

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	56
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g230f32g-e-qfn64r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 4.14. Typical Low-Level Output Current, 2V Supply Voltage

Figure 4.15. Typical High-Level Output Current, 2V Supply Voltage

4.9 Oscillators

4.9.1 LFXO

Table 4.8. LFXO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supported nominal crystal fre- quency	f _{LFXO}		—	32.768	—	kHz
Supported crystal equivalent ser- ies resistance (ESR)	ESR _{LFXO}		_	30	120	kOhm
Supported crystal external load range	C _{LFXOL}		X ¹	_	25	pF
Current consumption for core and buffer after startup	I _{LFXO}	ESR=30 kΩ, C _L =10 pF, LFXO- BOOST in CMU_CTRL is 1	_	190	—	nA
Start-up time	t _{LFXO}	ESR=30 k Ω , C _L =10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1		400		ms

Note:

1. See Minimum Load Capacitance (C_{LFXOL}) Requirement For Safe Crystal Startup in Configurator in Simplicity Studio.

For safe startup of a given crystal, the Configurator tool in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration".

Table 4.9. HFXO

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supported nominal crystal Fre- quency	f _{HFXO}		4	_	32	MHz
Supported crystal equivalent ser-	ESPUEIXO	Crystal frequency 32 MHz	_	30	60	Ω
ies resistance (ESR)	LOINHEXO	Crystal frequency 4 MHz	_	400	1500	Ω
The transconductance of the HFXO input transistor at crystal startup	9 _{mHFXO}	HFXOBOOST in CMU_CTRL equals 0b11	20			mS
Supported crystal external load range	C _{HFXOL}		5	_	25	pF
Current consumption for HFXO	1	4 MHz: ESR=400 Ω , C _L =20 pF, HFXOBOOST in CMU_CTRL equals 0b11	_	85	_	μA
after startup	IHFXO	32 MHz: ESR=30 Ω , C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11		165		μΑ
Startup time	t _{HFXO}	32 MHz: ESR=30 Ω , C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11		400	_	μs
Pulse width removed by glitch de- tector			1	_	4	ns

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
		28 MHz frequency band	27.16	28	28.84	MHz
		21 MHz frequency band	20.37	21	21.63	MHz
Oscillation frequency, V _{DD} = 3.0	£	14 MHz frequency band	13.58	14	14.42	MHz
V, T _{AMB} =25 °C	IHFRCO	11 MHz frequency band	10.67	11	11.33	MHz
		7 MHz frequency band	6.402	6.6 ¹	6.798	MHz
		1 MHz frequency band	1.164	1.2 ²	1.236	MHz
0 - 111 11	turnee w	After start-up, f _{HFRCO} = 14 MHz		0.6	—	Cycles
	HFRCO_settling	After band switch	_	25	—	Cycles
		f _{HFRCO} = 28 MHz	_	158	190	μA
		f _{HFRCO} = 21 MHz	_	125	155	μA
Current consumption (Produc-		f _{HFRCO} = 14 MHz	_	99	120	μA
tion test condition = 14 MHz)	HFRCO	f _{HFRCO} = 11 MHz	_	88	110	μA
		f _{HFRCO} = 6.6 MHz		72	90	μA
		f _{HFRCO} = 1.2 MHz		24	32	μA
Duty cycle	DC _{HFRCO}	f _{HFRCO} = 14 MHz	48.5	50	51	%
Frequency step for LSB change in TUNING value	TUNESTEP _{HFRCO}		_	0.3 ³	—	%

Table 4.11. HFRCO

Note:

1. For devices with prod. rev. < 19, Typ = 7 MHz and Min/Max values not applicable.

2. For devices with prod. rev. < 19, Typ = 1 MHz and Min/Max values not applicable.

3. The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.

5.1.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMP0_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2				Clock Management Unit, clock output number 0.
CMU_CLK1	PA1				Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
					Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.
					Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.
					Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15			Note that this function is not enabled after reset, and must be enabled by software to be used.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7			I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6			I2C0 Serial Data input / output.
LETIM0_OUT0	PD6	PB11	PF0		Low Energy Timer LETIM0, output channel 0.

Table 5.2. Alternate functionality overview

5.2 EFM32G222 (TQFP48)

5.2.1 Pinout

The EFM32G222 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.2. EFM32G222 Pinout (top view, not to scale)

Table 5.4. Device Pinout

TQFP	48 Pin# and Name		Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	Timers	Communication	Other				
1	PA0		TIM0_CC0 #0/1	I2C0_SDA #0					
2	PA1		TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0				
3	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0				
4	IOVDD_0	Digital IO powe	Digital IO power supply 0.						
5	VSS	Ground.	Ground.						

