

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g232f128-qfp64t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM.

3.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32G.

3.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32G microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

3.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32G. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

3.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

3.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

3.1.10 External Bus Interface (EBI)

The External Bus Interface provides access to external parallel interface devices such as SRAM, FLASH, ADCs and LCDs. The interface is memory mapped into the address bus of the Cortex-M3. This enables seamless access from software without manually manipulating the IO settings each time a read or write is performed. The data and address lines are multiplexed in order to reduce the number of pins required to interface the external devices. The timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices.

3.1.11 Inter-Integrated Circuit Interface (I2C)

The I^2C module provides an interface between the MCU and a serial I^2C -bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I^2C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes.

3.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 Smart-Cards, and IrDA devices.

3.1.13 Pre-Programmed USB/UART Bootloader

The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note.

3.2.4 EFM32G230

The features of the EFM32G230 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Table 3.4. EFM32G230 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМИ	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	Full configuration	US2_TX, US2_RX, US2_CLK, US2_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
LEUART1	Full configuration	LEU1_TX, LEU1_RX
TIMER0	Full configuration with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
PCNT2	Full configuration, 8-bit count register	PCNT2_S[1:0]
ACMP0	Full configuration	ACMP0_CH[7:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[1:0]
AES	Full configuration	NA
GPIO	56 pins	Available pins are shown in Table 4.3 (p. 57)

3.2.7 EFM32G290

The features of the EFM32G290 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Table 3.7. EFM32G290 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМИ	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
EBI	Full configuration	EBI_ARDY, EBI_ALE, EBI_WEn, EBI_REn, EBI_CS[3:0], EBI_AD[15:0]
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	Full configuration	US2_TX, US2_RX, US2_CLK, US2_CS
UART0	Full configuration	U0_TX, U0_RX
LEUART0	Full configuration	LEU0_TX, LEU0_RX
LEUART1	Full configuration	LEU1_TX, LEU1_RX
TIMER0	Full configuration with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
PCNT2	Full configuration, 8-bit count register	PCNT2_S[1:0]
ACMP0	Full configuration	ACMP0_CH[7:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[1:0]
AES	Full configuration	NA
GPIO	90 pins	Available pins are shown in Table 4.3 (p. 57)

4.4.5 EM4 Current Consumption

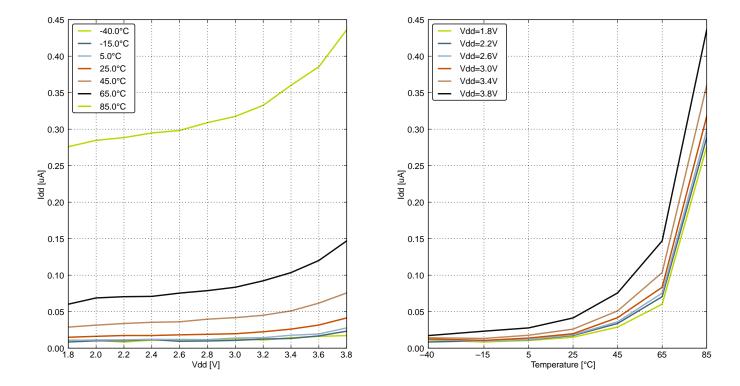


Figure 4.13. EM4 Current Consumption

4.5 Transition between Energy Modes

The transition times are measured from the trigger to the first clock edge in the CPU.

Table 4.4. Energy Modes Transitions

Parameter	Symbol	Min	Тур	Max	Unit
Transition time from EM1 to EM0	t _{EM10}	_	0	_	HFCORECLK cycles
Transition time from EM2 to EM0	t _{EM20}	_	2	_	μs
Transition time from EM3 to EM0	t _{EM30}	_	2	_	μs
Transition time from EM4 to EM0	t _{EM40}	_	163	_	μs

