condition for V_{BODextthr+} specification.

Updated Flash page erase time and device erase time in 4.7 Flash and added footnotes.

Updated figures in 4.9.3 LFRCO.

Updated figures and HFRCO current consumption typical values in 4.9.4 HFRCO.

In 4.10 Analog Digital Converter (ADC):

- · Updated test conditions, updated specifications, and added footnote for average active current.
- Added input bias current.
- · Added input offset current.
- · Updated ADC clock frequency.
- Updated SNR, SINAD and SFDR.
- Updated offset voltage.
- Updated missing codes.
- · Added gain error drift and offset error drift.
- Added VREF output voltage, VREF voltage drift, VREF temperature drift, VREF current consumption, and ADC and DAC VREF matching.

In 4.11 Digital Analog Converter (DAC):

- Updated I_{DAC} parameter, test conditions, and footnote.
- Added DAC load current specification to 4.11 Digital Analog Converter (DAC).
- Added VREF output voltage, VREF voltage drift, VREF temperature drift, VREF current consumption, and ADC and DAC VREF matching.

Updated ACMP active current (BIASPROG=0b1111, FULLBIAS=1 and HALFBIAS=0 in ACMPn_CTRL register) typical value in 4.12 Analog Comparator (ACMP).

Updated VCMP hysteresis typical value in 4.13 Voltage Comparator (VCMP).

13.5 Revision 1.71

November 21st, 2013 Updated figures. Updated errata-link. Updated chip marking. Added link to Environmental and Quality information. For devices with a DAC, re-added missing DAC-data.

13.6 Revision 1.70

September 30th, 2013 For devices with an I2C, added I2C characterization data. Corrected GPIO operating voltage from 1.8 V to 1.85 V. For devices with an ADC, corrected the ADC resolution from 12, 10 and 6 bit to 12, 8 and 6 bit. For QFN64 devices, updated the Max V_{ESDCDM} value to 750 V. Updated Environmental information. Updated trademark, disclaimer and contact information. Other minor corrections.

13.7 Revision 1.60

June 28th, 2013

For BGA devices, updated PCB Land Pattern, PCB Solder Mask and PCB Stencil Design figures.

Updated power requirements in the Power Management section.

Removed minimum load capacitance figure and table. Added reference to application note.

Other minor corrections.

13.8 Revision 1.50

September 11th, 2012 Updated the HFRCO 1 MHz band typical value to 1.2 MHz. Updated the HFRCO 7 MHz band typical value to 6.6 MHz. For BGA devices, corrected BGA solder balls material from Sn96.5/Ag3/Cu0.5 to SAC105. Other minor corrections.

silabs.com | Building a more connected world.