5.3 EFM32G230 (QFN64)

5.3.1 Pinout

The EFM32G230 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.3. EFM32G230 Pinout (top view, not to scale)

Table 5.7. Device Pinout

QFN64 P	in# and Name	Pin Alternate Functionality / Description					
Pin #	Pin Name	Analog	Timers	Communication	Other		
0	VSS	Ground.					
1	PA0		TIM0_CC0 #0/1	I2C0_SDA #0			
2	PA1		TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0		
3	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0		
4	PA3		TIM0_CDTI0 #0				
5	PA4		TIM0_CDTI1 #0				

QFN64 P	in# and Name		Pin Alternate	Functionality / Description				
Pin #	Pin Name	Analog	Timers	Communication	Other			
40	DECOUPLE	Decouple outp pin.	Decouple output for on-chip voltage regulator. An external capacitance of size C_{DEC} pin.					
41	PC8	ACMP1_CH0	TIM2_CC0 #2	US0_CS #2				
42	PC9	ACMP1_CH1	TIM2_CC1 #2	US0_CLK #2				
43	PC10	ACMP1_CH2	TIM2_CC2 #2	US0_RX #2				
44	PC11	ACMP1_CH3		US0_TX #2				
45	PC12	ACMP1_CH4			CMU_CLK0 #1			
46	PC13	ACMP1_CH5	TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0					
47	PC14	ACMP1_CH6	TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0					
48	PC15	ACMP1_CH7	TIM0_CDTI2 #1/3 TIM1_CC2 #0		DBG_SWO #1			
49	PF0		LETIM0_OUT0 #2		DBG_SWCLK #0/1			
50	PF1		LETIM0_OUT1 #2		DBG_SWDIO #0/1			
51	PF2				ACMP1_O #0 DBG_SWO #0			
52	PF3		TIM0_CDTI0 #2					
53	PF4		TIM0_CDTI1 #2					
54	PF5		TIM0_CDTI2 #2					
55	IOVDD_5	Digital IO powe	er supply 5.					
56	PE8		PCNT2_S0IN #1					
57	PE9		PCNT2_S1IN #1					
58	PE10		TIM1_CC0 #1	US0_TX #0	BOOT_TX			
59	PE11		TIM1_CC1 #1	US0_RX #0	BOOT_RX			
60	PE12		TIM1_CC2 #1	US0_CLK #0				
61	PE13			US0_CS #0	ACMP0_O #0			
62	PE14			LEU0_TX #2				
63	PE15			LEU0_RX #2				
64	PA15							

TQFP	64 Pin# and Name		Pin Alternate Functionality / Description					
Pin #	Pin Name	Analog	Timers	Communication	Other			
6	PA5		TIM0_CDTI2 #0	LEU1_TX #1				
7	IOVDD_0	Digital IO powe	er supply 0.					
8	VSS	Ground.						
9	PC0	ACMP0_CH0	PCNT0_S0IN #1	US1_TX #1				
10	PC1	ACMP0_CH1	PCNT0_S1IN #1	US1_RX #1				
11	PC2	ACMP0_CH2		US1_CLK #1				
12	PC3	ACMP0_CH3		US1_CS #1				
13	PC4	ACMP0_CH4	LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0				
14	PC5	ACMP0_CH5	LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0				
15	PB7	LFXTAL_P		US1_CLK #0				
16	PB8	LFXTAL_N		US1_CS #0				
17	PA8		TIM2_CC0 #0					
18	PA9		TIM2_CC1 #0					
19	PA10		TIM2_CC2 #0					
20	RESETn	Reset input, ac during reset, a	tive low.To apply an external re nd let the internal pull-up ensure	eset source to this pin, it is requi that reset is released.	red to only drive this pin low			
21	PB11	DAC0_OUT0	LETIM0_OUT0 #1					
22	VSS	Ground.	-					
23	AVDD_1	Analog power	supply 1.					
24	PB13	HFXTAL_P		LEU0_TX #1				
25	PB14	HFXTAL_N		LEU0_RX #1				
26	IOVDD_3	Digital IO powe	er supply 3.					
27	AVDD_0	Analog power	supply 0.					
28	PD0	ADC0_CH0	PCNT2_S0IN #0	US1_TX #1				
29	PD1	ADC0_CH1	TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1				
30	PD2	ADC0_CH2	TIM0_CC1 #3	US1_CLK #1				
31	PD3	ADC0_CH3	TIM0_CC2 #3	US1_CS #1				
32	PD4	ADC0_CH4		LEU0_TX #0				
33	PD5	ADC0_CH5		LEU0_RX #0				
34	PD6	ADC0_CH6	LETIM0_OUT0 #0	I2C0_SDA #1				
35	PD7	ADC0_CH7	LETIM0_OUT1 #0	I2C0_SCL #1				
36	PD8				CMU_CLK1 #1			
37	PC6	ACMP0_CH6		LEU1_TX #0 I2C0_SDA #2				
38	PC7	ACMP0_CH7		LEU1_RX #0 I2C0_SCL #2				