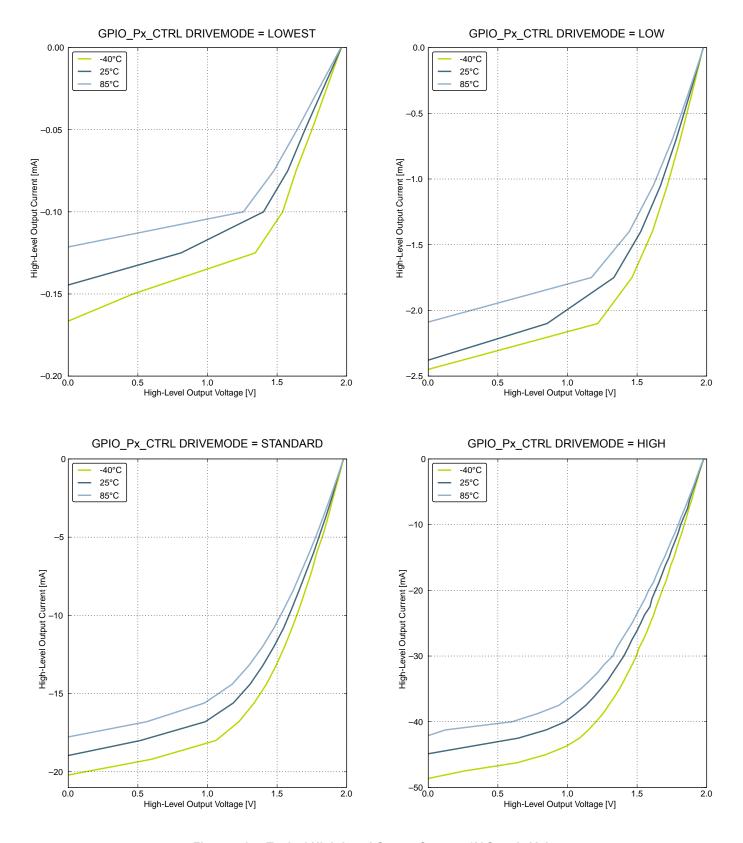


Figure 4.15. Typical High-Level Output Current, 2V Supply Voltage

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input offset current	I _{ADCOFFSETIN}	VSS < VIN < VDD	-40	_	40	nA
ADC Clock Frequency	f _{ADCCLK}	BIASPROG=0x747	_	_	7	MHz
		BIASPROG=0xF4B	_	_	13	MHz
		6 bit	7	_	_	ADCCLK Cycles
Conversion time	t _{ADCCONV}	8 bit	11	_	_	ADCCLK Cycles
		12 bit	13	_	_	ADCCLK Cycles
Acquisition time	t _{ADCACQ}	Programmable	1	_	256	ADCCLK Cycles
Required acquisition time for VDD/3 reference	t _{ADCACQVDD3}		2	_	_	μs
Startup time of reference gener-	t _{ADCSTART}	NORMAL mode	_	5	_	μs
ator and ADC core		KEEPADCWARM mode	_	1	_	μs