Alternate					LOCATION
Functionality	0	1	2	3	Description
TIM2_CC0	PA8	PA12	PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9	PA13	PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10	PA14	PC10		Timer 2 Capture Compare input / output channel 2.
U0_RX	PF7	PE1	PA4	PC15	UART0 Receive input.
U0_TX	PF6	PE0	PA3	PC14	UART0 Transmit output. Also used as receive input in half duplex communication.
US0_CLK	PE12	PE5	PC9		USART0 clock input / output.
US0_CS	PE13	PE4	PC8		USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11	PE6	PC10		USART0 Synchronous mode Master Input / Slave Output (MI-SO).
		DEZ	DC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
050_1X	PEIU	PEI	PCII		USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX	PC1	PD1			USART1 Synchronous mode Master Input / Slave Output (MI-SO).
					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX	PC0	PD0			USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
					USART2 Asynchronous Receive.
US2_RX	PC3	PB4			USART2 Synchronous mode Master Input / Slave Output (MI-SO).
US2_TX	PC2	PB3			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI).

5.6 EFM32G290 (BGA112)

5.6.1 Pinout

The EFM32G290 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.6. EFM32G280 Pinout (top view, not to scale)

Table 5.16. Device Pinout

BGA112 Pin# and Name		nd Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other		
A1	PE15		EBI_AD07 #0		LEU0_RX #2			
A2	PE14		EBI_AD06 #0		LEU0_TX #2			
A3	PE12		EBI_AD04 #0	TIM1_CC2 #1	US0_CLK #0			
A4	PE9		EBI_AD01 #0	PCNT2_S1IN #1				
A5	PD10		EBI_CS1 #0					

5.6.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_0	PF2	PE3			Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.

Table 5.17. Alternate functionality overview

5.8 EFM32G842 (TQFP64)

5.8.1 Pinout

The EFM32G842 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.8. EFM32G842 Pinout (top view, not to scale)

Table 5.22. Device Pinout

TQFP64 Pin# and Name		Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	Timers	Communication	Other			
1	PA0	LCD_SEG13	TIM0_CC0 #0/1	I2C0_SDA #0				
2	PA1	LCD_SEG14	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0			
3	PA2	LCD_SEG15	TIM0_CC2 #0/1		CMU_CLK0 #0			
4	PA3	LCD_SEG16	TIM0_CDTI0 #0					
5	PA4	LCD_SEG17	TIM0_CDTI1 #0					

5.9 EFM32G880 (LQFP100)

5.9.1 Pinout

The EFM32G880 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.9. EFM32G880 Pinout (top view, not to scale)

LQFP100 Pin# and Name		Pin Alternate Functionality / Description							
Pin #	Pin Name	Analog EBI		Timers	Communication	Other			
1	PA0	LCD_SEG 13	EBI_AD09 #0	TIM0_CC0 #0/1	I2C0_SDA #0				
2	PA1	LCD_SEG 14	EBI_AD10 #0	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0			
3	PA2	LCD_SEG 15	EBI_AD11 #0	TIM0_CC2 #0/1		CMU_CLK0 #0			

Alternate	LOCATION				
Functionality	0	1	2	3	Description
EBI_ARDY	PF2				External Bus Interface (EBI) Hardware Ready Control input.
EBI_CS0	PD9				External Bus Interface (EBI) Chip Select output 0.
EBI_CS1	PD10				External Bus Interface (EBI) Chip Select output 1.
EBI_CS2	PD11				External Bus Interface (EBI) Chip Select output 2.
EBI_CS3	PD12				External Bus Interface (EBI) Chip Select output 3.
EBI_REn	PF5				External Bus Interface (EBI) Read Enable output.
EBI_WEn	PF4				External Bus Interface (EBI) Write Enable output.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7	PC7		I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6	PC6		I2C0 Serial Data input / output.
LCD_BCAP_N	PA13				LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BCAP_P	PA12				LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BEXT	PA14				 LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS. An external LCD voltage may also be applied to this pin if the booster is not enabled. If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO.
LCD_COM0	PE4				LCD driver common line number 0.
LCD_COM1	PE5				LCD driver common line number 1.
LCD_COM2	PE6				LCD driver common line number 2.
LCD_COM3	PE7				LCD driver common line number 3.
LCD_SEG0	PF2				LCD segment line 0. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG1	PF3				LCD segment line 1. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG2	PF4				LCD segment line 2. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG3	PF5				LCD segment line 3. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG4	PE8				LCD segment line 4. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG5	PE9				LCD segment line 5. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG6	PE10				LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
LCD_SEG7	PE11				LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG8	PE12				LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG9	PE13				LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG10	PE14				LCD segment line 10. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG11	PE15				LCD segment line 11. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG12	PA15				LCD segment line 12. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG13	PA0				LCD segment line 13. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG14	PA1				LCD segment line 14. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG15	PA2				LCD segment line 15. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG16	PA3				LCD segment line 16. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG17	PA4				LCD segment line 17. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG18	PA5				LCD segment line 18. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG19	PA6				LCD segment line 19. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG20	PB3				LCD segment line 20. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG21	PB4				LCD segment line 21. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG22	PB5				LCD segment line 22. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG23	PB6				LCD segment line 23. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG24	PF6				LCD segment line 24. Segments 24, 25, 26 and 27 are controlled by SEGEN6.
LCD_SEG25	PF7				LCD segment line 25. Segments 24, 25, 26 and 27 are controlled by SEGEN6.
LCD_SEG26	PF8				LCD segment line 26. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG27	PF9				LCD segment line 27. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG28	PD9				LCD segment line 28. Segments 28, 29, 30 and 31 are controlled by SEGEN7.
LCD_SEG29	PD10				LCD segment line 29. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.