4.10.1 Typical Performance

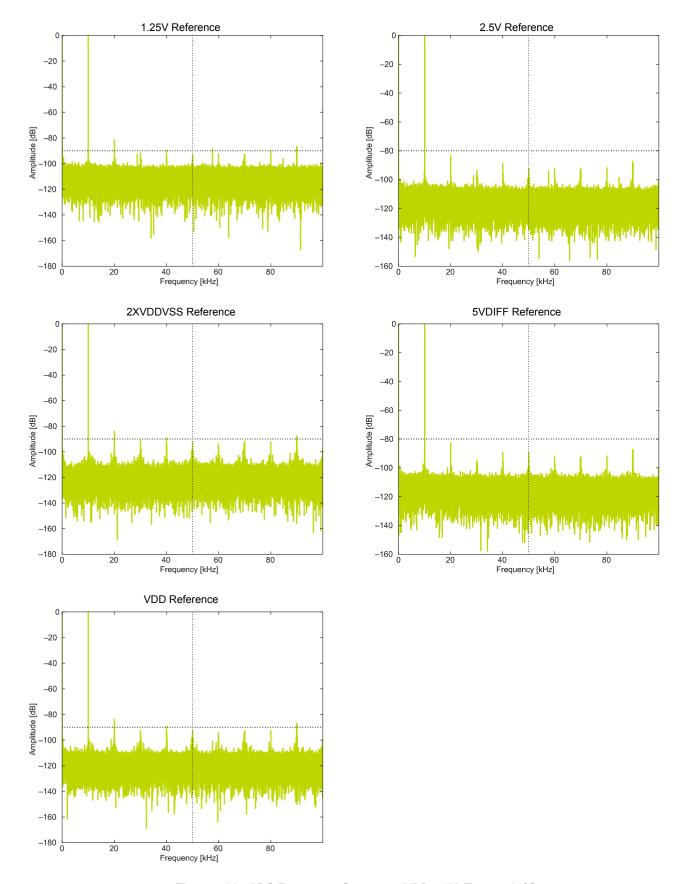


Figure 4.29. ADC Frequency Spectrum, VDD = 3V, Temp = 25°C

4.11 Digital Analog Converter (DAC)

Table 4.15. DAC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output valtage range	V	VDD voltage reference, single- ended	0	_	V _{DD}	V
Output voltage range	V _{DACOUT}	VDD voltage reference, differential	-V _{DD}	_	V _{DD}	V
Output common mode voltage range	V _{DACCM}		0	_	V _{DD}	V
		500 kSamples/s, 12 bit, internal 1.25 V reference, Continuous Mode	_	400 ¹	650 ¹	μΑ
Average active current	I _{DAC}	100 kSamples/s, 12 bit, internal 1.25 V reference, Sample/Hold Mode	_	200 ¹	250 ¹	μА
		1 kSamples/s 12 bit, internal 1.25 V reference, Sample/Off Mode	_	17 ¹	25 ¹	μΑ
Sample rate	SR _{DAC}		_	_	500	ksamples/s
		Continuous Mode	_	_	1000	kHz
DAC clock frequency	f _{DAC}	Sample/Hold Mode	_	_	250	kHz
		Sample/Off Mode	_	_	250	kHz
Clock cycles per conversion	CYC _{DACCONV}		_	2	_	cycles
Conversion time	t _{DACCONV}		2	_	_	μs
Settling time	t _{DACSETTLE}		_	5	_	μs
		500 kSamples/s, 12 bit, single- ended, internal 1.25 V reference	_	58	_	dB
		500 kSamples/s, 12 bit, single-ended, internal 2.5 V reference	_	59	_	dB
Signal-to-Noise Ratio (SNR)	SNR _{DAC}	500 kSamples/s, 12 bit, differential, internal 1.25 V reference	_	58	_	dB
		500 kSamples/s, 12 bit, differential, internal 2.5 V reference	_	58	_	dB
		500 kSamples/s, 12 bit, differential, V _{DD} reference	_	59	_	dB

4.13 Voltage Comparator (VCMP)

Table 4.17. VCMP

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input voltage range	V _{VCMPIN}		_	V _{DD}	_	V
VCMP Common Mode voltage range	V _V CMPCM		_	V _{DD}	_	V
Active current	I _{VCMP}	BIASPROG=0b0000 and HALF- BIAS=1 in VCMPn_CTRL regis- ter	_	0.3	1	μА
		BIASPROG=0b1111 and HALF-BIAS=0 in VCMPn_CTRL register. LPREF=0.	_	22	30	μА
Startup time reference generator	t _{VCMPREF}	NORMAL	_	10	_	μs
Offset voltage	V _{VCMPOFFSET}	Single-ended	_	10	_	mV
		Differential	_	10	_	mV
VCMP hysteresis	V _{VCMPHYST}		_	40	_	mV
Startup time	t _{VCMPSTART}		_	_	10	μs

The $V_{DD\ Trigger\ Level}$ can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation:

 $V_{
m DD\ Trigger\ Level}$ = 1.667V + 0.034 × TRIGLEVEL

5. Pin Definitions

Note: Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for guidelines on designing Printed Circuit Boards (PCBs) for the EFM32G.

5.1 EFM32G200 & EFM32G210 (QFN32)

5.1.1 Pinout

The EFM32G200 and EFM32G210 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bit-field in the *_ROUTE register in the module in question.

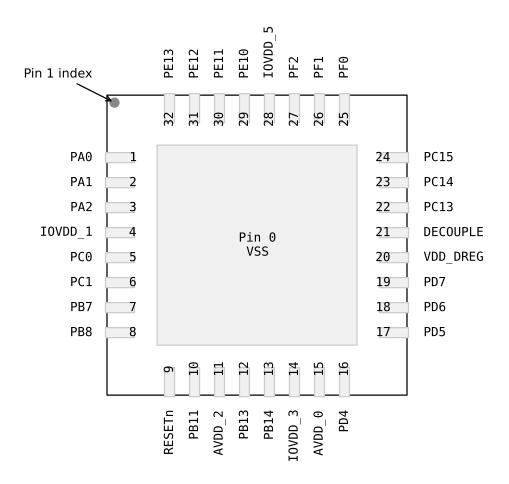


Figure 5.1. EFM32G200 & EFM32G210 Pinout (top view, not to scale)

5.2.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 5.5. Alternate functionality overview

Alternate		LOCATION					
Functionality	0	1	2	3	Description		
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.		
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.		
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.		
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.		
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.		
ACMP0_O	PE13				Analog comparator ACMP0, digital output.		
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.		
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.		
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.		
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.		
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.		
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.		
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.		
ACMP1_O	PF2				Analog comparator ACMP1, digital output.		
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.		
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.		
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.		
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.		
BOOT_RX	PE11				Bootloader RX.		
BOOT_TX	PE10				Bootloader TX.		
CMU_CLK0	PA2				Clock Management Unit, clock output number 0.		
CMU_CLK1	PA1				Clock Management Unit, clock output number 1.		
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.		
					Debug-interface Serial Wire clock input.		
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.		
					Debug-interface Serial Wire data input / output.		
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.		

QFN64 P	in# and Name		Pin Alternate	Functionality / Description	
Pin#	Pin Name	Analog	Timers	Communication	Other
6	PA5		TIM0_CDTI2 #0	LEU1_TX #1	
6	PA6			LEU1_RX #1	
8	IOVDD_0	Digital IO power	er supply 0.		
9	PC0		PCNT0_S0IN #1	US1_TX #0	
10	PC1		PCNT0_S1IN #1	US1_RX #0	
11	PC2			US2_CLK #0	
12	PC3			US2_CS #0	
13	PC4	ACMP0_CH4	LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0	
14	PC5	ACMP0_CH5	LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0	
15	PB7	LFXTAL_P		US1_CLK #0	
16	PB8	LFXTAL_N		US1_CS #0	
17	PA8		TIM2_CC0 #0		
18	PA9		TIM2_CC1 #0		
19	PA10		TIM2_CC2 #0		
20	RESETn		tive low.To apply an external re nd let the internal pull-up ensure	set source to this pin, it is requiet that reset is released.	red to only drive this pin low
21	PB11	DAC0_OUT0	LETIM0_OUT0 #1		
22	PB12	DAC0_OUT1	LETIM0_OUT1 #1		
23	AVDD_1	Analog power s	supply 1.		
24	PB13	HFXTAL_P		LEU0_TX #1	
25	PB14	HFXTAL_N		LEU0_RX #1	
26	IOVDD_3	Digital IO powe	er supply 3.		
27	AVDD_0	Analog power s	supply 0.		
28	PD0	ADC0_CH0	PCNT2_S0IN #0	US1_TX #1	
29	PD1	ADC0_CH1	TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1	
30	PD2	ADC0_CH2	TIM0_CC1 #3	US1_CLK #1	
31	PD3	ADC0_CH3	TIM0_CC2 #3	US1_CS #1	
32	PD4	ADC0_CH4		LEU0_TX #0	
33	PD5	ADC0_CH5		LEU0_RX #0	
34	PD6	ADC0_CH6	LETIM0_OUT0 #0	I2C0_SDA #1	
35	PD7	ADC0_CH7	LETIM0_OUT1 #0	I2C0_SCL #1	
36	PD8				CMU_CLK1 #1
37	PC6	ACMP0_CH6		LEU1_TX #0 I2C0_SDA #2	
38	PC7	ACMP0_CH7		LEU1_RX #0 I2C0_SCL #2	
39	VDD_DREG	Power supply f	or on-chip voltage regulator.		