BGA112 Pin# and Name		Pin Alternate Functionality / Description								
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other				
E9	PE0			PCNT0_S0IN #1	U0_TX #1					
E10	PE1			PCNT0_S1IN #1	U0_RX #1					
E11	PE3					ACMP1_O #1				
F1	PB1	LCD_SEG 33		TIM1_CC1 #2						
F2	PB2	LCD_SEG 34		TIM1_CC2 #2						
F3	PB3	LCD_SEG 20		PCNT1_S0IN #1	US2_TX #1					
F4	PB4	LCD_SEG 21		PCNT1_S1IN #1	US2_RX #1					
F8	VDD_DRE G	Power supp	ly for on-chip voltage reg	ulator.						
F9	VSS_DRE G	Ground for o	on-chip voltage regulator.							
F10	PE2					ACMP0_O #1				
F11	DECOU- PLE	Decouple output for on-chip voltage regulator. An external capacitance of size C _{DECOUPLE} is required at this pin.								
G1	PB5	LCD_SEG 22			US2_CLK #1					
G2	PB6	LCD_SEG 23			US2_CS #1					
G3	VSS	Ground.								
G4	IOVDD_0	Digital IO power supply 0.								
G8	IOVDD_4	Digital IO power supply 4.								
G9	VSS	Ground.	Ground.							
G10	PC6	ACMP0_C H6			LEU1_TX #0 I2C0_SDA #2					
G11	PC7	ACMP0_C H7			LEU1_RX #0 I2C0_SCL #2					
H1	PC0	ACMP0_C H0		PCNT0_S0IN #2	US1_TX #0					
H2	PC2	ACMP0_C H2			US2_TX #0					
H3	PD14				I2C0_SDA #3					
H4	PA7	LCD_SEG 35								
H5	PA8	LCD_SEG 36		TIM2_CC0 #0						
H6	VSS	Ground.								
H7	IOVDD_3	Digital IO po	ower supply 3.							
H8	PD8					CMU_CLK1 #1				

8. TQFP64 Package Specifications

8.1 TQFP64 Package Dimensions

Figure 8.1. TQFP64

Note:

- 1. All dimensions & tolerancing confirm to ASME Y14.5M-1994.
- 2. The top package body size may be smaller than the bottom package body size.
- 3. Datum 'A,B', and 'B' to be determined at datum plane 'H'.
- 4. To be determined at seating place 'C'.
- 5. Dimension 'D1' and 'E1' do not include mold protrusions. Allowable protrusion is 0.25mm per side.'D1' and 'E1' are maximum plastic body size dimension including mold mismatch. Dimension 'D1' and'E1' shall be determined at datum plane 'H'.
- 6. Detail of Pin 1 indicatifier are option all but must be located within the zone indicated.
- 7. Dimension 'b' does not include dambar protrusion. Allowable dambar protrusion shall not cause thelead width to exceed the maximum 'b' dimension by more than 0.08 mm. Dambar can not be locatedon the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm.
- 8. Exact shape of each corner is optional.
- 9. These dimension apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 10. All dimensions are in millimeters.

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX
A	_	1.10	1.20	L1		_	
A1	0.05		0.15	R1	0.08		
A2	0.95	1.00	1.05	R2	0.08		0.20

Table 8.1. QFP64 (Dimensions in mm)

13. Revision History

13.1 Revision 2.10

July 19, 2017

In 4.8 General Purpose Input Output:

Added missing multiply symbols.

In 4.10 Analog Digital Converter (ADC):

- Updated average active current.
- Updated SNR.
- Updated SINAD.
- Updated SFDR.
- Renamed VREF Output Voltage to VREF Voltage.

In 4.11 Digital Analog Converter (DAC):

• Renamed VREF Output Voltage to VREF Voltage.