5.5.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G280 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Table 5.15. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	_	PB14	PB13	PB12	PB11	PB10	PB9	PB8	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	_	_	_	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Port F	_	_	_	_	_	_	PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0

5.8 EFM32G842 (TQFP64)

5.8.1 Pinout

The EFM32G842 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

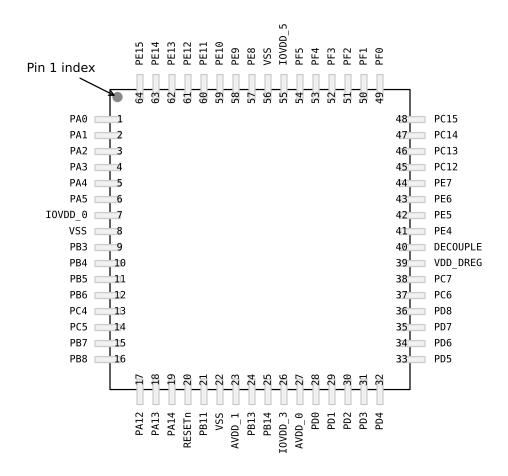


Figure 5.8. EFM32G842 Pinout (top view, not to scale)

Table 5.22. Device Pinout

	64 Pin# and Name		Pin Alternate	Functionality / Description	
Pin #	Pin Name	Analog	Timers	Other	
1	PA0	LCD_SEG13	TIM0_CC0 #0/1	I2C0_SDA #0	
2	PA1	LCD_SEG14	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0
3	PA2	LCD_SEG15	TIM0_CC2 #0/1		CMU_CLK0 #0
4	PA3	LCD_SEG16	TIM0_CDTI0 #0		
5	PA4	LCD_SEG17	TIM0_CDTI1 #0		

	P100 Pin# d Name		Pi	n Alternate Functionalit	y / Description	
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
4	PA3	LCD_SEG 16	EBI_AD12 #0	TIM0_CDTI0 #0	U0_TX #2	
5	PA4	LCD_SEG 17	EBI_AD13 #0	TIM0_CDTI1 #0	U0_RX #2	
6	PA5	LCD_SEG 18	EBI_AD14 #0	TIM0_CDTI2 #0	LEU1_TX #1	
7	PA6	LCD_SEG 19	EBI_AD15 #0		LEU1_RX #1	
8	IOVDD_0	Digital IO po	ower supply 0.			
9	PB0	LCD_SEG 32		TIM1_CC0 #2		
10	PB1	LCD_SEG 33		TIM1_CC1 #2		
11	PB2	LCD_SEG 34		TIM1_CC2 #2		
12	PB3	LCD_SEG 20		PCNT1_S0IN #1	US2_TX #1	
13	PB4	LCD_SEG 21		PCNT1_S1IN #1	US2_RX #1	
14	PB5	LCD_SEG 22			US2_CLK #1	
15	PB6	LCD_SEG 23			US2_CS #1	
16	VSS	Ground.				
17	IOVDD_1	Digital IO po	ower supply 1.			
18	PC0	ACMP0_C H0		PCNT0_S0IN #2	US1_TX #0	
19	PC1	ACMP0_C H1		PCNT0_S1IN #2	US1_RX #0	
20	PC2	ACMP0_C H2			US2_TX #0	
21	PC3	ACMP0_C H3			US2_RX #0	
22	PC4	ACMP0_C H4		LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0	
23	PC5	ACMP0_C H5		LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0	
24	PB7	LFXTAL_P			US1_CLK #0	
25	PB8	LFXTAL_N			US1_CS #0	
26	PA7	LCD_SEG 35				
27	PA8	LCD_SEG 36		TIM2_CC0 #0		

5.10.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 5.29. Alternate functionality overview

Alternate					LOCATION	
Functionality	0	1	2	3	Description	
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.	
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.	
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.	
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.	
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.	
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.	
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.	
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.	
ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.	
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.	
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.	
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.	
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.	
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.	
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.	
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.	
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.	
ACMP1_O	PF2	PE3			Analog comparator ACMP1, digital output.	
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.	
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.	
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.	
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.	
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.	
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.	
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.	
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.	
BOOT_RX	PE11				Bootloader RX.	
BOOT_TX	PE10				Bootloader TX.	
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.	
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.	

Alternate					LOCATION	
Functionality	0	1	2	3	Description	
TIM0_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.	
TIM0_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.	
TIM1_CC0	PC13	PE10	PB0		Timer 1 Capture Compare input / output channel 0.	
TIM1_CC1	PC14	PE11	PB1		Timer 1 Capture Compare input / output channel 1.	
TIM1_CC2	PC15	PE12	PB2		Timer 1 Capture Compare input / output channel 2.	
TIM2_CC0	PA8	PA12	PC8		Timer 2 Capture Compare input / output channel 0.	
TIM2_CC1	PA9	PA13	PC9		Timer 2 Capture Compare input / output channel 1.	
TIM2_CC2	PA10	PA14	PC10		Timer 2 Capture Compare input / output channel 2.	
U0_RX	PF7	PE1	PA4	PC15	UART0 Receive input.	
U0_TX	PF6	PE0	PA3	PC14	UART0 Transmit output. Also used as receive input in half duplex communication.	
US0_CLK	PE12	PE5	PC9		USART0 clock input / output.	
US0_CS	PE13	PE4	PC8		USART0 chip select input / output.	
		PE6	PC10		USART0 Asynchronous Receive.	
US0_RX	PE11				USART0 Synchronous mode Master Input / Slave Output (MISO).	
US0_TX	PE10	PE7	PC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).	
US1_CLK	PB7	PD2			USART1 clock input / output.	
US1_CS	PB8	PD3			USART1 chip select input / output.	
US1_RX	PC1	PD1			USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MI-SO).	
US1_TX	PC0	PD0			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).	
US2_CLK	PC4	PB5			USART2 clock input / output.	
US2_CS	PC5	PB6			USART2 chip select input / output.	
US2_RX	PC3	PB4			USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MI-SO).	
US2_TX	PC2	PB3			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI).	

		SYMBOL	MIN	NOM	MAX		
	х	D		16 BSC			
	у	E		16 BSC			
la a discaria	х	D1	14 BSC				
body size	у	E1	14 BSC				
lead pitch	1	е	0.5 BSC				
		L	0.45	0.6	0.75		
footprint		L1	1 REF				
		θ	0°	3.5°	7°		
		θ1	0°	_	_		
		θ2	11°	12°	13°		
		θ3	11°	12°	13°		
		R1	0.08	_	_		
		R1	0.08	_	0.2		
		S	0.2	_	_		
package edge to	lerance	aaa	0.2				
lead edge tole	rance	bbb	0.2				
coplanarity		ccc	0.08				
lead offset		ddd	0.08				
mold flatness		eee	0.05				

The LQFP100 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx

Symbol	Min	Nom	Max		
е	0.50 BSC				
L	0.40	0.45	0.50		
L1	0.00	_	0.10		
aaa	0.10				
bbb	0.10				
ccc	0.10				
ddd	0.05				
eee	0.08				

The QFN64 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx.

13. Revision History

13.1 Revision 2.10

July 19, 2017

In 4.8 General Purpose Input Output:

• Added missing multiply symbols.

In 4.10 Analog Digital Converter (ADC):

- Updated average active current.
- Updated SNR.
- · Updated SINAD.
- · Updated SFDR.
- Renamed VREF Output Voltage to VREF Voltage.

In 4.11 Digital Analog Converter (DAC):

• Renamed VREF Output Voltage to VREF Voltage.